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EQUILIBRIUM AND STABILITY OF THE

INHOMOGENEOUS NONLINEARLY ELASTIC

BODIES1

Karyakin M.∗,∗∗ , Obrezkov L.∗∗∗ , Pustovalova O.∗

∗ Southern Federal University, Rostov-on-Don, Russia
∗∗ Southern Mathematical Institute � the A�liate of VSC RAS,
Vladikavkaz, Russia
∗∗∗ Lappeenranta Technological University, Lappeenranta, Finland

The purpose of this work is to study the e�ect of the inhomogeneity of the
material properties of a nonlinearly elastic body on its equilibrium and stability
under various types of loading, taking into account large strains.

Large Bending Strains of Inhomogeneous Panel

It is well known that pure bending is one of the basic deformations that is actively
used for experimental determination and re�nement of model parameters for both
elastic and nonlinearly elastic behavior of media. The appearance of new highly
elastic structural materials, as well as a signi�cant increase in attention to the
tasks of modeling biological substances and their arti�cial substitutes, capable in
particular of withstanding large strains, causes a new wave of interest to the the-
oretical problems and experimental techniques that allow constructing correct
and veri�able mathematical models of continuous media. Another reason that
makes it necessary to address classical problems is the intensive study, modeling
and numerical analysis of the processes of creating and testing the performance
of composite materials, which are a matrix with relatively rigid �bers possess-
ing predetermined properties [1]. As it was shown in [2] the calculation of the
strength of such microstructures insistently requires considering the possibility
of destruction of the composite due to loss of stability.

A detailed analysis of various aspects of the equilibrium of bent homogeneous
nonlinearly elastic panel was presented in [3]. It was shown that for the most
common models of nonlinear elastic behavior of the panel material there is a
maximum on the loading diagram which indicates a possible loss of stability at
bending. In [4]�[7] a series of speci�c stability problems for large bending strains
with the use of the bifurcation analysis for a homogeneous panel were solved.

In this paper, a similar approach is applied to a more complex model: its
material parameters are functions of the vertical coordinate � the position of the
point along the thickness of the panel. We study the in�uence of this inhomo-
geneity to the loading diagram or, more precisely, the position of its maximum

1Supported by Program for Fundamental Research of the RAS Presidium N 1 on the Strategic Directions
of the Science Development �Fundamental Problems of Mathematical Modeling� (project 114072870112)
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point that can be treated (with some limitations) as an onset of the stability
loss.

In order to the traditional semi-inverse scheme be applicable to the inhomo-
geneous bar without signi�cant changes we restrict considerations by the case
when the material of the bar is inhomogeneous in the vertical direction only.
We assume also that only shear modulus µ is variable. This assumption is not
general but it allows comparing the results with [3], where for all models the
same value of the Poisson ratio equal to 1/4 was used.

It should be noted that both the process of derivation of ordinary di�erential
equations of boundary value problem and their numerical analysis is very labo-
rious, especially for the complex multiparameter expression of the strain energy
function. The fast and reliable solution of such problems is feasible with the help
of the system of computer automation of the semi-inverse method of the nonlin-
ear theory of elasticity, which is presented in [8]. The realized numerical scheme
is based upon the well-known shooting method. The speci�c feature of BVP aris-
ing in �nite elastostatics is substantial nonlinearity of the boundary conditions.
That means that one extra step should be introduced into the classical scheme:
after choosing the value of shooting parameter, say function value at the initial
point, we need to solve some scalar nonlinear equation to �nd the derivative of
this function at this point. This step requires additional accuracy to choose one
of generally speaking multiple roots of the nonlinear equation.

The e�ect of inhomogeneity on the feature of a nonlinearly elastic material
bending diagram found in previous works � the maximum point followed by the
falling section � was investigated. It has been established, in particular, that
if the heterogeneity of the material is very large, i.e. the values of the elastic
modulus in the upper and lower layers di�er by more than ten times, the e�ect
of inhomogeneity consists in moving the maximum point to the region of larger
strains.

The e�ect of inhomogeneity of the material of the panel on the relationship
between the position of the maximum point and the point of buckling on the
bending diagram was studied. It was established, in particular, that for a panel
with a softer lower edge, the bifurcation points are located to the left of the
maximum points, i.e. the panel will lose stability on the ascending part of the
diagram.

It seems that the obtained results can be used to develop and elaborate
new experimental methods for identifying the parameters of mathematical mod-
els that describe the mechanical properties of materials and structures that are
experiencing large strains.

Cylinder with Inner Stresses Due to a Disclination

Another example of inhomogeneity can be related with the initial stresses that
exist in an unloaded body. As an example of such situation the problem on the
equilibrium and stability of a cylinder with wedge disclination was considered.
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The concept of disclinations, which arose in the study of certain properties
of liquid crystals, later found application in the description of various biological
objects, such as protein polymers, wood, nematoid structures of human skin et
al. A new wave of interest to the nonlinear theory of elastic disclinations in recent
years is associated with the active use of disclination models in the description
of nanostructures of various kinds [9].

The study of disclinations in the framework of the nonlinear theory of elastic-
ity was initiated in [10], a number of propositions and ideas of which were later
re�ned and developed in the works of L.M. Zubov and his followers [11]-[13].

The use of models and methods of the nonlinear theory of elasticity allows not
only to analyze the stress-strain state of a body with a defect but also to investi-
gate questions of the stability of the constructed solutions. The traditional scheme
of stability studies [14, 15] is based on the linearization of three-dimensional non-
linear boundary problems in the neighborhood of the constructed solution and
the study of the possibility of the existence of a nontrivial solution of these linear
problems depending upon parameters, i.e. certain characteristics of the deformed
state or external in�uences. This work can be viewed as a continuation of the
studies begun in [12] and related to the study of the equilibrium and stabili-
ty of a cylinder containing a wedge disclination, and a comparative analysis of
the use in this connection more general models of nonlinear-elastic behavior of
compressible media.

The simpli�ed version of the Blatz and Ko model and the �ve-constant Mur-
naghan model were used for the simulation. The main method to construct the
equilibrium state was the semi-inverse method of the nonlinear theory of elas-
ticity, the stability study was carried out within the framework of the static
bifurcation approach.

It should be noted that the choice of the model did not show a qualitative
e�ect on the stress-strain state. If the parameters of the models were chosen so
that in the linear approximation they corresponded to the same material, the
di�erence in the distribution of normal stresses was no more than 10 percent.

More important di�erence was found when we compare results for close-to-
solid cylinder with that of similar to the thick-walled tube. In the �rst case
the stability region is described by curves with di�erent mode numbers that is
rather untypical. In addition, one can see the condensing of bifurcation curves
at one of the boundaries of the stability region. Increasing the mode number
n , starting from a certain value (about �fty), practically does not change the
critical pressure. This fact agrees with the results obtained earlier in [12] for
the harmonic material model. This, in particular, means that for such body it
is impossible to predict the form of the stability loss based on the analysis of
linearized equations. For a thinner cylinder, the n = 2 mode is always preferred;
the corresponding critical pressure is minimal. Another feature of thick cylinders
is the existence of a zone where the loss of stability can occur only due to the
presence of disclination without the application of external pressure. Such an
area may be absent in the thinner cylinders.
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A comparative analysis of the models used at various values of the parameters
showed, in particular, that thick-walled cylinders are characterized by condensing
of bifurcation curves, which can also occur in cases where there is no disclination,
but its presence makes the condensation areas much more extensive. The presence
of disclination can be both a stabilizing factor and vice versa � signi�cantly reduce
the value of the critical pressure.

Di�erent types of the inhomogeneity of the cylinder material can also have
a noticeable in�uence upon the stability. In particular, they can signi�cantly
change the region of stability of the unloaded cylinder having wedge disclination
of the given strength.

Bibliography

1. Levy A.J. , Shukla A., Xie M. Bending and buckling of a class of nonlinear
�ber composite rods // J. Mech. Phys. Solids, 2006, vol. 54 (5), pp. 1064�
1092.

2. Karamanos S.A. Bending instabilities of elastic tubes // Int. J. Solids
Struct., 2002, vol. 39 (8), pp. 2059-2085.

3. Karyakin M., Kalashnikov V., Shubchinskaya N. The speci�c features of
the pure bending of the elastic panel undergoing large strains // Int. J.
Eng. Sci., 2014, vol. 80, pp. 90�105.

4. Triantafyllidis N. Bifurcation phenomena in pure bending // J. Mech.
Phys. Solids, 1980, vol. 28(3-4), pp. 221�245.

5. Haughton D.M. Flexure and compression of incompressible elastic plates
// Int. J. Eng. Sci., 1999, vol. 37 (13), pp. 1693�1708.

6. Coman C.D. , Destrade M. Asymptotic results for bifurcations in pure
bending of rubber blocks // Q. J. Mechanics Appl. Math., 2008, vol. 61
(3), pp. 395�414.

7. Destrade M., Gilchrist M.D., Murphy J.G. Onset of nonlinearity in the
elastic bending of blocks // J. Appl. Mech., 2010, vol. 77 (6).

8. Gavrilyachenko T.V. , Karyakin M.I., Sukhov D.Yu. Designing of the in-
terface for nonlinear boundary value problem solver using Maple // Pro-
ceedings of the International Conference on Computational Sciences and its
Applications. Los Alamitos-Washington-Tokyo: ICCSA, 2008, pp. 284�291.

9. Romanov A. E. Mechanics and physics of disclinations in solids // Euro-
pean Journal of Mechanics A. Solids, 2003, 22 pp. 727�741

10. de Wit R. Linear theory of static disclinations // Fundamental Aspects of
Dislocation Theory, Nat. Bur. Stand. (US), 1970, pp. 651�673.



Karyakin M., Obrezkov L. . . . EQUILIBRIUM AND STABILITY. . . 11

11. Zubov L. M. Nonlinear Theory of Dislocations and Disclinations in Elastic
Bodies, Springer �Verlag, Berlin�Heidelberg�New York�Tokyo, 1997.

12. Zelenin A. A., Zubov L. M. Stability and postcritical behavior of an elastic
cylinder with disclination // Mechanics of solids, 1989, 24, pp. 97�103.

13. Karyakin M. I., Zubov L. M. Theory of Isolated and Continuously Dis-
tributed Disclinations and Dislocations in Micropolar Media // Advanced
Structured Materials, vol 7. Mechanics of Generalized Continua, Springer�
Verlag, Berlin�Heidelberg, 2011, pp. 275�290.

14. Zubov L. M. , Sheidakov D. N. Instability of a hollow elastic cylinder under
tension, torsion, and in�ation // Journal of Applied Mechanics, Transac-
tions ASME, 2008, 75, pp. 0110021�0110026.

15. Obrezkov L. Equilibrium and stability of nonlinearly elastic cylinder made
of Blatz-Ko material // Engineering Transactions, 2016, 4, pp. 457�463.



12 "Numerical Algebra with Applications"

COMPUTING EIGENPAIRS OF HERMITIAN

MATRICES IN PERFECT KRYLOV SUBSPACES1

Bai Z.-Z., Miao C.-Q.

State Key Laboratory of Scienti�c/Engineering Computing,
Institute of Computational Mathematics and Scienti�c/Engineering
Computing, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190,
P.R. China

Consider the large and sparse standard Hermitian eigenvalue problem

Ax = λx, with ∥x∥ = 1, (1)

where A ∈ Cn×n is a Hermitian matrix, λ ∈ R is an eigenvalue of the matrix A ,
and x ∈ Cn is the corresponding eigenvector; see [14]. Here and in the sequel, we
use ∥ · ∥ to denote the Euclidean norm of either a vector or a matrix.

We are interested in computing the smallest eigenpair, that is, the eigenvalue
of the smallest magnitude and the corresponding eigenvector, of the Hermitian
eigenvalue problem (1) by iteration methods based on projections onto Krylov
subspaces [7, 17]. This class of iteration methods can be essentially categorized
into the standard and the rational Krylov subspace methods, with both of them
�rst building orthogonal bases for the corresponding Krylov subspaces by using
the Lanczos process; then projecting the Hermitian eigenvalue problem (1) onto
the orthogonal subspaces, obtaining Hermitian eigenvalue problems of triangular
matrices with much smaller sizes; and, �nally, extracting the desired Ritz pairs
for the Hermitian eigenvalue problem (1) through computing the eigenpairs of
the Hermitian triangular matrices; see, e.g., [14, 15, 16].

If the extreme eigenvalues of the Hermitian eigenvalue problem (1) are well
separated from the interior eigenvalues, then they can be accurately and e�ec-
tively computed by the standard Krylov subspace methods. Otherwise, we can
transform the problem by employing the shift-and-invert technique, making the
extreme eigenvalues of the transformed problem to have good separations, so that
the Krylov subspace methods can work e�ciently on the transformed Hermitian
eigenvalue problem. On the other hand, the rational Krylov subspace methods
can accurately and e�ectively compute the extreme eigenpairs that may be poor-
ly separated from the interior eigenpairs, but these methods are too expensive
to be used to compute the extreme eigenpairs of good separations. Of course,
these two classes of Krylov subspace methods may encounter stability problem
in �nite precision arithmetic, because the orthogonality among the computed
vectors in the orthogonal basis are easily lost during the Lanczos process when
the Krylov subspace is gradually enlarged. In actual applications, in order to

1Supported by The National Natural Science Foundation (No. 11671393 and No. 11911530082), P.R. China.
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further accelerate the convergence rates of these Krylov subspace methods, ap-
propriate preconditioning strategy is often indispensible. For more details, we
refer to [12, 5, 6, 17] and the references therein.

In this paper, in order to integrate the advantages and avoid the disadvan-
tages of the standard and the rational Krylov subspace methods, by technically
unionizing these two kinds of subspaces we introduce a new subspace, called
the perfect Krylov subspace. Then we present a class of perfect Krylov sub-
space methods for computing the smallest eigenpair of the Hermitian eigenvalue
problem (1). In theory, we demonstrate that this method has local, semilocal
and global convergence properties, with both quotient convergence factor and
quotient convergence order being dependent on the order of the perfect Krylov
subspace; and by experiments, we show that this method outperforms the stan-
dard and the rational Krylov subspace methods in terms of iteration counts
and computing times, as well as in terms of absolute error with respect to the
eigenvalue and the eigenvector.
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MULTIGRID METHOD FOR BIOLOGICAL AND

MEDICAL PROBLEMS1

Muratova G. V., Bavin V. V.

Vorovich Institute of Mathematics, Mechanics and Computer
Science, Southern Federal University, Rostov-on-Don, Russia

Multigrid methods and its modi�cations for solving biological and medical
problems are considered in this paper. We present short review of some approach-
es for modeling these problems. As an example we research the cable equation.
Cable theory models the propagation of a pulse along the nerve �bers, composed
of equivalent electrical circuits, using a parabolic di�erential equation in partial
derivatives. We present a neuron model based on cable equation. To implement
the model an algebraic multigrid method is used. Some numerical results are
presented.

I Introduction

Multigrid belongs to e�ective iterative methods for solving large scale linear
algebraic equation systems arising from the discretization of partial di�erential
equations. Multigrid approach is based on using a di�erent level grid sequence
that allows to resolve con�icts between fast converge high frequency and slowly
converge low frequency components of the error to achieve high e�ciency. Due
to the structure of the method, it can be adapted for di�erent types of modeling
problems.

MGM is actively used in the implementation of the models in biology and
medicine. E�cient numerical simulation of processes occurring in models of biol-
ogy and medcine requires the solution of large scale linear systems of equations,
obtained after discretization of di�erential equations, which can be solve by multi-
grid method.

II Models in biology and medicine

Mathematical modeling of both normal physiological and pathological pro-
cesses is currently one of the most relevant areas in scienti�c research.[1] The
important �eld of research in medcine is the problems of hemodynamic, the
functioning of the respiratory and digestive organs. [2] The Navier-Stokes equa-
tions are the base of the models describing these processes and many others.

To solve the system of linear algebraic equations obtained after approximation
multigrid method can be used. Multigrid method, thanks to its structure, allows

1This research was supported by the Russian Foundation for Basic Research under Grants N 19-51-53013
GFEN-a
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to signicantly increase the e�ciency of the basic iterative method, combining the
usual iterative process with a technique called coarse-grid correction. In addition,
the multigrid method makes it possible to increase the e�ciency by adapting its
components to the problem in question. [3]

Multigrid method is suitable for modeling at the cellular level. [4, 5] Modeling
the drug di�usion through the human skin is consider in [4]. A good approxi-
mation for the cells of the stratum corneum (the corneocytes) can be achieved
by tetrakaidecahedral elements that allow for a realistic dense packing, similar
to what can be observed in reality. The resulting mesh features mostly isotropic
elements in the higher levels. Starting with a coarse grid, a distributed multigrid
hierarchy is built through intertwined parallel rearrangements and redistribution.
[4]

The mesh-based discretisation of the above models leads to a large system
of equations. Multigrid preconditioned BiCGStab solver is used on the lower
anisotropic levels. Those levels only span a small part of the available processes.
This solver serves as a base solver for a multigrid preconditioned BiCGStab
solver with a highly scalable Jacobi smoother on higher levels. This multigrid
solver spans the whole range of available processes. [4]

Employing geometric multigrid methods and carefully designed re�nement
and distribution strategies, demonstrate the applicability and e�ciency of simu-
lation approaches in massively parallel computations. [4]

III Neural models

The modeling neural activity of the brain is one of the most important direc-
tions of research. Neuroscience is among the biological subdisciplines where the
use of mathematical techniques are most established and recognized.

There are many di�erent approaches for simulating brain activity.
While every approach has its advantages and limitations, such as computa-

tional cost, integrated and methods-spanning simulation approaches, depend-
ing on the network size could establish new ways to investigate the brain.
In [5] it's presented a hybrid simulation approach, that makes use of reduced
1D-models using e.g., the NEURON simulatorwhich couples to fully resolved
models for simulating cellular and sub-cellular dynamics, including the detailed
three-dimensional morphology of neurons and organelles. The calcium model
used in the presented simulations is based on a cytosolic di�usion equation with
boundary conditions that include the plasma membrane calcium exchange mech-
anisms.To solve the linear system of equations, a geometric multigrid solver was
used as a pre-conditioner along with BiCGstab as a basic solver for the linear
part. [6]

One of the major problems for researchers in modeling networks is the prob-
lem of choosing the scale of the simulation. On the one hand the detailed models,
describing signal propagation processes inside the neuron, are needed to account
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for the complex computational capabilities of a neuron as computing element of
network. On the other hand large scaled networks, providing the opportunity to
study the functional interaction of di�erent neurons are required. Models based
on cable theory have good detailing due to the segmentation of neural rami�-
cation and su�cient computational simplicity, which demonstrates the optimum
approximation to the choice of scale.

IV Cable equation

For the description of propagation of a nerve pulse cable equation is used,
which allows to represent nerve cell in the form of a section of cable placed inside
a suitable environment and having insulation, which plays the role of the cell
membrane. After the di�erence approximation of the di�erential equations of a
model that includes a set of neurons, a large non-symmetric sparse system of
linear algebraic equations is obtained. It can have the discontinuous coe�cients.
So it has a low convergence, when we use standard relaxation methods.

Cable equation has the following form (1):

d2V

dx2
· 1
rl

=
V

rm
+ cm · dV

dt
, (1)

where rl , rm � axial and membrane resistance, respectively, cm � capacity, mem-
brane potential � V.

V Numerical experiments

Consider the problem of modeling the action potential propagation along the
nerve �bers at the site of a neural network.

The initial conditions � V (X, 0) = Vr, X � the computational domain.
Boundary conditions:
dV
dx (X, 0) = 0 when X is the end of nerve �bers,
d2V
dx2 · 1

rl
= V

rm
+ cm · dVdt + g(t) · (Vk − V ) when X is the synapse, where

g � conductivity, rm � membrane resistance, rl � longitudinal resistance, cm �
membrane capacitance, Vk � reverse potential.

After discretization of the di�erential equation we obtain (2):

1

rl
· (
V k+1
i−1 − 2 · V k+1

i + V k+1
i+1

∆x2
) =

V k+1
i

rm
+ cm · V

k+1
i − V k

i

∆t
. (2)

To solve such systems of linear equations, an algebraic multigrid approach
with the RS, PMIS algorithm for coarsening is used. RS(Ruge-Stuben) is a tradi-
tional coarsening approach. The RS algorithm is based on two heuristic criteria
that achieve optimal convergence and minimal computational cost.Therefore, the
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�rst criterion is strictly observed, and the second one is guidance. PMIS (paral-
lel changes independent set), the algorithm of coarsening, is based on the same
principles as the RS algorithm except that a heuristic criterion is not strictly ob-
served. Unlike the RS coarsening, PMIS is not sequential. Analysis of the solution
of cable equation shows that the use of multigrid algorithm, gives a signi�cant
advantage on grids in higher size.

Table 1. AMG algorithms for network size > 900000 sections.
AMM type complexity iterations tsetup tsolve t

RS 1.91 86 24.8 266.3 91.1
PMIS(GPU) 1.77 92 65.6 86.3 51.9

Table 2. AMG algorithms for network size > 10000 sections.
AMM type complexity iterations tsetup tsolve t

RS 1.82 45 4.6 14.6 9.2
PMIS(GPU) 1.54 35 12.2 3.2 5.4

Table 3. AMG algorithms for network size > 1000 sections.
AMM type complexity iterations tsetup tsolve t

RS 1.53 32 4.1 8.1 2.2
PMIS(GPU) 1.52 15 9.4 5.6 5.0

VI Conclusion

The short review of the models in biology and medicine is presened. Multi-
grid methods for soving linear algebraic equation systems applied to the prob-
lem of simulating the propagation of action potential along nerve �bers are dis-
cussed. Considered methods provide acceptable convergence rate, and variation
to achieve the desired error value does not exceed the permissible limit.Numerical
experiments using a variety of methods for solving such equations, for di�erent
sizes of neural networks: RS, PMIS algorithm are presented. The e�ciency of
the algebraic multigrid with PMIS algorithm for solving the cable equation is
demonstrated.
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ASYMPTOTIC APPROXIMATIONS FOR ONE

RADIATIVE-CONDUCTIVE HEAT TRANSFER

PROBLEM1

Amosov A.A., Krymov N.E.

National Research University Moscow Power Engineering Institute,
Moscow, Russia

In applications, it is of great importance to study the heat transfer process in
periodic media containing vacuum interlayers or cavities through which the heat
transfer is realized by radiation. A numerical solution of such problems requires
considerable computational e�orts and becomes, in fact, impossible for a large
number of heat transferring elements, especially in the case of two-dimensional
and three-dimensional structures. Therefore, it is important to construct e�ective
approximation methods.

This article continues a series of papers [1]-[9] devoted to the construction
and substantiation of special discrete, semi-discrete and asymptotic approxima-
tions of radiative-conductive heat exchange problems in periodic systems of heat-
conducting elements separated by a vacuum.

In this paper, we consider a stationary problem of radiative-conductive heat
transfer in a periodic system consisting of n2 absolutely black heat-conducting
rods of circular cross section with diameter ε = 1/n packed in a square box
Ω = (0, 1)2 with boundary Γ (Fig. 1). For each rod, we assign a disc Gij of
radius ε/2 with the center at the point xij = (ε(i−1/2), ε(j−1/2)) , 1≤ i≤ n ,
1≤ j ≤ n .

Figure 1. System of rods. Figure 2. Ωε , Γε and γε .

The stationary process of radiative-conductive heat exchange in the system
of rods G =

∪
i,j Gij is described by the following boundary value problem:

−div(λ∇u) = f, x ∈ G, (1)

λ
∂u

∂n
+ h(u) =

∫
∂G

h(u(ξ))φ(ξ, x) dσ(ξ) +

∫
Γ

h(uΓ(ξ))φ(ξ, x) dσ(ξ), x ∈ ∂G.

(2)

1The work supported by the Russian Science Foundation (grant 19-01-00033).
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The sought function is the absolute temperature u(x) = u(x1, x2) . Here λ is the
coe�cient of thermal conductivity, f is the density of thermal sources; h(u) =
σ0|u|3u , where σ0 > 0 is the Stefan-Boltzmann constant; uΓ is the temperature
on Γ ; n(x) is the outward normal to ∂G for x ∈ ∂G and the normal to Γ for
x ∈ Γ ; dσ(x) is a natural measure on ∂G ∪ Γ ; φ is a visual factor:

φ(ξ, x) =


cos(n(ξ), x− ξ) cos(n(x), ξ − x)

2|x− ξ|
, if [x, ξ] ∩G = ∅

0, if [x, ξ] ∩G ̸= ∅
.

Integrating equation (1) over Gij , taking into account condition (2) and as-
suming that the value of the temperature u is approximately equal to a constant
uij on Gij , we come to the discrete problem for values h(uij) . This problem
can be considered as a di�erence approximation of the following non-standard
boundary value problem (the �rst asymptotic approximation):

− ε∆h(v) =
π

4
f, x ∈ Ωε, (3)

εDnh(v)− ε2
π − 2

4
D2
sh(v) + h(v) = h(uΓ(xΓ)) + ε

π

8
fΓ, x ∈ Γε, (4)

εD̂nh(v) + h(v) = ĥΓ + ε
π

16
f̂Γ, x ∈ γε. (5)

Here Ωε = (ε/2, 1− ε/2)2 , Γε is the boundary of Ωε and γε = {Aε, Bε, Cε, Dε}
is the set of its corner points (Fig. 2); Dn and Ds are derivatives with respect

to external normal and tangent to Γε , D̂n|x=Aε
=−1

2

(
∂

∂x1
+

∂

∂x2

)
, D̂n|x=Bε

=

1

2

(
− ∂

∂x1
+

∂

∂x2

)
, D̂n|x=Cε

=
1

2

(
∂

∂x1
+

∂

∂x2

)
, D̂n|x=Dε

=
1

2

(
∂

∂x1
− ∂

∂x2

)
.

Besides, xΓ ∈ Γ is the closest point to x ∈ Γε and fΓ denotes the average value
of the function f over the segment [x, xΓ] . In addition, ĥΓ|x=Aε

is the average of

h(uΓ) over Γ ∩ {|x| < ε/2} and f̂Γ is the the mean value of f over the square

with the side length ε/2 and the left lower vertex at the point A . Values ĥΓ and

f̂Γ in points Bε , Cε , Dε are calculated in an analogical way.

We consider the solution v of problem (3)-(5) as an approximation to the
solution u of problem (1), (2). Note that this problem is linear with respect to
h(v) . It is easy to see that problem (3)-(5) does not contain any information
about the value of the thermal conductivity λ . As we will see below, it is per-
missible for well-conducting materials and leads to large errors for materials with
a small value of λ .

Taking into account the local structure of the solution of problem (1), (2)
we come to a more complex nonlinear boundary value problem � the second
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asymptotic approximation:

− ε∆H(v) =
π

4
f, x ∈ Ωε, (6)

εDnH(v)− ε2
π − 2

4
D2
sH∗(v) +HΓ(v) = HΓ(uΓ(xΓ)) + ε

π

8
fΓ, x ∈ Γε, (7)

εD̂nH∗(v) +HΓ(v) = ĤΓ + ε
π

16
f̂Γ, x ∈ γε. (8)

Here

H(v) =

v∫
0

h′(t)dt

1 + (1− α)
ε

λ
h′(t)

, H∗(v) =

v∫
0

h′(t)(
1 +

ε

2λ
h′(t)

)2dt,
HΓ(v) =

v∫
0

1 + (1 + α)
ε

2λ
h′(t)(

1 +
ε

2λ
h′(t)

)2 h′(t)dt, α ≈ 0.178.

Value ĤΓ|x=Aε
is the average of H(uΓ) over Γ ∩ {|x| < ε/2} . Values ĤΓ in

points Bε , Cε , Dε are calculated in an analogical way.
We consider the solution v of problem (6)-(8) as an approximation to the

solution u of problem (1), (2).
Below we present the results of some computational experiments that allow

us to draw preliminary conclusions about the quality of the proposed approxima-
tions. Consider a system of rods packed in a square box Ω with a side equal to
1 m. The temperature uΓ of its left and right boundaries continuously varies be-
tween 300K and 1000K with two symmetrically located maxima. At the upper
and lower boundaries the temperature is constant: uΓ = 300K . Besides, f = 0 ,
that is, there are no heat sources or sinks.

To solve boundary-value problems (3)-(5) and (6)-(8) we used �nite-di�erence
methods with very small mesh steps (much less than ε). The obtained approxi-
mations were compared with an "exact" solution of the problem (1), (2), obtained
by the �nite-di�erence method using a su�ciently detailed radial grid on each
disc Gij . To estimate the relative errors of approximate solutions we use the
following value:

δv =

√∑
i,j (u(xij)− v(xi,j))

2√∑
i,j u(xi,j)

2
.

Figure 3 shows graphs of relative errors as functions of ε when the value of
thermal conductivity λ = 5W/(m ·K) . Figure 4 shows graphs of relative errors
as functions of λ when the value of rods diameter ε = 0.02 . It can be seen that
the second asymptotic approximation turns out to be much more accurate than
the �rst.



Amosov A.A., Krymov N.E. ASYMPTOTIC APPROXIMATIONS. . . 23

Figure 3. Dependence of relative Figure 4. Dependence of relative errors
errors on ε at λ = 5W/(m ·K) ; on λ at ε = 0.02m ;

1 � the �rst asymptotic approximation, 2 � the second asymptotic approximation

The distribution of the obtained temperature values is shown on Figures 5
and 6 using thermograms, where the transition from the maximum temperature
to the minimum corresponds to transition on the gray scale from white to black.

Figure 5. Exact solution, the �rst and the second asymptotic approximations in
the case λ = 200W/(m ·K)

Figure 6. Exact solution, the �rst and the second asymptotic approximations in
the case λ = 0.05W/(m ·K)
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In the case of the large value of λ = 200W/(m · K) both asymptotic ap-
proximations give good approximations to the exact solution, while for the small
value of λ = 0.05W/(m ·K) the �rst approximation turns out to be practically
unsuitable.
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COMPUTER SIMULATION OF MIGRATION OF

LIQUID CYLINDRICAL INCLUSIONS IN A CRYSTAL

IN SOME CASES OF INTERFACIAL ENERGY

ANISOTROPY1

Garmashov S.I., Karpenko A.S.

Southern Federal University, Rostov-on-Don, Russia

One of the methods for studying the processes of crystallization and disso-
lution can be based on the phenomenon of migration of liquid inclusions in a
non-uniformly heated crystal [1] � [7]. In order to extract information from ex-
perimental data on the migration of such inclusions [6, 7], it is important to
have an adequate mathematical model of this process. In the general case, the
liquid inclusion in a crystal is a three-dimensional object, the shape of which can
change during its migration through the crystal. Therefore, in order to describe
such process, it is necessary to solve three-dimensional non-stationary equations
of mass and heat transfer in a volume with moving boundaries. Besides, obtain-
ing experimental data on the shapes and velocities of liquid inclusions in the
form of drops is a rather complicated task, especially if the crystal is opaque in
the visible region of the spectrum and the process temperature is much higher
than the room temperature. Therefore, it makes a sence to study the steady-state
migration of the liquid inclusions with cylindrical shapes, when it is possible to
analyze the shape of not the entire inclusion, but only its cross-section.

The steady-state velocity and cross-sectional shape of a liquid cylindrical
inclusion migrating in a stationary uniform �eld of the temperature gradient,
as was shown in [2, 3], depend on the speci�c interfacial energy and interface
kinetics, as well as their anisotropies. The interfacial energy anisotropy (IEA)
is known to determine the shape of a crystal (or an inclusion in a crystal) in
equilibrium (i.e., in the absence of a temperature gradient). When the crystal
is not uniformly heated, the equilibrium conditions at the solid-liquid interfaces
are violated, and the inclusion shape deviates from the equilibrium one due to
the occurrence of supersaturation (undersaturation) of the crystal solution at the
�at (atomically-smooth) parts of the inclusion boundary. As was shown in [1] for
the case of liquid inclusions in the form of �at interlayers, the interface kinetics
most strongly limits the mass transfer in thin interlayers. For this reason, the
dependence of the velocity (V ) of the interlayer on its thickness (l) increases
monotonously from 0 (at l = 0) and asymptotically approaches (at l −→ ∞)
some maximum - so called the di�usive velocity corresponding to the absence
of interface limitations. In the papers devoted to the migration of cylindrical
inclusions, the V (l) dependence was not analyzed in details, and, therefore, it
is interesting to calculate and analyze this dependence not only with varying
interface kinetics but the degree of the IEA.

1The work supported by the Russian Science Foundation (grant 19-01-00033).
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Generally, the IEA is described by a complicated dependence of the speci�c
interfacial energy on the orientation of the crystal facets. In this paper, we con-
sider the case when the IEA can be approximated by a function γ(φ) (Fig. 1a)
in the form:

γ(φ) = γmin + (γmax − γmin)| sin(ξφ)|, 0 ≤ φ < 2π, (1)

where γ is the speci�c interfacial energy of the crystal facet with the orienta-
tion given by the angle φ ; γmin , γmax are the minimal and maximal values of
γ(φ) ; ξ = 1 or 2. The facets corresponding to the sharp minima of γ(φ) at
φ = nπ/ξ (n ∈ Z) are considered as the singular facets.

Figure 1. Schematics of (a) the IEA types used in the present model (Eq.(1)) and
(b) the approximated cross-sectional shape of the cylindrical inclusion migrating
with the velocity V in a crystal under the action of the temperature gradient G

The value of ξ = 1 can correspond to the case of the migration of a cylindrical
inclusion in the direction normal to the close-packed crystal planes (e.g., the
inclusion migration in a crystal of Si in the <111> direction [3]). The value of
ξ = 2 is characteristic of the inclusions with 4 singular facets (e.g., the migration
of brine inclusions in a crystal of KCl in the <100> direction [2]). We assume that
the temperature gradient is perpendicular to the singular facets, the mechanism
of the interface processes corresponds to the two-dimensional nucleation [1], and
there are no temperature oscillations.

In order to calculate the cross-sectional shape of the cylindrical inclusion
at the given velocity of its migration, we use the conclusion from [3] that the
distribution of actual concentrations in the liquid phase in the steady state should
be �at and inclined in the direction of the inclusion migration. Based on both this
conclusion and the �ow balance conditions in the inclusion and at its interfaces,
the desired shape can be calculated by means of the numerical integration, as
described in [3, 7], or by the method of facets proposed in [2] and used in [4].

The method of facets is based on the approximation of the curvilinear inter-
faces by a set of �at sections (facets) (Fig.1b). It is preferable in that it allows
us to calculate the cross-sectional shape of the inclusion simply for arbitrary
anisotropies of the interfacial energy and interface kinetics, but the rate of its
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convergence, as will be shown below, is relatively low. Nevertheless, we use the
method of facets for solving the problem considered in the present work because
we are interested to analyze the in�uence of the various types of the IEA on
the velocities and cross-sectional shapes of the cylindrical inclusions. Brie�y, the
algorithm for constructing the cross-sectional shape for the cylindrical inclusion
is the following.

First of all, we set the inclusion velocity V in the range from 0 to the di�usive
velocity, and then, using this value, calculate both the slope of the �at distribu-
tion (C(x, y)) of actual concentrations of the crystal solution over the inclusion
cross-section and the supersaturation (undersaturation) at the singular facets
according to a given mechanism of the interface processes. If after this we set ar-
bitrarily the size (w1 ) of the �rst (singular) facet (Fig. 1b) and take into account
the decrease of the liquidus at it because of the capillary e�ects [2, 3, 5], then
the distribution C(x, y) for the given velocity V can be completely determined.

Since the supersaturations at the curvilinear (atomically-rough) parts of the
inclusion boundary are negligibly small, the distribution of the equilibrium con-
centrations along these parts coincides with the earlier calculated distribution
C(x, y) of the actual concentrations. Hence, the sizes (w2, w3 , and so on) of the
next facets approximating the curvilinear interface (Fig. 1b) must be chosen so
that the equilibrium concentrations at them exactly coincide with the actual con-
centrations for these facets. As a result, the entire shape of the inclusion can be
constructed. However, the size (wn ) of the last (singular) facet (Fig. 1b) might
be such that the �ow balance conditions at it will not be satis�ed. Therefore, the
size (w1 ) of the �rst facet should be changed so that the �ow balance conditions
would not be violated at the last facet. The cross-section shape constructed in
this way (Fig. 1b) will correspond to the given migration velocity V . It should
be noted that one value of the inclusion velocity V can correspond to several
shapes of the cross-sections with di�erent areas, all other conditions being equal.

According to the above algorithm, a computer program was developed
(Fig. 2). The program allows us to calculate the velocity and shape of the inclu-
sion as functions of the area and thickness of the cross-section for varying type
and degree of the IEA and degree of di�culty of the interface processes.

Fig. 3 illustrates the rate of convergence of the method of facets in the cases
when the cross-sectional shape is slightly and signi�cantly di�erent from the
equilibrium one. In both cases, the order of the convergence rate is about 1. We
used 5000 facets for approximating the cross-sectional shape.

With the developed program, the dependences of the velocities of cylindrical
inclusions on the thicknesses of their cross-sections were calculated (Fig. 4) for
the IEA types corresponding to 2 and 4 singular facets, as well as for the case of
migration of the �at interlayers [1], with other conditions being equal.

It follows from the obtained results that the velocities of the cylindrical inclu-
sions are higher than the ones of the �at interlayers with the same thicknesses,
all other conditions being equal, but approaching the rates of the latter with
increasing the degree of the IEA (γmax/γmin) . The velocities for the inclusions
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Figure 2. The computer program developed for calculating the velocities and
cross-sectional shapes of migrating cylindrical inclusions by the method of facets

Figure 3. The relative errors of calculating the cross-section area Sn as functions
of the number of facets (n) approximating the inclusion shape with 2 and 4
singular facets in the cases of relatively low and high degrees of its deformation
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Figure 4. The calculated velocities of the cylindrical inclusions (at the di�erent
types and degrees of the IEA) and �at interlayers as functions of their thicknesses
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with 4 singular facets are lower than for the ones with 2 singular facets under the
same degree of the IEA. Interestingly, in contrast to the case of the �at interlay-
ers, for that the V (l) dependences are monotonic, the similar dependences in the
case of the cylindrical inclusions can take the form of curves with a maximum
(at the small degrees of the IEA).
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NUMERICAL ANALYSIS OF COSYMMETRY

VIOLATION IN FILTRATION CONVECTION

PROBLEM1

Govorukhin V.N.

Southern Federal University, Rostov-on-Don, Russia

The property and theory of cosymmetry were introduced to explain a phe-
nomenon of existence of one-parameter family of steady-state �ows in the pla-
nar Darcy convection problem. The branching of one-parameter set of equilibria
(closed curve of equilibria in phase space) is a typical bifurcation in cosymmetric
dynamical system [1, 2]. It implies the existence, at �xed physical parameters,
an in�nite number of substantially di�erent steady-state regimes.

An analytic study of the one-parameter family of steady-state regimes in
cosymmetric problems is possible for parameters values near bifurcation of its
appearance [1, 2], and numerical approaches can be used for other situations.
Development of special numerical methods to studying cosymmetric dynamical
systems started in [3, 7] and continued in [4, 5, 6, 7, 8, 9].

If cosymmetry is violated the continuous families of steady-state regimes
break down or disappear [11] and as result can happen unusual bifurcations.
By V.I. Yudovich was proposed the selective function for studying these destruc-
tions. This function indicates which points of the equilibrium curve conserves
under small violation of cosymmetry. It has been shown that two scenarios are
possible for stable family of equilibria: the disintegration of the family on a �-
nite number of equilibria or appearance of slow periodic motions. However, what
might be happening with partially stable families (consisting of stable and un-
stable arcs) under cosymmetry breaking perturbations remain largely open. This
paper is devoted to numerical analysis of such bifurcation phenomena and out-
lines the numerical approaches for investigation both cosymmetric and close to
cosymmetric tasks.

The problem of �ltration convection in the Darcy-Boussinesq approximation
in a region Ω ∈ R2 and in the presence of internal heat sources is reduced to the
following system of di�erential equations

∆ψ = θx, (1)

θt + ψyθx − ψxθy = ∆θ + λψx + δ f(x, y). (2)

Here x and y are Cartesian coordinates, t is time, ψ(t, x, y) is a stream function
and θ(t, x, y) is a deviation of the temperature from a linear vertical equilibrium
pro�le. λ is an analogue of the Rayleigh number, f(x, y) is a function which
a result of external actions, for example, intensity distribution function of the
internal heat sources or in�ltration and δ is a parameter.

1Supported by RFBR Grant 18-01-00453
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We consider a rectangular domain Ω = [0, a]× [0, b]. On the boundary of Ω ,
the following conditions are assumed to hold:

[θ]∂Ω = [ψ]∂Ω = 0. (3)

The initial condition for system has the form

θ(0, x, y) = θ0(x, y) (4)

where θ0(x, y) is a function de�ned in Ω .
For any �xed value of t we can express ψ from (1) in terms of θ by solving

the Dirichlet problem for the Poisson equation.
For δ = 0 , problem (1)�(4) has cosymmetry which is given by the function

Lθ = ψ . This means that the following equality holds:∫
Ω

(△θ − ψyθx + ψxθy + λψx)ψ dxdy = 0. (5)

In cosymmetric case for each transition of λ through the value λm,n =

4π2
(
m2

a2 + n2

b2

)
, n, n = 1, 2, . . . corresponds the bifurcation of the onset of

a one-parameter family of equilibria (steady state regimes), see [1, 2].
When δ ̸= 0 , the cosymmetry of the problem is violated. Corresponding

selection equation, see [11] has the form

ψyθx − ψxθy = ∆θ + λψx,

∫
Ω

f(x, y)ψ dxdy = 0 (6)

here ψ can be expressed in terms of θ from (2).
The numerical analysis of a cosymmetric and near-cosymmetric systems leads

to computational problems due to their speci�c properties. First of all numerical
methods must conserve the cosymmetry of the problem. It includes preserving
the cosymmetry by discretizations of partial di�erential equations. The violation
of cosymmetry properties by discretizations may lead to the spurious behaviour
such as destruction of the family of equilibria. The other problem is a strongly
degeneration of equilibria in cosymmetric case and impossibility to use standard
methods for their study. The algorithm of continuation of the family of equilibria
along the hidden parameter should be used for this purpose. The analysis of spe-
cial selective function must applied for studying near-cosymmetric systems and
destruction of families of equilibria. This selective function indicates which points
of the equilibrium curve preserves under violation of cosymmetry. All mentioned
stages of numerical research as applied to convection in porous medium problems
are considered in this paper.

In this work, we use the Galerkin method for analysis ot the problem (1)�(4).
Functions ψ and θ are approximated by the series

ψ =
n∑
i=1

n∑
j=1

ψi,j(t)ϕi,j(x, y), θ =
n∑
i=1

n∑
j=1

θi,j(t)ϕi,j(x, y),

ϕi,j(x, y) =
2√
ab
sin
(
iπxa
)
sin
(
j πyb
)
.

(7)
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Substitution of (7) into (1) and projection operations lead to a system of ODEs
of order N = n2 . Similarly, we obtain a approximating system for the selective
function (6). It is easy to prove that the obtained approximation preserves the
cosymmetry of the original problem.

The system of ODE's for δ = 0 is cosymmetric and their cosymmetry is
de�ned by approximation of ψ from (2). Only those steady-state solutions on

the family θ̂(s) survives for small perturbations violating the cosymmetry for
which the value of (6) approximation are equal zero. Here s is a parameter on
the curve of equilibria. Thus, for the analysis of family of equilibria destruction
we need to be able to calculate their values for any s.

The continuation method is based on the cosymmetric implicit function the-
orem, see [10]. The �rst version of this method was provided in detail in [7]. Here
is presented the algorithm for continuation of the equilibria curve along a hidden
parameter simultaneously with the analysis of its destruction under cosymme-
try violating perturbations. As F and D we denote approximations of steady
problem (1)-(4) for δ = 0 and of selection function (6) respectively. By θ̂(s)
we denote equilibrium point on the family corrsponding to value s of the curve
parametrization.

The method can be presented as the following algorithm:

1. Find a point θ̂0 = θ̂(sk), k = 0 on the curve of equilibria by modi�ed New-
ton method. Choice the direction of continuation along the curve. Calculate
the kernel of Jacobi matrix of F at the point θ̂(sk) . Selection function D(s)

calculation in θ̂(s0) .

2. Do one step of Runge-Kutta method for special Cauchy problem with start
point sk, θ̂(sk) . On each stage of RK-method a eigenvector ϕ0 correspond-
ing to zero eigenvalue (RHS of special Cauchy problem) must be calculated.

3. Checking of accuracy of predicted point of the curve of equilibria. We use

following criteria for accuracy control:
∥∥∥F θ̂(sk+1)

∥∥∥ < ϵ, where F θ is

a right hand side of cosymmetric ODE system and ϵ is accuracy. If the
accuracy of equilibria calculations is not satisfactory then correct step of
Runge-Kutta method h = h/2 and goto to item 2 else go to next item.

4. Correct the point θ̂(sk+1) using iterations of Newton method. The result

of this step is a next point θ̂(sk+1) of the curve of equilibria.

5. Selection function calculation in θ̂(sk+1) . If D θ̂(sk) ·D θ̂(sk+1) < 0 then
�nding s∗ corresponding to zero of selective function. This equilibrium
is survives under non-cosymmetric perturbation. Using of dense output
algorithm provides to obtain θ̂(s) for any s ∈ [sk, sk+1] with accuracy
without additional calculations.
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6. Check of conditions of the end of computation (step too small, number of
steps, curve of equilibria is closed. etc.). If at least one of conditions is true
then computation stops. Otherwise transition to item two of algorithm.

The described algorithm was applied to analyze a number of problems of
�ltration convection with various functions f(x, y) . The results will be presented
in a talk.
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A P -VERSION TWO LEVEL SPLINE METHOD FOR

2D NAVIER-STOKES EQUATIONS1

Han D.-F.

Department of Mathematics, Hangzhou Normal University,
Hangzhou 310006, China

In two dimensional case, the weak form of the stream function formulation
for the Navier-Stokes equations is standard [1], that is, to �nd a solution ψ ∈
H3(Ω)

∩
H2

0(Ω) satisfying the boundary conditions, which should be speci�ed
later, such that

νa(ψ, ϕ) + b(ψ;ψ, ϕ) = ⟨f, ϕ⟩, ∀ϕ ∈ H2
0(Ω), (1)

where ν is viscosity, and the bilinear functional a(·, ·) and the trilinear functional
b(·; ·, ·) are de�ned by

a(ψ, ϕ) =

∫
Ω

∆ψ∆ϕdxdy, b(ξ;ψ, ϕ) =

∫
Ω

∆ξ

(
∂ψ

∂x

∂ϕ

∂y
− ∂ψ

∂y

∂ϕ

∂x

)
dxdy,

where function f ∈ L2(Ω) in the right hand side of (1), and ⟨·, ·⟩ denotes the
inner product of L2(Ω) .

First we introduce some notations for the ease of describing the spline meth-
ods. Denote △ as the triangulation of the computational domain Ω , and

Sdh = {s ∈ C1(Ω) : s|t ∈ Pd,∀t ∈ △}.

is a spline space of the degree d with C1 -smoothness on △ , and the subscription
h means the mesh size of △ . We know that Sdh is a �nite dimensional function
space which is dense in C1(Ω) . The full approximation power order could be
achieved following the multivariate spline theory. For the ease of reference, we
presented one result in the following lemma.
Lemma 1. Assuming d ≥ 5 and ψ ∈ Hd+1(Ω) . ψd ∈ Sdh is the spline approxi-
mation for ψ , then

|ψ − ψd|2 ≤ C inf
ω∈Sd

h

|ψ − ω|2 ≤ Chd−1.

In the current research, we only consider the case of Dirichlet boundary con-
dition, which is (ψ, ∂ψ∂n)

∣∣
∂Ω

= g := (g1, g2) . Other types of boundary condition
could be treated as the same manner as in the �nite element method. Let n be
the normal direction of the boundary ∂Ω , and then denote

Sdh,g = {s ∈ Sdh : s|∂Ω = g1,
∂s

∂n

∣∣
∂Ω

= g2}

1Supported by the National Foundation of Natural Science with Grant No.11471092, and the Natural
Science Foundation of Zhejiang Province under grant LZ13A010003.
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as the spline space satisfying the Dirichlet boundary condition above. In the
homogeneous case, it is written as Sdh,0 .

Then the spline methods for the model problem (1) can be stated as follows:
To �nd a solution ψd ∈ Sdh,g such that

νa(ψd, ϕd) + b(ψd;ψd, ϕd) = ⟨f, ϕd⟩, ∀ϕd ∈ Sdh,0(Ω), (2)

where the bilinear form a(·, ·) , the trilinear form b(·; ·, ·) and the inner product
⟨·, ·⟩ are de�ned as before. The advantage of the spline method is that we do not
need to construct the explicit basis functions of Sdh with di�erent degree d . In
this sense, we are intended to regard it as an alternative approach for the �nite
element methods. The dual problem corresponding to (2) is necessary to derive
the error with H1 -norm: To �nd a function wf ∈ H2

0(Ω)
∩
H3(Ω) such that

νa(ϕ,wf) + q(ζ;ϕ,wf) = ⟨ϕ, f⟩, ∀ϕ ∈ H2
0(Ω), (3)

which is necessary to derive the error with H1 -norm, where ζ = ψ or ψd and

q(ξ;ψ, ϕ) = b(ξ;ψ, ϕ) + b(ψ; ξ, ϕ).

In the spline method, any spline ψd ∈ Sdh,g is written into its piecewise B-form
on any triangle element t , that is

ψd =
∑

i+j+k=d

ci,j,kBi,j,k(x, y), ∀t ∈ △, (4)

where Bi,j,k(x, y) is the triangular Bernstein polynomial de�ned on any triangle.
Denote

(
ci,j,k

)
i+j+k=d

as the B ézier coe�cients of the spline ψd . It is geometri-

cally simple to formulate the global C1 -smoothness constrains with the B ézier
coe�cients.

We can use the algorithm to elevate the degree of a polynomial from d to
d + 1 . As for arbitrary D > d , by repeatedly executing the algorithm D − d
times.
Lemma 2. (Degree elevation algorithm)

Let ψd be a polynomial of degree d de�ned on a triangle t in the form of
(4), then ψd can be elevated to a polynomial of degree d + 1 with the form

ψd =
∑

i+j+k=d+1

c̃ijkBijk(x, y), where the new B ézier coe�cients are calculated

by

c̃ijk = (
i

d+ 1
ci−1,j,k +

j

d+ 1
ci,j−1,k +

k

d+ 1
ci,j,k−1), (5)

for i + j + k = d + 1 . The coe�cients are assumed to be zero with negative
subscripts.
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Then the new p-version of the two level method for the stream function for-
mulation of Navier-Stokes equations can be concluded as the following algorithm,
which gives high order spline approximate solutions ψD and ψ∗

D .

Algorithm. (The p-version two level spline method)

Step 1. Find ψd ∈ Sdh,0 by solving (2).
Step 2. Do interpolation for ψd using the degree elevation algorithm (5) .
Step 3. Find ψD ∈ SDh,0 , which solves

νa(ψD, ϕ) + q(ψd;ψD, ϕ) = b(ψd;ψd, ϕ) + ⟨f, ϕ⟩, ∀ϕ ∈ SDh,0. (6)

Step 4. Find a better solution ψ∗
D ∈ SDh,0 , which solves

νa(ψ∗
D, ϕ)+q(ψd;ψ

∗
D, ϕ) = q(ψd;ψD, ϕ)−b(ψD;ψD, ϕ)+⟨f, ϕ⟩, ∀ϕ ∈ SDh,0. (7)

It is worth to remark that Step 4 of the above algorithm is only e�ective
when the high order D is much larger than the low order d , for e.g., d = 5
and D = 11 . It is interested when D is fairly large and much lower d could be
used to reduce the computational costs. A precise description for the restrictions
between the values of d and D in Step 3 and Step 4 are given respectively by
the theorems later.

It is then straightforward to derive our �rst error estimations of the high
order spline solution ψD and ψ∗

D in the Algorithm.

Theorem 1. Suppose ψ ∈ HD+1(Ω) is the exact solution of the equation (1)
and ψD is obtained by the Algorithm. If d < D ≤ 2d − 1 (d ≥ 5 ) , then we
have

|ψ − ψD|2 ≤ C(hD−1 + | lnh|1/2h2d−1) ≤ ChD−1.

Namely, ψD has the optimal asymptotic accuracy in energy norm | · |2 with
respect to h .

Theorem 2. Let ψ ∈ HD+1(Ω) is the exact solution of the equation of (1) and
ψ∗
D is obtained by the Algorithm. If d < D ≤ 3d− 2(D > d ≥ 5) , then

|ψ − ψ∗
D|2 ≤ ChD−1,

i.e, ψ∗
D has the optimal asymptotic accuracy in energy norm | · |2 with respect

to h .
Numerical calculations with the proposed two level spline methods are im-

plemented, and then applied to some benchmark problems in the literature. All
the numerical calculations here are performaned on a laptop equipped with Intel
CPU T7500 and 2.00GB memory.
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Example. Consider the 2D Navier-Stokes equation [4] on unique square Ω =
(0, 1)2 . This example is only used to validate the numerical solver, more practical
boundary condition is considered in the third example. In this sense, we choose
a proper right-hand term f , such that the exact solution being

ψ(x, y) = x2(x− 1)2y2(1− y)2. (8)

For this test problem, all requirements of the theory concerning the geometry
of the domain and the smoothness of the data are satis�ed. Meshes with three

Table 1. One level method for Example with (ν = 1/1000,△1/4 )

Spline space CPU-time Dof Iter L2 error H1 error H2 error
S5(△1/4) 5.65s 672 3 1.39e-06 3.36e-05 1.10e-03
S6(△1/4) 6.97s 896 3 6.67e-08 2.14e-06 8.02e-05
S7(△1/4) 11.58s 1152 5 1.76e-09 6.71e-08 3.28e-06
S8(△1/4) 24.01s 1440 10 1.42e-11 1.64e-10 2.43e-09

di�erent sizes are used in our calculation, which corresponding to meshes with
size h = 1/8, 1/14 and 1/16 respectively. They are S5(△1/4) and S6(△1/4) and
S7(△1/4) and S8(△1/4) . The cpu-time, number of Newton's iterations(Iter), De-
gree Of Freedoms (Dof), L2 -error,H1 -error and H2 -error of the stream function
for the one-level method with ν = 1/1000 for di�erent spline spaces are tab-
ulated in Table 1. On the low degree spline space level, all nonlinear problems
are solved by executing the Newton's iteration repeatedly until both the norm
of the di�erence in successive iterates and the norm of the residual are within
a �xed tolerance ϵ . Because of its small size, this nonlinear system takes very
little time to solve compared with the larger linear systems. in this calculation,
ϵ = 5e− 10 . The CPU-time, the L2 errors, the H1 errors and H2 errors for the

Table 2. Example: two level method(ν = 1/1000)

two level CPU-time L2 error H1 error H2 error
|ψD − ψ| S5,S7 5.03s 1.88e-09 6.79e-08 3.28e-06

S5,S8 6.30s 7.68e-10 1.01e-08 2.40e-07
S6, S8 7.63s 2.02e-11 1.84e-10 2.53e-09

|ψ∗
D − ψ| S5,S7 6.02s 1.74e-09 6.71e-08 3.28e-06

S5,S8 7.31s 1.74e-11 1.53e-10 2.27e-09
S6,S8 11.65s 3.06e-11 2.02e-10 2.23e-09

two level method are presented in Table 2. Compare with those in Table 1, the
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CPU-time for the two level algorithm is much smaller than the corresponding
CPU-time for the one-level method. For example, in S8(△1/4) , we save about
65% . We anticipate the savings to increase if the mesh is re�ned simultaneously.

The advantage of the new two level framework is that high order spline so-
lutions could be obtained by simply solving one or two linearized problems in
the high order spline spaces. Furthermore, the modi�ed Newton step is also ef-
fective however optional for the whole calculations. In total, the two level spline
methods in this paper saves a fairly amount of computational costs compared
with traditional nonlinear iterative method. Convergence analysis and numerical
results are coincide and show the e�ciency of the two level schemes. Based on
this e�cient solver for the Navier-Stokes equations, applications in the artery
graft design problems are under investigation.
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MINIMUM NORM PARTIAL QUADRATIC

EIGENVALUE ASSIGNMENT FOR VIBRATING

STRUCTURES USING RECEPTANCE METHOD1

Liu H.∗ , He B.-X.∗ , Chen X.-P.∗∗

∗ Nanjing University of Aeronautics and Astronautics, Nanjing,
China
∗∗ Taizhou University, Taizhou , China

1. Introduction

Consider the following second-order system by multi-input control

Mẍ (t) +Cẋ (t) +Kx (t) = Bu (t) , (1)

where M,C,K ∈ Rn×n are system matrices, B ∈ Rn×m is the full column rank
control matrix and u (t) ∈ Rm is the control vector. The associated open-loop
pencil is given by P (λ) = λ2M+ λC+K .

In general, active control using velocity and displacement state feedback can
be used to assign the eigenvalues. Hence, we consider the control vector u (t)
taking the following form

u (t) = F⊤ẋ (t) +G⊤x (t) , (2)

where F,G ∈ Rn×m are state feedback matrices. Then the closed-loop system
corresponding to (1) is

Mẍ (t) +
(
C−BF⊤) ẋ (t) +

(
K−BG⊤)x (t) = 0. (3)

Mathematically, the partial quadratic eigenvalue assignment problem is to �nd
the matrices F,G ∈ Rn×m such that a few eigenvalues of the closed-loop pencil

Pc (λ) = λ2M+ λ
(
C−BF⊤)+ (K−BG⊤) (4)

are altered as required and the resting eigenpairs remain unchanged, i.e., pos-
sessing the no spill-over property.

In this talk, we consider the following problem.
Problem MNPQEAP. Given the open-loop eigenvalues {λk}2nk=1 and the

corresponding eigenvector set {vk}2nk=1 and a self-conjugate set {µk}pk=1 , �nd
the state feedback matrices F,G ∈ Rn×m , where the Frobenius norms of F,G
are minimized, such that the closed-loop pencil (4) has the desired eigenvalues
{µk}pk=1 , and the eigenpairs {λk,vk}2nk=p+1.

1Supported by NSFC under grant 11401305, 11571171
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2. An Iterative Method for Solving the MNPQEAP

The receptance matrix is

H (s) =
(
s2M+ sC+K

)−1
.

Denote

wk = H (µk)
(
b1

(
µkf

⊤
1 + g⊤

1

)
+ . . .+ bm

(
µkf

⊤
m + g⊤

m

))
wk. (5)

rµk,j = H (µk)bj, (6)

and

αµk,j =
(
µkf

⊤
j + g⊤

j

)
wk, k = 1, . . . , p, j = 1, . . . ,m. (7)

Wk =


µkw

⊤
k 0 . . . 0 w⊤

k 0 . . . 0
0 µkw

⊤
k . . . 0 0 w⊤

k . . . 0
...

... . . . ...
...

... . . . ...
0 0 . . . µkw

⊤
k 0 0 . . . w⊤

k

 ,

Vl =


λlv

⊤
l 0 . . . 0 v⊤

l 0 . . . 0
0 λlv

⊤
l . . . 0 0 v⊤

l . . . 0
...

... . . . ...
...

... . . . ...
0 0 . . . λlv

⊤
l 0 0 . . . v⊤

l

 ,

y =



f1
...
fm
g1
...
gm

 , αk =
 αµk,1

...
αµk,m

 .

Then Problem MNPQEAP can be transformed into the following linear systems

Ay =

[
α
0

]
, (8)

where

A =

[
Wk

Vl

]
∈ C2mn×2mn, k = 1, . . . , p, l = p+ 1, . . . , 2n,

α =

 α1
...
αp

 ∈ Cmp.
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Obviously, the solutions to the partial quadratic eigenvalue assignment prob-
lem are not unique when m > 1 , hence, we consider the MNPQEAP for multi-
input control system (1) via solving the following problem.

min J := 1
2

(
∥F∥2F + ∥G∥2F

)
, (9)

where ∥·∥F means the Frobenuis matrix norm.
Denote

Y = [F,G] ,

then the objective function is given by J := 1
2

(
∥Y∥2F

)
.

Let

y =



f1
...
fm
g1
...
gm

 = vec (Y) . (10)

Considering the linear systems (8), we can rewrite Wk = B⊤
k ⊗Ak, k = 1, . . . , p

and Vl = B⊤
l ⊗Al, l = p+ 1, . . . , 2n by using Kronecker product, where

Ak = w⊤
k ∈ C1×n,Bk =



µk
. . .

µk
1

. . .
1

 ∈ C2m×m, k = 1, . . . , p,

and

Al = v⊤
l ∈ C1×n,Bl =



λl
. . .

λl
1

. . .
1

 ∈ C2m×m, l = p+ 1, . . . , 2n.

Then the coe�cient matrix A of (8) can be written as

A =

 B⊤
1 ⊗A1
...

B⊤
2n ⊗A2n

 ,
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therefore the linear systems (8) is equivalent to B⊤
1 ⊗ A1
...

B⊤
2n ⊗A2n

 vec (Y) =

 vec (D1)
...

vec (D2n)

 , (11)

where

Dk = [αµk,1, . . . , αµk,m] ∈ C1×m, k = 1, . . . , p,

Dl = [0, . . . , 0] ∈ C1×m, l = p+ 1, . . . , 2n.

Considering that vec (Di) =
(
B⊤
i ⊗Ai

)
vec (Y) = vec (AiYBi) , i = 1, . . . , 2n ,

then we can transform (8) into the following matrix equations

A1YB1 = D1,
...

ApYBp = Dp,
Ap+1YBp+1 = Dp+1,

...
A2nYB2n = D2n.

(12)

Therefore the solutions of the MNPQEAP are equivalent to the minimum Frobe-
nius norm solutions of the matrix equations (12). The MCG algorithm for solving
(12) can be listed as follows.
Algorithm 1

1. Compute Z1 = P1 =
2n∑
k=1

AH
k (Dk −AkY1Bk)B

H
k ;

2. Compute R1 =

 D1 −A1Y1B1
...

D2n −A2nY1B2n

 ;
3. Set i = 1 ;

4. Compute Yi+1 = Yi +
∥Ri∥2F
∥Pi∥2F

Pi ;

5. Compute Zi+1 =
2n∑
k=1

AH
k (Dk −AkYi+1Bk)B

H
k ;

6. Compute Pi+1 = Zi+1 −
tr(ZH

i+1)
∥Pi∥2F

Pi ;

7. Compute Ri+1 =

 D1 −A1Yi+1B1
...

D2n −A2nYi+1B2n

 ;
8. If Ri+1 = 0 , then stop; Otherwise, set i = i+ 1 , go to step 4.
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THE REGION OF TURING INSTABILITY IN

SCHNAKENBERG SYSTEM

Lysenko S.A., Revina S.V.

Southern Federal University, Rostov-on-Don, Russia

The self-organization has inspired scienti�c study in di�erent �elds such as
physics, chemistry, biology and ecology. In 1952 Alan Turing published a paper
[1] where he proposed a reaction-di�usion model for pattern formation. Tur-
ing described di�usion-driven instability. A di�usion-driven instability, or Tur-
ing instability, occurs when a steady state of reactions-di�usion system, stable
in absence of di�usion, becomes unstable when di�usion is present.

Most of the study of Turing patterns is done on chemical reaction-di�usion
systems. Schnakenberg developed his kinematic reaction model [2] as a simple
chemical model exibiting limit-cycle behavior. He showed that such a model
would need to involve three reactions

2U + V → 3U, B → V, U � A, (1)

Suppose that u(t) , v(t) are the concentrations of chemicals U and V respec-
tively, depending on time t ; a and b are constant concentrations of chemicals
A and B . Hence the system of ordinary di�erential equations corresponding the
reaction (1) takes the form

du

dt
= u2v − u+ a,

dv

dt
= −u2v + b, (2)

This is a Schnakenberg system in absence of di�usion.
Next one can introduce a spatial dependence of concentration and take in

account the movement of chemicals by adding di�usion. Suppose that concen-
trations u = u(x, t) , v = v(x, t) depend not only on time t but on spatial
variable x , too. Let x belong to bounded domain Ω ⊂ Rm as m = 1, 2, 3 . We
suppose, that for m = 2; 3 the boundary is su�ciently smooth ∂Ω ∈ C2 , or Ω
is rectangle. Let ∆ = ∂2

∂x21
+ ...+ ∂2

∂x2m
be Laplace operator. The resulting partial

di�erential system is given by

ut = D1∆u+ f(u, v), vt = D2∆v + g(u, v), (3)

here
f(u, v) = u2v − u+ a g(u, v) = −u2v + b. (4)

Introducing the change of variables xi →
√
D1xi; i = 1, 2, ..m and new

notation of di�usion coe�cient d = D1

D2
we rewrite system (3) as

ut = ∆u+ f(u, v), vt = d∆v + g(u, v). (5)
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Suppose that the �ow of matter through the boundary of the region is zero.
This means that Neumann boundary conditions are satis�ed.

∂u

∂n
|∂Ω =

∂v

∂n
|∂Ω = 0. (6)

Here n is outer normal to boundary.
We call the system (5) subject to boundary conditions (6) with reaction

terms f and g describing (4) Schnakenberg system with di�usion or di�usive
Schnakenberg system.

Suppose that some boundary conditions are satis�ed for the system (5)-(6).
If initial conditions don't depend on x , then a solution doesn't depend on x , too.
In this sense R2 is invariant subspace of the system (5)-(6) for every di�usion
coe�cient.

It is known [3] that the equilibrium of the system (2) has a form

(u0, v0) = (a+ b,
b

(a+ b)2
). (7)

Following conditions are ful�lled

a+ b > 0, b > 0. (8)

Using linearization method one can investigate the stability of the steady
state (u0, v0) . Let J be the Jacobi matrix of ODE system (2) at point (u0, v0) :

J =

(
fu fv
gu gv

)
|(u0,v0). (9)

Here
fu =

b−a
a+b , fv = (a+ b)2,

gu = − 2b
a+b , gv = −(a+ b)2.

(10)

Then linearized system (2) has a form

dy

dt
= Jy, y ∈ R2. (11)

Now let consider di�usive Schnakenberg system. We linearize (5) near equi-
librium (u0, v0) :

ũt = △ũ+ fuũ+ fvṽ, ṽt = d△ṽ + guũ+ gvṽ, (12)

here fu , fv , gu , gv have been de�ned at (10). It is known that the spectrum of
a linear operator de�ned by the lefthand side of the system (12) is discrete.

The equilibrium (u0, v0) of a system with di�usion (4) � (6) is called Turing
unstable if two conditions are met. First, the eigenvalues of the non-di�usion
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system (11) linearized in the neighborhood of the equilibrium state lie strictly
in the left half-plane of the complex plane. Secondly, there is an eigenvalue of a
linearized system with di�usion (12), which lies in the right half-plane.

The system (4) � (6) contains the reaction parameters a, b that satisfy the
conditions (8) and the di�usion coe�cient d . For practical applications, it is
important to be able to �nd the Turing instability region, as well as the critical
value of the di�usion parameter.

Area on the parameter plane, containing those parameters for which the
Turing instability occurs and the di�usion coe�cient is �xed is called the Turing
instability region.

Now let the parameters a and b be �xed, and the di�usion coe�cient d
change. Then the eigenvalues of the linearized system (12) can be considered as
functions of the parameter d . They change their position on the complex plane
when the parameter d changes. It is easy to show (this will be shown below) that
for d less than a certain value, all the eigenvalues of the system (12) lie strictly
in the left half-plane of the complex plane.

We will be interested in the critical case when the eigenvalues intersect the
imaginary axis. In the case of general position, this is possible either when the
imaginary axis is traversed by a pair of purely imaginary eigenvalues (then there
is an oscillatory loss of stability), or when the eigenvalue passes through zero
(which corresponds to a monotonous loss of stability). It is known that Turing
instability refers to monotonous loss of stability [3].

The critical value of the parameter d is the value of dc for which the spectrum
of the linearized problem (12) lies strictly in the left half-plane of the complex
plane, except for the eigenvalue λ(dc) = 0 , and the intersection of the imaginary
axis occurs transversally:

λ′|d=dc ̸= 0, (13)

the prime means di�erentiation by the parameter d .
The main purpose of this work is to �nd the region of Turing instability in the

parameter plane a; b , as well as the critical value of the di�usion coe�cient. In [4]
di�usive Schnakenberg system with time delay is considered. Critical conditions
for Turing instability are derived in the plane of di�usion coe�cients. Based
on Murray's results [3], we propose an original approach of �nding the Turing
instability region on the plane of reaction parameters.

Find the trace and the determinant of the matrix J and write out the condi-
tions under which the eigenvalues of the system without di�usion (11) lie strictly
in the left half-plane of the complex plane:

TrJ ≡ b− a− (a+ b)3

a+ b
< 0, DetJ ≡ (a+ b)2 > 0. (14)

From (8) it follows that Det(J) > 0 is always. Consequently, the conditions
(14) for the di�usionless approximation take the form:

b− a < (a+ b)3. (15)
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We introduce new variables:

Y = b− a; X = a+ b. (16)

The convenience of this replacement is quite obvious. Note that this change of
variables is proposed in paper [5]. We have introduced it independently of this
work.

Then taking into account (8) the condition (15) takes the form:

X > 0; Y < X3. (17)

The convenience of replacing (16) is fairly obvious. This replacement is also used
in [4]. We have introduced it independently of this work.

Taking into account the di�usionless approximation (17), the necessary con-
ditions for Turing instability in the variables (X, Y ) take the form:

X > 0; Y < X3; Y ≥ 1

d
X3 +

2√
d
X2. (18)

Note that (18) implies a constraint on Y (and the parameters a and b)

Y = b− a > 0, (19)

and also on the di�usion coe�cient d

d > 1. (20)

Let ψk be eigenfunction and µk be eigenvalue of Laplace operator subject to
Neumann boundary conditions, k = 0, 1, 2...

∆ψk + µkψk = 0, x ∈ Ω,
∂ψk
∂n

|∂Ω = 0. (21)

Let h(µ) be a polinomial

h(µk) ≡ dµ2k + (X2 − d · Y
X
)µk +X2. (22)

The curve Y = X3 on the plane (X, Y ) , corresponding to the zeroing of the
trace of the matrix J , is called the curve of the zero trace.

The curve Y0 = Y0(X) on the (X, Y ) plane, corresponding to the zeroing of
the discriminant of the polynomial h(µ) , will be called the discriminant curve:

Y0 =
1

d
X3 +

2√
d
X2. (23)

Thus, in the half-plane X > 0 , the region of necessary conditions for Turing
instability is bounded by a zero trace curve and a discriminant curve. Using the
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change of variables (16), we can similarly determine the zero trace curve and the
discriminant curve in the plane of the initial parameters of the system (a, b) .
These de�nitions have not been encountered in the literature and are introduced
here for ease of visualization of the Turing instability region.

Further, we can obtain inequalities describing the Turing instability domains
for �xed values of a , b , d , l :
1. The conditions of Turing instability are not satis�ed and cannot be satis�ed
when d is changed:

Y ≥ X3
∪

Y ≤ µ1X. (24)

2. The conditions of Turing instability are not satis�ed, but can be satis�ed when
d is changed:

Y < X3
∩

Y <
1

d
X3 +

2√
d
X2. (25)

3. The necessary, but not su�cient, Turing instability conditions are satis�ed:

Y < X3
∩

Y ≥ 1

d
X3 +

2√
d
X2

∩
Y < min

k
(
µk + 1

µk · d
·X3 + µkX).

(26)
4. The su�cient conditions for Turing instability are satis�ed:

Y < X3
∩

Y ≥ min
k

(
µk + 1

µk · d
·X3 + µkX). (27)

To visualize the Turing instability region, one of the authors (S.A. Lysenko)
has developed a software package.
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THE GENERALIZED HSS METHOD WITH A

FLEXIBLE SHIFT-PARAMETER1

Meng G.-Y.∗ , Wen R.-P.∗∗

∗ Xinzhou Teachers University, Xinzhou, Shanxi, China
∗∗ Taiyuan Normal University, Taiyuan, Shanxi, China

To solve a large sparse non-Hermitian and positive de�nite system of linear
equations

Ax = b. (1)

Bai, Golub and Ng �rst proposed the e�cient Hermitian and skew-Hermitian
splitting (HSS) iteration method [4] with a �xed parameter in 2003.{

(αI +H)xk+ 1
2
= (αI − S)xk + b,

(αI + S)xk+1 = (αI −H)xk+ 1
2
+ b,

(2)

where I is the identity matrix and α is a �xed shift-parameter.
Note that the HSS iteration (2) may also be considered as a splitting iteration

induced from the splitting of the matrix A as follows,

A =M(α)−N(α),

where

M(α) =
1

2α
(αI +H)(αI + S) and N(α) =

1

2α
(αI −H)(αI − S). (3)

It was proved that the HSS iteration method converges unconditionally to the
unique solution of the linear systems (1). The optimal shift-parameter is esti-
mated as

αopt = argmin
α

{
max

λmin≤λ≤λmax

∣∣∣∣α− λ

α+ λ

∣∣∣∣} =
√
λminλmax,

where λmin and λmax are the minimum and the maximum eigenvalues of the
matrix H , respectively.

Because of its outstanding performance and elegant mathematical properties,
the HSS iteration method obtains widespread attention; see [1, 2, 6, 8] and the
references therein. It is noticed that the parameter α plays an important role
in these HSS class iteration methods. We can see the extremal eigenvalues and
determinants of some matrices are required and which may greatly decrease the
computing e�ciency of the HSS iteration methods. In order to compute the

1Supported by the National Natural Science Foundation of China (No.11371275),the National Natural
Science Foundation of Shanxi Province, China (No.2014011019-3)
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optimal parameter, Bai, Golub and Li [3] used the positive real roots of the
equation

(α2 + q2)2(α2 − λ2max)(α
2 − λ2min) = (α2 − q2)2(α2 − λminλmax),

or
(α2 + q2)2(λ2max − α2)(α2 − λ2min) = (α2 − q2)2(α2 − λminλmax)

to estimate the optimal shift-parameter αopt > 0 satisfying

ρ(M(αopt)) = min{ρ(M(α))|α > 0}.

While Huang [7] chosen the optimal parameters using a cubic polynomial
equation, which comes from the minimization of the F-norm. Chen [5] used Eu-
clidean norm to estimate the optimal parameter for the HSS iteration method.
Wen [10] presented the Quasi-Chebyshev accelerated iteration methods(QCA),
which utilize the optimization models to determine the optimal parameters in
the each iteration, as follows,

Let A = M − N ,xk+1 = M−1Nxk +M−1b . Solve the following system of
linear equations

xk+1 = ωk+1(xk+1 − xk−1) + xk−1,

where ωk+1 is the solution of the following optimization problems:

• when A is a symmetric positive de�nite matrix, set x = ω(xk+1 − xk−1) +
xk−1,

min
ω

1

2
xTAx− xT b;

• when A is not symmetric positive de�nite, set r = Ax− b ,

min
ω
rT (αI +H)−2r.

Pearcy [9] has designed the device of changing iteration shift-parameters on
the half-step xk+ 1

2
= −

(
H + αk+1

2
D
)−1 [

(V − αk+ 1
2
D)xk − b

]
,

xk+1 = −(V + αk+1D)−1
[
(H − αk+1D)xk+1

2
− b
]
,

where D is a positive de�nite nomalizing matrix, H, V are positive de�nite with
A = H + V , α 1

2
≥ α1 ≥ α1+ 1

2
≥ · · · ≥ αt−1

2
≥ αt , and αk = αk(mod t) for

k > t , but the convergence of this alternating direction iteration (ADI) method
depended on the positive de�nite of the splitting matrices H and V .

Motivated by the QCA method and ADI method, shift-parameters αk ,k =
1, 2, · · · are constructed by the minimization of residuals.

Method 1(MWZ1−HSS)
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Step 1. Compute rk = b− Axk .

Step 2. Solve the following system of linear equations:{
(αk+1I +H)xk+1

2
= (αk+1I − S)xk + b,

(αk+1I + S)xk+1 = (αk+1I −H)xk+ 1
2
+ b,

(4)

where αk+1 is the solution of the following optimization problem

min
α
r∗k+1 (αI −H)−2 rk+1, (5)

here, rk+1 = N(α)M(α)−1rk .

Step 3. If ∥rk+1∥2 ≤ ε , stop; otherwise, k ⇐ k + 1 and go to Step 1.

By the optimization model (5), it can be deduced

d

dα

(∥∥(αI −H)−1rk+1

∥∥2
2

)
= −2r∗k(αI +H)−3rk. (6)

It is worthy to note that the solution of the minimization model (5) is equiv-
alent to compute the root

d

dα

(
∥(αI −H)−1rk+1∥22

)
= 0.

However, the computational formula is far away from actual applications, since
the computational cost of the matrix (αI +H)−3 is expensive. Instead, we ap-
proximate the root of

f(α) = ∥(αI −H)−1rk+1∥22 = 0

by the Newton method. An alternative procedure might be to approximate the
value of

f(α) = ∥(αI +H)−1rk∥22 = 0

by Lemma. Hence, Method 1 could be rewritten into a practical form.
Method 2 (MWZ2−HSS)

Step 1. Compute rk = b− Axk .

Step 2. Solve the systems of linear equations:{
(αk+1I +H)xk+1

2
= (αk+1I − S)xk + b,

(αk+1I + S)xk+1 = (αk+1I −H)xk+ 1
2
+ b,

where αk+1 is the root of the equation

f(α) = ∥(αI +H)−1rk∥22 = 0.
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Step 3. If ∥rk+1∥2 ≤ ε , stop; otherwise, k ⇐ k + 1 and go to Step 1.

Example Consider the two-dimensional convection-di�usion equation

−(uxx + uyy) + β(ux + uy) = g(x, y),

on the unit square (0, 1)× (0, 1) and subject to Dirichlet-type boundary condi-
tion.

Table 1. Iteration steps and CPU times (m=32).
Method β |

50 100 500 1000 5000 10000
BGN-HSS IT 45 46 56 74 155 216

CPU 0.20 0.22 0.25 0.32 0.67 0.94
H-HSS IT 66 35 50 70 163 252

CPU 0.29 0.15 0.22 0.31 0.71 1.10
MWZ1-HSS IT 32 41 58 70 113 115

CPU 0.81 1.03 1.44 1.73 2.80 2.84
MWZ2-HSS IT 38 43 56 62 83 92

CPU 0.19 0.21 0.27 0.30 0.41 0.45
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Figure 1. Relative residual versus iteration number with β = 50 .
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Figure 2. Relative residual versus iteration number with β = 5000 .
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From Table 1, it can be seen that for any di�erent β , the numbers of iteration
steps of MWZ1 -HSS and MWZ2 -HSS methods are less than that of BGN-HSS
and H-HSS methods at almost the same CPU times. The case β = 50 and
β = 5000 of these observations can be further illustrated by the iteration pictures
plotted in Figure 1 and Figure 2. Clearly, the convergence of MWZ2 -HSS method
is better than that of BGN-HSS and H-HSS methods.
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The main goal of the study is a validation of a simpli�ed 3D mathemati-
cal model for passive admixture spreading in shallow �ows. The tested model
is oriented to the hydrological and ecological problems, and it can be applied
to natural streams like rivers and channels. The earlier proposed model of the
elongated, shallow and weakly curved stream [5] takes into account the structure
of a stream-bed for evaluation of �ow velocity in every point of domain. This
is a model advantage, which allows calculation of the admixture spreading in a
channel with varying width and depth more accurately than by using in-depth
averaged models. For example, we can observe the opposite �ow in a near-surface
zone, which may be caused e.g. by the wind. The results of numerical experiments
show that this reduced 3D model adequately describes the admixture spreading
processes in natural streams with acceptable accuracy.

Introduction

Mathematical models of various types are used for evaluation of the hydro-
logical characteristics of streams and for simulation of the admixture spreading
[2, 3, 8]. The most accurate are three-dimensional models, which are based on
full equations of turbulent �ow. However, the high accuracy of these simulations
cannot be obtained in practice because the data of the real hydrological mea-
surements are not precise enough and no initial and boundary conditions for
3D partial di�erential equations are available. In addition, the complexity and
computational costs of numerical experiments with 3D mathematical models are
increased due to the geometry of the model domain, which is extremely elongated
along the �ow direction. Natural water �ows have signi�cant di�erence in size of
they length, width, and depth. The ratio between the average depth and width
for the typical lowland river varies from 1:10 to 1:200.

The main aim of this work is to validate the simpli�ed mathematical model
for spreading process in natural streams.

In [5], the simpli�ed equations for channel �ow hydrodynamics and mass
transfer is proposed. The hydrodynamical part of this reduced 3D mathematical
model was studied in [6].

1This work was supported by the Vladimir Potanin Foundation, project ID GK190000844.
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This article focuses on testing the model by comparing the data of hydro-
logical experiment, published in [1] and the numerical results obtained on the
base of the model. The computer simulations were performed by �nite-element
software COMSOL c⃝[7].

I Problem Statement

Let us consider a relatively slow stream in a non-deformable rigid bed
z = h(x, y) . The channel �ow is shallow, elongated, and weakly curved. In
a mathematical sense, the 'shallow and elongated' assumption means that the
stream bed geometry has the ratio D : W : L ≈ ϵ ≪ 1 . Here D is the average
depth, W is the average width and L is the length of the section of the stream
under consideration; ϵ≪ 1 � a value that was used in [5] as a small parameter.
Also, 'weakly curved' means that ∂h∂y ∼ ϵ and ∂h∂x ∼ ϵ2 .

Let us introduce Cartesian coordinates such that the plane (xy) is located
on the �ow surface and z -axis is directed toward the bottom. We assume that
the x -axis is directed along the �ow, and the y -axis is perpendicular to x and
directed from the left to the right bank. The origin lies in the inlet section at
equal distances from the banks. The equations of the 3D reduced mathemati-
cal model for the passive admixture transport in shallow, elongated and weakly
curved stream in dimensionless variables can be written as

∂c
∂t + u ∂c∂x + v ∂c∂y + w ∂c

∂z =
∂
∂z

(
d∂c∂z
)
− λc, (1)

c
∣∣
t=0

= c0, ∂c
∂x

∣∣∣∣
x=0

= π0,
∂c
∂z

∣∣∣∣
z=h

= ∂c
∂z

∣∣∣∣
z=ξ

= 0, (2)

∂
∂z

(
ν ∂u∂z
)
= −ReGI, u

∣∣
z=h

= 0, ∂u
∂z

∣∣∣∣
z=ξ

= 0, (3)

∂p
∂z = G, p

∣∣
z=ξ

= 0, (4)

∂
∂z

(
ν ∂v∂z
)
= Re∂p∂y , v

∣∣
z=h

= 0, ∂v
∂z

∣∣∣∣
z=ξ

= 0, (5)

∂w
∂z = −

(
∂u
∂x +

∂v
∂y

)
, w

∣∣
z=h

= 0, (6)

∂ξ
∂t + u

∣∣
z=ξ

∂ξ
∂x + v

∣∣
z=ξ

∂ξ
∂y − w

∣∣
z=ξ

= 0. (7)

Here c is the concentration of admixture; u , v and w are the components of
a velocity vector along the longitudinal (x), transversal (y ) and vertical (z )
directions, respectively. The known function h(x, y) describes the shape of the
stream-bed and the unknown function ξ(t, x, y) describes a slightly deformable
free surface of the �ow. The known functions c0(x, y, z) and π0(t, y, z) set the
initial distribution of concentration and its in�ow through the inlet, respectively.
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Equations (1)-(7) contain a set of parameters: d � the dimensionless coe�-
cient of the turbulent di�usion in z - direction; λ � the decay factor for the ad-
mixture; ν � the normalized viscosity, which allows taking into account changes
in the viscosity of the turbulent �ow in accordance with the Boussinesq turbu-
lence hypothesis; Re is the Reynolds number; G is the gravity parameter and I
is the slope of the �ow.

For more details about derivation of the equations (1)-(6) see [5].

II Solution of the Hydrodynamics System

Equations (1),(2) form the concentration part, and equations (3)-(7) form the
hydrodynamics part of the model for the shallow and elongated stream. These
subsystems are consistent according to the precision of the approximation [5].

The hydrodynamic part does not depend on the concentration part and its
solution can be explicitly written as

p = G(z − ξ), u = ReGI (J2 − ξJ1) , (8)

v = ReG∂ξ
∂y (J2 − ξJ1) , (9)

w = ReG
(
I ∂
∂x (J4 − ξJ3) +

∂
∂y

(
(J4 − ξJ3)

∂ξ
∂y

))
. (10)

Here we introduced the notations

J1 =

h(x,y)∫
z

dτ

ν
, J2 =

h(x,y)∫
z

τdτ

ν
, J3 =

h(x,y)∫
z

J1dτ, J4 =

h(x,y)∫
z

J2dτ. (11)

The pressure and velocity components in (8) are expressed in terms of the free
surface function ξ , which is determined from the kinematic boundary condition
(7).

Combination of (8) and (7) allows performing the kinematic boundary con-
dition (7) in the following form

∂ξ
∂t = ReG

[
I
(
∂
∂x (J4 − ξJ3)− (J2 − ξJ1)

∂ξ
∂x

)
+

+(J4 − ξJ3)
∂2ξ
∂y2 +

∂ξ
∂y

(
∂
∂y (J4 − ξJ3)− (J2 − ξJ1)

∂ξ
∂y

)]
. (12)

where functions (11) and their derivatives are calculated within z = ξ (i.e. on
the free surface).

Equation (12) was solved with the �nite-element software COMSOL c⃝[7]. For
detailed description of these numerical experiments, see [6].
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III Testing the Model

To verify the proposed model, we used the data which was published in [1],
where the transfer of an admixture in the Severn River was studied. The section of
river under study �ows through the territory of Wales (Great Britain) between
the settlements of Llanidloes and Caersws. In article [1], the observations of
British hydrologists, who studied the distribution of tracer � coloring matter,
were published. The di�usion coe�cient of this substance is 10−6 cm/s.

The goal of that experiment was to collect and publish data of di�usive trans-
fer of admixture for testing mathematical models proposed by various authors.
The concentration of admixture was monitored in a section of a river about 14
kilometers long by 6 observation stations located downstream. British authors
describe in detail the geometry of the river-bed and the �ow velocity in the con-
sidered section of the river, as well as other hydrological characteristics of the
water stream obtained as a result of measurements that lasted more than 10
hours.

The width of the channel on the considered area was measured at 86 points
and varies from 13 to 48 meters with an average value of 20 meters. The depth
of the �ow was measured in each of the 86 sections with an interval of 1 meter.
(The average depth was 0.6 meters.)

Considering that the average distance between measuring stations is 2 kilo-
meters, the approximate value of the parameter ϵ is 0.01, which satis�es the
requirements of the mathematical model (1)-(7).

Thus, the British authors provided data required for the mathematical mod-
eling and performing computational experiments to calculate the mass transfer
of passive admixture in a natural water �ow using proposed reduced 3D mathe-
matical model (1)-(7).

Figure 1 shows the reconstructed �ow region. The reconstruction of the river-
bed geometry was made on the base of data presented in [1] for the section of
the river Severn between stations A and F.

Figure 2 shows the values of concentration at di�erent times. The solid line
corresponds to the concentration of a substance calculated using a reduced 3D
model of a long, shallow and slightly curved �ow (1)-(7). Circles on the graph
depict the results of measurements of the concentration of a substance at times
when the admixture �ows through the cross-sections of the stream near the
observational stations.

Conclusions

The simulation of the passive admixture spreading in channel �ows based
on complete 3D hydrodynamic and mass transfer equations system is very com-
putationally expensive. Therefore, mathematical models, which give a simpli�ed
but adequate description of the process, could be implemented. Such models
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Figure 1. Reconstructed stream-bed function h(x, y) and the velocity �eld: (a)
� the horizontal plane view (depth di�erence is colored according to presented
scale); (b) � a set of segments with cross-sections and colored velocity �eld.

Figure 2. The concentration at times when admixture passes each of the six
measurement stations (A-F).

should consider the key features of natural streams. The equations of a shal-
low, elongated and weakly curved stream (1)-(7) describe the �ow dynamics as
a three-dimensional, however, they are much simpler than the full 3D equations.

The proposed mathematical model of a long shallow and weakly curved �ow
can be applied only for simulation of slow �ows, which can be described by
steady-state model equations.

The results of the numerical simulation that are given in this article show
that the proposed reduced 3D model of a long shallow �ow adequately describes
its hydrodynamics and mass transfer of the passive admixture. It can be used to
simulate the spreading of pollutants in such streams.

The research is partly supported by a grant from the Vladimir Potanin Char-
ity Fund. The results of the study will be used in the Master Program "Mathe-
matical Modeling, Numerical Methods and Software".
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NUMERICAL STUDY OF EFFECTIVE MODULI OF
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SPHERICAL PORES1
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This paper deals with the modeling problem of �nding the e�ective charac-
teristics of microporous piezoceramic materials with in�nitely thin metallization
of pore surfaces [1] based on the e�ective moduli method of mechanics of com-
posites and the �nite element method [2, 3]. In contrast to [2, 3], one cell of a
porous material in the form of a cube with one pore located in the center is con-
sidered. The in�uence of the pore surface metallization and of the pore shape on
the values of the e�ective moduli for porous piezoceramic PZT-4 is investigated
numerically.

I Homogenization Problem

Let Ω be a unit cubic cell of piezoelectric material with one pore of cubic
or spherical form; a is the cubic cell side; Ω = Ωm ∪ Ωp ; Ωm is the part of
Ω with main piezoelectric material or matrix; Ωp is the pore; Γ = ∂Ω is the
external boundary of the cell; Γp = ∂Ωp is the boundary of the pore; n is the
unit normal vector external with respect to the volume of the main piezoelectric
material Ωm .

We assume that in the Cartesian coordinate system Ox1x2x3 the unit cell Ω
occupies the region |xk| ≤ a/2 , k = 1, 2, 3 . Then, in the case of a cubic pore with
side b (b < a), the domain Ωp will be de�ned by the inequalities |xk| ≤ b/2 ,
k = 1, 2, 3 , and in the case of a spherical pore with radius R < a/2 , the domain
Ωp is given by the inequality |x| ≤ R .

In accordance with the e�ective moduli method, we will consider the system
of di�erential equations of the static theory of electroelasticity (piezoelectricity)
in the volume Ω

L∗(∇) ·T = 0, ∇ ·D = 0, T = cE · S− e∗ · E, D = e · S+ ϵS · E, (1)

S = L(∇) · u, E = −∇φ, L∗(∇) =

 ∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

 , (2)

where T = {σ11, σ22, σ33, σ23, σ13, σ12} is the array of stress components σij ;
S = {ε11 , ε22 , ε33 , 2ε23 , 2ε13 , 2ε12} is the array of strain components εij ; D

1Supported by grant 16-01-00785 of the Russian Foundation for Basic Research.
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is the electric �ux density vector; E is the electric �eld vector; u = u(x) is
the vector function of displacements; φ = φ(x) is the scalar function of electric
potential; cE is the 6 × 6 matrix of elastic sti�ness moduli cEαβ , measured at

constant electric �eld (E ); e is the 3 × 6 matrix of piezomoduli eiα ; ϵS is
the 3 × 3 matrix of dielectric permittivities ϵSij , measured at constant strains

(S ); (...)∗ is the operation of transposition for matrices and vectors; cE = cEm ,
e = em , ϵS = ϵS m for x ∈ Ωm ; cE = cE p , e = ep , ϵS = ϵS p for x ∈ Ωp .

At the external boundary Γ of the volume Ω , we will take the conventional
boundary conditions of the e�ective moduli method

u = L∗(x) · S0, φ = −x · E0, x ∈ Γ, (3)

where S0 and E0 are the arrays with constant values of size 6 and 3, respectively.
For ordinary porous piezoceramics at the interfaces of pores and matrix the

following boundary condition should be satis�ed

n ·D = 0, x ∈ Γp. (4)

However, in the problem with in�nitely thin metallizaton of pore surface, the
boundaries Γp should be considered as equipotential surface, and so instead of
(4) it is necessary to use the conditions

φ = Φp, x ∈ Γp,

∫
Γp

n ·D dΓ = 0, (5)

where Φp is an unknown value of potential on the surface Γp .
Hence, the transition from the problem with ordinary porosity to the prob-

lem with the pore surface metallization formally consists in the change of the
boundary condition (4) for nonelectrodized surface to the boundary conditions
(5). Note that the boundary conditions (5) on Γp are usually used for the free
electrode surfaces.

In the case of porous piezoceramics of 6mm class, in order to �nd its ten
independent e�ective constants (cE eff

11 , cE eff
12 , cE eff

13 , cE eff
33 , cE eff

44 , e eff31 , e
eff
33 , e

eff
15 ,

ϵS eff
11 , ϵS eff

33 ), it is enough to solve �ve static problems (1)�(4) or (1)�(3), (5)
with various values of S0 and E0 , having set one of the component S0β , E0k

(β = 1, 2, ..., 6 ; k = 1, 2, 3) in the boundary conditions (3) not equal to zero
(⟨(...)⟩ = 1/|Ω|

∫
Ω(...) dΩ):

� problem I

Sβ = ε0δ1β, E0 = 0 ⇒ cE eff
1j = ⟨σjj⟩/ε0, j = 1, 2, 3, e eff31 = ⟨D3⟩/ε0 , (6)

� problem II

Sβ = ε0δ3β, E0 = 0 ⇒ cE eff
j3 = ⟨σjj⟩/ε0, j = 1, 2, 3, e eff33 = ⟨D3⟩/ε0 , (7)

� problem III

Sβ = ε0δ4β, E0 = 0 ⇒ cE eff
44 = ⟨σ23⟩/ε0, e eff15 = ⟨D2⟩/ε0 , (8)
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� problem IV

S0 = 0, Ek = E0δ1k ⇒ e eff15 = −⟨σ13⟩/E0, ϵ
S eff
11 = ⟨D1⟩/E0 , (9)

� problem V

S0 = 0, Ek = E0δ3k ⇒ e eff3j = −⟨σjj⟩/E0, j = 1, 3, ϵS eff
33 = ⟨D3⟩/E0 . (10)

II Finite Element Results and Discussion

The boundary problems (1)�(4) or (1)�(3), (5) with (6)�(10) were solved
numerically in the ANSYS �nite element package. The 10-node tetrahedral el-
ements SOLID227 were used with option of piezoelectric analysis. The �nite
element mesh was created in ANSYS with a limit on the maximum edge length
of elements equal to ã/8 , where ã = 1 is the dimensionless cell edge length.
Finite elements inherit the material properties of the main piezoelectric material
and the pore associated with the volumes Ωm and Ωp .

The calculations of the e�ective moduli were performed for porous piezoce-
ramics PZT-4 with the following values of material constants of the material ma-
trix: cEm11 = 13.9 · 1010 , cEm12 = 7.78 · 1010 , cEm13 = 7.74 · 1010 , cEm33 = 11.5 · 1010 ,
cEm44 = 2.56 · 1010 (N/m2 ); em33 = 15.1 , em31 = −5.2 , em15 = 12.7 (C/m2 );
ϵS m11 = 730ε0 , ϵ

S m
33 = 635ε0 , ε0 = 8.85 · 10−12 (F/m) is the dielectric permittivi-

ty of vacuum. For the pores, we have set negligible values of the elastic moduli
cE pαβ = κcEmαβ , piezomoduli epiα = κ (C/m2 ), κ = 10−10 , and ϵS pii = ε0 .

Some computational results are demonstrated in Figures 1, 2, 3, where
r(cE33) = cE eff

33 /cEm33 are the values of the e�ective moduli cE eff
33 , related to the

corresponding values of the moduli cEm33 of dense ceramic and so on. The full
curves denote relative values for the composite material with full pore surface
metallization, and the dotted curves denotes relative values for the material with-
out pore surface metallization. The curves with squares denote the results for the
volume Ω with cube pore, and the curves with circles denote the results for the
volume with spherical pore.

As it can be seen from Fig. 1, the relative values of the e�ective sti�nesses
r(cE33) decrease with the increase of porosity p = |Ωp|/|Ω| , both for ordinary
porous material and for porous material with pore surface metallization, and this
decrease is slightly stronger for the cases of pore metallization and for the cubic
pore. The relative values of the e�ective moduli of dielectric permittivity r(ϵS33)
for ordinary porous piezoceramics decrease with the increase of porosity, on the
contrary, the e�ective moduli of dielectric permittivity for porous piezoceramics
with metallized pore surfaces increase with the increase of porosity. Here, the
corresponding values of r(ϵS33) for the case of cubic pore are less compared to the
case of the spherical pore.

The greater interest is the behavior of piezomoduli (Fig. 2, 3). Indeed, for
ordinary porous piezoceramics the piezomoduli e eff3j decrease with the increase of
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Figure 1. Dependencies of e�ective elastic sti�ness and dielectric permittivity on
porosity

Figure 2. Dependencies of the e�ective piezomoduli e3j on porosity

Figure 3. Dependencies of the e�ective piezomoduli d3j on porosity

porosity. However, for piezoceramics with metallized pore surface the piezomod-
ulus e eff33 also decreases with increase of p , and it decreases faster than for the
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non-metallized pore surface, whereas the piezomodulus e eff31 increases with the
increase of porosity.

For the piezomodulus d eff
33 of an ordinary porous piezoceramics, its unusual

property of weak dependence on porosity is well known, however, the values of
piezomodulus |d eff

31 | decrease with the increase of p . As can be seen from Fig. 3,
for porous piezoceramics with metallized pore surfaces the values of piezomoduli
d eff
33 and |d eff

31 | increase with the increase of porosity, moreover, piezomodulus
|d eff

31 | grows faster than d eff
33 . For example, for p = 0.5 the e�ective piezomodulus

|d eff
31 | is almost two times greater than the similar value for dense piezoceramics.
Interestingly, in contrast to elastic sti�nesses and dielectric constants, the

amplitude values of piezomoduli for metallized cubic pores are slightly larger
than for metallized spherical pores. However, for ordinary porous ceramics, these
values turn out to be larger for spherical pores, except for the values of the
piezomodulus e eff33 . These di�erences are not very signi�cant and require further
analysis.

Thus, summarizing the above, we can conclude that the shape of the pores
has certain e�ects on the e�ective moduli of the porous material, though it is
not so extensive. Therefore, for more complex models of representative volumes,
it is quite possible to consider cubic pores instead of more physical spherical
pore shapes, as was accepted in [2, 3]. Further studies of the in�uence of pore
shape for this problem could be executed to take into account the mechanical
properties of metallized pore surfaces, the local alloying pore surfaces and the
heterogeneously polarized porous piezoceramic materials similarly to [4].
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FOURIER METHOD FOR SOLVING THE CAUCHY

PROBLEM FOR AN ELLIPTIC EQUATION.

Sorokin S.B.∗ ∗∗

∗ Institute of Computational Mathematics and Mathematical
Geophysics SB RAS
∗∗ Novosibirsk State University, Novosibirsk, Russia

One widely used approach to solving the Cauchy problem for an elliptic equa-
tion is to reduce it to the inverse problem. As a rule, an iterative procedure is
used to solve the latter. In the work an economical direct method for the numer-
ical solution of the inverse problem in rectangular form is described. The idea is
based on the expansion of the desired solution with respect to a basis consisting
of eigenfunctions discrete inverse problem operator.

The presented algorithm can be applied for elliptic operator with variable
coe�cients (of course of a special type). In this case, it is impossible to obtain an
analytical solution of the continuation problem (the well-known direct algorithms
for solving the Cauchy problem for the Laplace equation are based precisely on
this). Therefore, an economical algorithm that allows one to obtain a solution to
a discrete problem for the number of arithmetic operations of order N, where N
is the number of equations in a di�erence problem, can be useful.

Formulation of the problem
In the domain Ω = {(x1, x2) ∈ R2 : x1 ∈ (a, b), x2 ∈ (c, d)} consider the

initial-boundary value problem (the continuation problem)

− ∂

∂x1
(k1(x1)

∂u

∂x1
)− ∂

∂x2
(k2(x1)

∂u

∂x2
) + k3(x1)u = 0, (x1, x2) ∈ Ω,

−k1(a)
∂u

∂x1
(a, x2) = 0, x2 ∈ [c, d], u(a, x2) = f(x2), x2 ∈ [c, d],

−k2(x1)
∂u

∂x2
(x1, c) = 0, k2(x1)

∂u

∂x2
(x1, d) = 0, x1 ∈ [a, b].

(1)

It is necessary to �nd the function u(x1, x2) in the domain Ω according to the
data of f(x2).

Following [1],[2], we reduce the continuation problem (1) to the inverse prob-
lem:

Determine the function q(x2) from the relations

− ∂

∂x1
(k1(x1)

∂u

∂x1
)− ∂

∂x2
(k2(x1)

∂u

∂x2
) + k3(x1)u = 0, (x1, x2) ∈ Ω,

−k1(a)
∂u

∂x1
(a, x2) = 0, x2 ∈ [c, d], u(b, x2) = q(x2), x2 ∈ [c, d],

−k2(x1)
∂u

∂x2
(x1, c) = 0, k2(x1)

∂u

∂x2
(x1, d) = 0, x1 ∈ [a, b]

(2)
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using additional information

u(a, x2) = f(x2), x2 ∈ (c, d). (3)

We will solve the inverse problem (2), (3) at a discrete level.
Discretization of the inverse problem
Construct uniform grids:

ω̄1 = {x1,i = x1,i−1 + h1, 1 ≤ i ≤ N1 + 1, x1,0 = a, x1,N1+1 = b, h1 =
b− a

N1 + 1
},

ω̄2 = {x2,j = x2,j−1 + h2, 1 ≤ j ≤ N2 + 1, x2,0 = c, x2,N2+1 = d, h2 =
d− c

N2 + 1
},

ω̄ = { xi,j = (x1,i, x2,j) ∈ Ω̄, x1,i ∈ ω̄1, x2,j ∈ ω̄2}.

Scalar products in the spaces of grid functions de�ned on these grids and on the
grid ω̄ = ω̄1

∪
ω̄2 , set as follows (at the right end of the grid ω̄1 , the functions

take a zero value)

(uh, vh)ω̄1
= 0.5h1u

h(x1,0)v
h(x1,0) +

N1∑
i=1

uh(x1,i)v
h(x1,i)h1,

(uh, vh)ω̄2
= 0.5h2u

h(x2,0)v
h(x2,0) +

N2∑
j=1

uh(x2,j)v
h(x2,j)h2+

+0.5h2u
h(x2,N2+1)v

h(x2,N2+1),

(uh, vh)ω̄ = (1, (uh, vh)ω̄2
)ω̄1
.

Discrete analogue of the inverse problem (2),(3) we formulate as follows:
Among all the tasks

Λ1u
h(x1,i, x2,j) + k2(x1,i)Λ2u

h(x1,i, x2,j) = 0, i = 0, N1, j = 0, N2 + 1 (4)

uh(x1,N1+1, x2,j) = qh(x2,j), j = 0, N2 + 1 (5)

di�ering from each other by the grid function qh(x2,j), it is necessary to indi-
cate such a problem (such a grid function qh(x2,j)) for its solution uh(x1,i, x2,j)
satis�es equality

uh(x1,0, x2,j) = f(x2,j), x2,j ∈ [c, d]. (6)

Here the action of the operators Λ1 and Λ2 are determined by the equations
[3],[4]:

Λ1y
(1)(x1,i) =


− 2

h1
k1(x1,0 +

h1
2
)y(1)x1

(x1,0), i = 0,

−(k1(x1,i −
h1
2
)y

(1)
x1
)x1(x1,i) + k3(x1,i)y

(1)(x1,i), i = 1, N1,
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Λ2y
(2)(x2,j) =


− 2

h2
y(2)x2

(x2,0), j = 0,

−y(2)x2x2
(x2,j), j = 1, N2,

2

h2
y
(2)
x2
(x2,N2+1), j = N2 + 1.

Also, as described, for example, in [2] we can, using task (4)-(5), enter oper-
ator

Ah : qh(x2,j) → uh(x1,0, x2,j),

where uh(x1,i, x2,j) direct problem solution (4)-(5).
Then the inverse problem (4)-(6) can be written in the following form:

Ah q
h(x2,j) = f(x2,j). (7)

Solution of the spectral problem for the operator Ah

Take the eigenfunction µ
(2)
k of the spectral problem

Λ2µ
(2)(x2,j) = λ(2)µ(2)(x2,j), j = 0, N2 + 1. (8)

The eigenvalues of this task are written explicitly [4].

We act on µ
(2)
k with the operator Ah. In accordance with the de�nition, to

calculate Ahµ
(2)
k we need to solve the problem

Λ1wk(x1,i, x2,j) + k2(x1,i)Λ2wk(x1,i, x2,j) = 0, i = 0, N1, j = 0, N2 + 1, (9)

wk(x1,N1+1, x2,j) = µ
(2)
k (x2,j), j = 0, N2 + 1. (10)

After that, it is required to calculate the trace of the obtained solution on the

left border of the computational domain. This will be the desired value Ahµ
(2)
k .

Dirichlet boundary conditions (10) problems (9)-(10) we take into account
on the right side. As a result, we get the task

Λ1wk(x1,i, x2,j) + Λ2wk(x1,i, x2,j) = fk(x1,i, x2,j), i = 0, N1, j = 0, N2 + 1.
(11)

wk(x1,N1+1, x2,j) = 0, j = 0, N2 + 1, (12)

where the right side is given by the formula

fk(x1,i, x2,j) =


0, i = 0, N1 − 1, j = 0, N2 + 1,

k1(x1,N1
+
h1
2
)
µ
(2)
k (x2,j)

h21
, i = N1, j = 0, N2 + 1.

(13)

We will solve the problem (11)-(13) by the single-row decomposition method [3].
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Considering the grid functions wk(x1,i, x2,j) and fk(x1,i, x2,j) with �xed i

as the grid functions of the argument j , decompose them in basis µ
(2)
m , m =

0, 1, ..., N2 + 1 :

wk(x1,i, x2,j)=

N2+1∑
m=0

wk,m(i) µ
(2)
m (x2,j), wk,m(i)=(wk(x1,i, x2,j), µ

(2)
m (x2,j))ω̄2

,

(14)

fk(x1,i, x2,j) =

N2+1∑
m=0

fk,m(i) µ
(2)
m (x2,j), fk,m(i) = (fk(x1,i, x2,j), µ

(2)
m (x2,j))ω̄2

.

Substituting these expansions into the equation (11) and taking into account the
equalities Λ2µ

(2)(x2,j) = λ(2)µ(2)(x2,j), j = 0, N2 + 1, we have

[

N2+1∑
m=0

Λ1wk,m(i) + λ(2)m k2(x1,i)wk,m(i)]µ
(2)
m (x2,j) =

N2+1∑
m=0

fk,m(i)µ
(2)
m (x2,j).

Using linear independence of eigenfunctions, we obtain for each number m =
0, 1, ..., N2 + 1 linear equation system

Λ1wk,m(i) + λ(2)m k2(x1,i)wk,m(i) = fk,m(i), i = 0, N1. (15)

In accordance with the scalar products introduced and the form fk(x1,i, x2,j) (see
(13)) for each �xed number k we have

fk,m(i)=(fk(x1,i, x2,j), µ
(2)
m (x2,j))ω̄2

=


0, i = 0, N1 − 1, m = 0, N2 + 1,

k1(x1,N1+
h1

2
)(
µ
(2)
k

h21
, µ(2)

m )ω̄2=k1(x1,N1+
h1

2
)
1

h21
δkm,

i = N1, m = 0, N2 + 1.

(16)
Therefore, for a �xed k , all systems (15) (designed to determine the Fourier
coe�cients wk,m(i), i = 0, N1; m = 0, N2 + 1) for numbers m ̸= k will
be uniform. Therefore, their solutions are identically zero: wk,m(i) = 0, i =
0, N1, ∀ m ̸= k.

The only non-uniform system from (15) will be the system with the number
m = k. Having in mind (16), this system is written as follows:

Λ1wk,k(i) + λ
(2)
k k2(x1,i)wk,k(i) = 0, i = 0, N1 − 1,

Λ1wk,k(N1) + λ
(2)
k k2(x1,N1

)wk,k(N1) = k1(x1,N1
+ h1

2 )
1

h21
.

(17)

In summary, the solution (14) of the problem (11)-(13) (with the number k )

recorded in the form wk(x1,i, x2,j) = wk,k(i)µ
(2)
k (x2,j). The trace of the solution
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obtained on the left boundary of the computational domain x = x1,0 is equal to

wk,k(0)µ
(2)
k (x2,j). Which means

Ahµ
(2)
k (x2,j) = wk,k(0)µ

(2)
k (x2,j).

So we have established that the eigenfunctions of µ
(2)
k (x2,j) from the spectral

problem (8) are the eigenfunctions of the operator Ah , eigenvalues of the corre-
sponding wk,k(0) are calculated from (17).

Inverse problem solving Ah q
h(x2,j) = f(x2,j)

We will seek a solution in the form

qh(x2,j) =

N2+1∑
k=0

αkµ
(2)
k (x2,j). (18)

We expand the additional information (3) according to the basis µ
(2)
k (x2,j), k =

0, N2 + 1, consisting of eigenfunctions of the operator Ah : f(x2,j) =
N2+1∑
k=0

βkµ
(2)
k (x2,j). Substitute the last two expansions into the equation

Ah q
h(x2,j) = f(x2,j) :

N2+1∑
k=0

αkwk,k(0)µ
(2)
k (x2,j) =

N2+1∑
k=0

βkµ
(2)
k (x2,j).

It follows that the coe�cients αk are equal αk =
βk

wk,k(0)
. Substituting them

into (18), we obtain the solution of the inverse problem

qh(x2,j) =

N2+1∑
k=0

βk
wk,k(0)

µ
(2)
k (x2,j).
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CONVECTION IN A POROUS MEDIUM:

COSYMMETRY AND ITS CONSERVATION

THROUGH A FINITE-DIFFERENCE

APPROXIMATION1

Tsybulin V.G.

Southern Federal University, Rostov-on-Don, Russia

The onset of convective �ows in a porous rectangle occupied by a heat-
conducting �uid heated from below is analyzed. Darcy�Boussinesq model in the
case both anisotropic medium and �uid is formulated. It is shown that there
are combinations of physical parameters for which the system has a nontriv-
ial cosymmetry and a one-parameter family of stationary convective regimes
branches o� from the mechanical equilibrium. For the two-dimensional convec-
tion equations in a porous medium, �nite-di�erence approximations preserving
the cosymmetry of the original system are developed. Numerical results demon-
strate the appearance of a family of convective regimes and its disintstructione
when the approximations do not inherit the cosymmetry property [1, 2].
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PMHSS PRECONDITIONERS FOR STOKES

CONTROL OPTIMIZATION PROBLEMS1

Wang Z.-Q., Cao S.-M.

Shanghai Jiao Tong University, Shanghai, P.R. China

Flow control has been widely used in petroleum, chemical, and aeronautical
engineering, and becomes a very active research area. It is obvious that develop-
ing e�cient numerical methods for �ow control is one of the keys to its successful
applications. In this work, we consider the numerical solutions of Stokes control
problems, to make a preparation for more complicated �uid dynamic problems,
such as Navier-Stokes control problems. The present study focuses on the solution
of the multiple saddle point problems generated by the discretize-then-optimize
approach. The aim is constructing the iterative solvers which are independent of
not only the mesh size of �nite element discretization, but also the regularization
parameter of the optimization. Some successful solvers and preconditioners for
Stokes control optimization problems have been generated from di�erent per-
spectives. Some studies design the preconditioners according to properties of
saddle point matrices, especially the approximation of Schur complement matri-
ces. In [1], a parameter-robust block diagonal preconditioner is derived based on
the nonstandard norm argument. In [2], the block diagonal and block triangu-
lar preconditioners are generated based on a commutator argument [3]. Instead,
[4] consider the achieved KKT system as a special structured block two-by-two
linear system

Ax ≡
[
W −T
T W

] [
y
z

]
=

[
p
q

]
≡ g, (1)

and design a preconditioner based on [5] and the references therein. In [6], au-
thors present the preconditioned modi�ed Hermitian/Skew-Hermitian splitting
(PMHSS) iteration method and the corresponding preconditioner for Poisson
control optimization problems. The PMHSS preconditioner has nearly the same
workload as the preconditioner in [5]. But it could be performed on the short-
term recurrence iteration method, for instance, MINRES, Chebyshev and so on,
see the references [7, 8]. The convergence of the PMHSS iteration method is
studied when W,T ∈ Rn×n are real, symmetric and positive semide�nite ma-
trices with at least one of them, e.g., W , being positive de�nite. In the present
paper, we analyze the convergence of PMHSS iteration method when W and
T are positive semide�nite matrix and saddle point matrix, respectively. The
PMHSS preconditioner is studied in terms of the eigenvalues distribution and
the computing complexity. As the preconditioner in [4], PMHSS preconditioner
needs the solutions of two saddle point linear systems in every iteration. The sad-
dle point problems could be solved by inner iterations, such as �exible GMRES,

1This research is supported by National Natural Science Foundation of China (11371022)
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parameterized and preconditioned Uzawa iterations and so on. Alternatively, to
save the computing cost and avoid the decision of inner tolerance, we suggest a
modi�ed PMHSS preconditioner and analyze the eigenvalues distribution of the
corresponding preconditioned matrix.

I PMHSS iteration and preconditioner for optimality sys-

tems

We consider the Stokes control problem:

min
u,f

1

2
∥y − yd∥22 +

1

2
β∥u∥22

subject to−∇2y +∇p = u in Ω,
∇ · y = 0 in Ω,

y = gD on ∂Ω,
(2)

where Ω is a domain in R2 or R3 , ∂Ω is the boundary of Ω . The desired state
function yd and the boundary value function gD are given. As the Stokes equa-
tion is self-adjoint, the discretize-then-optimize and optimize-then-discretize pro-
cesses are mathematically equivalent and lead to the same solution. Here, we
study the algebraic systems which are obtained by discretize-then-optimize ap-
proach. The rectangular Taylor-Hood �nite element method is performed as it is
inf-sup stable. Speci�cally, the velocity y and control u are approximated by the
combinations of Q2 -basis functions {ϕj} , j = 1, · · · , nv , while the pressure p is
approximated by the combinations of Q1 -basis functions {ψj} , k = 1, · · · , np .
Then, the �rst order necessary optimality condition of the discretized optimiza-
tion problem yields the following linear system

AR

 y
p
l
m

 ≡


M 0 −F T −BT

0 0 −B 0
F BT M 0
B 0 0 0


 y

p
l
m

 =

 b
0
f
g

 , (3)

where

F =
√
β

∫
Ω

∇ϕi : ∇ϕj, M =

∫
Ω

ϕiϕj, B = −
√
β

∫
Ω

ψk · ∇ϕj,

b =

∫
Ω

ydϕi −
ny+n∂∑
j=ny+1

∫
Ω

∇ϕi : ∇ϕj,

fi = −
√
β

ny+n∂∑
j=ny+1

yj

∫
Ω

∇ϕi : ∇ϕj, gi =
√
β

ny+n∂∑
j=ny+1

yj

∫
Ω

ψi∇ · ϕj,

f = [fi], g = [gi],
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l and m are scaled Lagrange multipliers, corresponding to y and p , respectively.
The matrices M ∈ Rnν×nν and F ∈ Rnν×nν referred to mass matrix and scaled
sti�ness matrix, are symmetric positive de�nite. The matrix B ∈ Rnp×nν is full
row rank. We refer to [9, 2, 4] for details of the �nite element discretization. The
four-by-four block matrix AR in (3) can be partitioned into

AR :=

[
W −T
T W

]
, (4)

where

W =

[
M 0
0 0

]
and T =

[
F BT

B 0

]
(5)

are symmetric positive semide�nite matrix and nonsingular saddle point
matrix, respectively. Recently, Bai et al. de�ne a preconditioned modi�ed
Hermitian/Skew-Hermitian splitting (PMHSS) iteration method [6] when W
and T are symmetric positive semi-de�nite on the basis of the matrix splitting

AR = F−G,

where

F :=

[
I −I
I I

] [
W +T 0

0 W +T

]
, and G :=

[
T −W
W T

]
. (6)

The PMHSS iteration scheme for solving the two-by-two block system can be
written as

Fx(k+1) = Gx(k) + g.

The matrix F is refer to as PMHSS preconditioner as well. The PMHSS iteration
method and preconditioner achieve very good e�ect due to the clustering eigen-
values distribution and the normalization of the eigenvectors, when W and T
are symmetric positive de�nite. In the present study, we explore the performance
of PMHSS iteration method and preconditioner working on the linear system in
(3).

Lemma I.1 Let W and T be the matrices in (5), where M and F are sym-
metric positive de�nite and B is full row rank. Then the eigenvalues of T−1W
are all nonnegative.

Lemma I.2 Let τ and x be the eigenvalues and corresponding eigenvectors of
T−1W . De�ne E = (W + T)−1(W − T) . Then, the eigenvalues of E are

µ =
τ − 1

τ + 1
, with x the corresponding eigenvectors.

As a result, we have µ =
τ − 1

τ + 1
, which leads to −1 ≤ µ < 1 . Moreover,

µ = −1 are the eigenvalues of multiplicity np at least.
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Theorem I.1 Let µj , j = 1, ...·, nv + np be the eigenvalues of E . Then the
eigenvalues of F−1AR are

λ±j =
1

2
(1± iµj).

According to Theorem I.1, the spectral of preconditioned coe�cient matrix
F−1AR are located in the unitary segment between 1

2(1 + i) and 1
2(1− i) . The

eigenvalues of PMHSS iterative matrix

L = F−1G = I − F−1AR

are 1−λ±j = 1
2(1∓iµj) . PMHSS iteration method is convergent since the spectral

radius of iterative matrix is no more than 1√
2
.

When PMHSS preconditioning is performed on Krylov subspace methods,
the generalized residual equation Fr = z should be solved in every iteration.
The main workload is solving two linear saddle point problems with

W +T =

[
F +M BT

B 0

]
(7)

in every iteration. The saddle point equations should be solved by inner iteration
methods, we refer to the discussion in [4].

We will propose a new preconditioner to avoid solving saddle point equations
in this talk.
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A THREE-TERM ACCELERATED TECHNIQUE FOR

HSS-TYPE METHODS1

Wen R.-P., Jiang W.

Key Laboratory for Engineering and Computational Science,
Shanxi Provincial Department of Education, Taiyuan Normal
University, Jinzhong 030619, Shanxi Province, P. R. China

We consider the large sparse non-Hermitian and positive de�nite system of
the form

Ax = b, A ∈ Cn×n nonsingular, x, b ∈ Cn, (1)

based on the Hermitian and skew-Hermitian (HS) splitting

A = AH + AS

of the coe�cient matrix A with AH = 1
2(A+A∗), AS = 1

2(A−A∗) , where A∗ is

the conjugate transpose of A , Bai, Golub and Ng [1] have proposed the Hermitian
and skew-Hermitian Splitting (HSS) iteration method in 2003. Our interest for
the HSS iteration method is how to �nd a way to accelerate its convergence rate
and/or to modify the iteration method to construct an extrapolated iteration so
as to improve its e�ciency. We present a three-term acceleration (TTA) strategy
apply to some HSS-type iteration methods, say HSS, PHSS, GHSS or GPHSS
iteration methods, for solving a non-Hermitian positive de�nite system of linear
equations in this study. Taking the GHSS method as an example we introduce
the detail of the TTA strategy for some HSS-type methods based on the opti-
mization technique. The acceleration factor ω is obtained by the optimization
technique. We study the convergence theory of new methods and also discuss the
convergence rate. Finally, some numerical results indicate that the TTA strategy
is e�cient in computations.

Here is a brief review for some related modi�cations of HSS iteration method,
and then a three-term acceleration scheme for them is proposed.

Method 1 (The HSS Method) Given an initial guess x0 , for k =
0, 1, 2, · · · , until {xk} converges, compute{

(αI + AH)xk+1
2
= (αI − AS)xk + b,

(αI + AS)xk+1 = (αI − AH)xk+ 1
2
+ b,

(2)

where I is the identity matrix and α is a given positive constant.
Note that the HSS iteration scheme (2) may also be considered as a splitting

iteration method induced from the splitting of the matrix A as follows,

A =M −N,

1Supported by NSF of China (11371275), NSF of Shanxi Province (201601D011004), and the SYYJSKC-
1803.
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where

M =
1

2α
(αI +H)(αI + S) and N =

1

2α
(αI −H)(αI − S). (3)

The preconditioned HSS (PHSS) method based on the above particular ma-
trix splitting. Especially, we might consider that the method is designed for solv-
ing another preconditioned linear system Āx̄ = b̄ with Ā = R−∗AR−1, x̄ = Rx
and b̄ = R−∗b . Where R ∈ Cn×n is a prescribed nonsingular matrix, and
R−∗ = (R−1)∗ . We usually take a Hermitian positive de�nite matrix P = R∗R .
Thus, the PHSS method [2] was de�ned as follows:

Method 2 (The PHSS Method) Given an initial guess x0 , for k =
0, 1, 2, · · · , until {xk} converges, compute{

(αP + AH)xk+ 1
2
= (αP − AS)xk + b,

(αP + AS)xk+1 = (αP − AH)xk+ 1
2
+ b,

(4)

where α is a given positive constant, and P is a Hermitian positive de�nite
matrix (in particular, it reduces to the HSS method with P = I ).

Let

M =
1

2α
(αP + AH)(αP + AS), N =

1

2α
(αP − AH)(αP − AS), (5)

the splitting A =M −N induces the PHSS iteration method.
Split AH into the sum of two Hermitian positive semide�nite matrices: AH =

AG+AK , where AK is of simple form (e.g., diagonal) and to associate AK to the
skew-Hermitian portion AS of A so that A = AG+(AS+AK) . The generalized
HSS (GHSS) scheme [3] is obtained as follows:

Method 3 (The GHSS Method) Given an initial guess x0 , for k =
0, 1, 2, · · · , until {xk} converges, compute{

(αI + AG)xk+ 1
2
= (αI − AS − AK)xk + b,

(αI + AS + AK)xk+1 = (αI − AG)xk+ 1
2
+ b,

(6)

where α is a given nonnegative constant.
When either AG or AK is positive de�nite, the resulting scheme, which

reduces to the original HSS method when AK = 0 , is shown to be convergent
for all α > 0 .

Let

M =
1

2α
(αI +AG)(αI +AS +AK), N =

1

2α
(αI −AG)(αI −AS −AK), (7)

the splitting A =M −N induces to the GHSS iteration method.
With di�erent properties of the matrices H and S , it is natural to produce

di�erent e�ects on the parameter in (4). Due to this consideration, the GPHSS
method [4] was proposed in the following:



78 "Numerical Algebra with Applications"

Method 4 (The GPHSS Method) Given an initial guess x0 , for k =
0, 1, 2, · · · , until {xk} converges, compute{

(αP + AH)xk+1
2
= (αP − AS)xk + b,

(βP + AS)xk+1 = (βP − AH)xk+1
2
+ b,

(8)

where α is a given nonnegative constant, β is a given positive constant and
P is a Hermitian positive de�nite matrix as the above (in particular, when we
choose α = β , it reduces to the PHSS method, it reduces to the GHSS method
when without preconditioner, also it reduces to the HSS method with α = β
and without preconditioner).

Let

M =
1

α + β
(αP + AH)(βP + AS), N =

1

α+ β
(βP − AH)(αP − AS), (9)

the splitting A =M −N induces the GHSS iteration method.
We describe the three-term accelerate to Methods 1-4 above.
Method 5 (A three-term acceleration (TTA) to some HSS-type iteration

methods) Given an initial point x0 , a precision ϵ > 0 . For k = 0, 1, 2, · · ·
until {xk} converges, do
Step 1. Solve the system of linear equations as follows:

x̄k+1 =M−1Nxk +M−1b.

Let
xk+1 = ωk+1x̄k+1 + (1− ωk+1)xk−1, (10)

where
x0 ∈ Rn, x1 =M−1Nx0 +M−1b,

ωk+1 is the solution of the following optimization problem.
(a) (TTA-HSS) For Method 1, let z = Ax− b, x = ω(x̄k+1 − xk−1) + xk−1 ,

min
ω
zT (αI + AH)

−2z. (11)

(b) (TTA-GHSS) For Method 3, let z = Ax− b, x = ω(x̄k+1 − xk−1) + xk−1 ,

min
ω
zT (αI + AG)

−2z. (12)

(c) (TTA-GPHSS) ForMethod 2 andMethod 4, let z = Ax−b, x = ω(x̄k+1−
xk−1) + xk−1 ,

min
ω
zT (αP + AH)

−2z. (13)

Step 2. If ∥zk+1∥2 < ϵ, stop; Otherwise, k ⇐ k + 1 and go to Step 1.
To avoid the tedious computation, however, we can determine the approxi-

mations of the acceleration factor ω by using optimization method (for example,
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the Newton method). Evidenly, we will �nd the optimal point in the following
hyperplane.

H = {y|y = ω(Qyk +M−1b− yk−1) + yk−1, ω ∈ R}.

Next, we provide the convergence theory of Method 5 corresponding to
(11)-(13), respectively.

Lemma 1 Let A = M −N be a splitting of the non-Hermitian positive
de�nite matrix A . Assume that M,N are given by (3). Then

∥(αI + AH)
−1NM−1(αI + AH)∥ < 1. (14)

Furthermore, if A is a normal matrix, then

∥(αI + AH)
−1NM−1(αI + AH)∥ = ρ(M−1N). (15)

Theorem 1 Let A = M − N be a splitting of the non-Hermitian pos-
itive de�nite matrix A . Assume that M,N are given by (3). ωk is solved by
the quadratic programming (11). Let z = Ax − b . If ⟨(αI + AH)

−1z̄k+1, (αI +
AH)

−1(z̄k+1 − zk+1)⟩ ≥ φ . Then {xk} generated by (10) of Method 5 con-
verges to the unique solution of the system of linear equations (1). Further, the
convergence rate satis�es

r ≥ −(ln ∥(αI + AH)
−1NM−1(αI + AH)∥+ ln(sinφ)). (16)

If A is a normal matrix, then

r ≥ −(ln ρ(M−1N) + ln(sinφ)).

Lemma 2 Let A =M −N be a splitting of the non-Hermitian positive
de�nite matrix A . Assume that M,N are given by (7). Then

∥(αI + AG)
−1NM−1(αI + AG)∥ < 1.

Furthermore, if AK is diagonal, then

∥(αI + AG)
−1NM−1(αI + AG)∥ = ρ(M−1N).

Theorem 2 Let A =M−N be a splitting of the non-Hermitian positive
de�nite matrix A . Assume that M,N are given by (7). ωk is determined by
the quadratic programming (12). Let z = Ax − b . If ⟨(αI + AG)

−1z̄k+1, (αI +
AG)

−1(z̄k+1 − zk+1)⟩ ≥ φ . Then {xk} generated by (10) of Method 5 con-
verges to the unique solution of the system of linear equations (1). Further, the
convergence rate satis�es

r ≥ −(ln ∥(αI + AG)
−1NM−1(αI + AG)∥+ ln(sinφ)). (17)
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If AK is diagonal, then

r ≥ −(ln ρ(M−1N) + ln(sinφ)). (18)

For the other case of Method 5, say (13), we can analogously give the
following convergence theorem.

Lemma 3 Let A =M −N be a splitting of the non-Hermitian positive
de�nite matrix A . Assume that M,N are given by (5) or (9). Then

∥(αP + AH)
−1NM−1(αP + AH)∥ < 1.

Theorem 3 Let A =M−N be a splitting of the non-Hermitian positive
de�nite matrix A . Assume that M,N are given by (5) or (9). ωk is obtained by
the quadratic programming (13). Let z = Ax− b . If ⟨(αP +AH)

−1z̄k+1, (αP +
AH)

−1(z̄k+1 − zk+1)⟩ ≥ φ . Then {xk} generated by (10) of Method 5 con-
verges to the unique solution of the system of linear equations (1). Further, the
convergence rate satis�es

r ≥ −(ln ∥(αP + AH)
−1NM−1(αP + AH)∥+ ln(sinφ)).

For HSS iteration method, the three-term accelerated iteration method has
more e�ective when HSS iteration method is not e�ective or the optimal parame-
ter αopt is di�cultly found. On the other hand, as we know, when the parameter
α is larger, the conjugate gradient method to solve the former half-step linear
system of (2) becomes stable and speeds up its convergence, it is because the
condition number of αI+H becomes smaller. Hence, the three-term accelerated
iteration method is e�ective and valuable.
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A FAST NULLSPACE METHOD BASED ON MATRIX

EXPONENTIAL FOR THE UNSTEADY STOKES

EQUATIONS1

Yang X.∗

∗ Nanjing University of Aeronautics and Astronautics, Nanjing,
China

We consider the numerical solution of the unsteady Stokes equations modeling
�low-speed� incompressible viscous �ow as follows{

∂u⃗
∂t − ν∇2u⃗+∇p = f⃗ in Ω× [0, t],

∇ · u⃗ = 0 in Ω× [0, t],
(1)

where u⃗ is the velocity of �uid. p is the pressure of �uid. f⃗ is a given external
force. Ω ⊂ Rd (d = 2 , 3) is an open bounded domain. ν > 0 is the kinematic
viscosity. A boundary value problem is adding conditions to the system (1) on
boundary ∂Ω = ∂Ω

D
∪ ∂Ω

N
as

u⃗ = v⃗ on ∂Ω
D
, ν

∂u⃗

∂n⃗
− n⃗p = 0 on ∂Ω

N
,

where n⃗ is the outward-pointing normal to the boundary.
Semi-discretization in space of system (1) leads to a system of di�erential-

algebraic equations (DAEs), i.e., the unsteady discrete Stokes equations(
B̆ d

dt
+ Ă

)
x̆ :=

{(
H 0
0 0

)
d

dt
+

(
Ă B̆T

B̆ 0

)}(
ŭ
p̆

)
=

(
f̆
ğ

)
:= b̆, (2)

where H and Ă ∈ Rn×n , symmetric positive de�nite, represent velocity mass
matrix and discrete di�usion, respectively. B̆T ∈ Rn×m and B̆ ∈ Rm×n , full
column rank and full row rank, represent discrete gradient and negative discrete
divergence, respectively. ŭ ∈ Rn and p̆ ∈ Rm are the discrete velocity and
pressure. f̆ ∈ Rn and ğ ∈ Rm are constant forcing and boundary terms. An
initial value problem is adding initial data x̆(0) = x̆0 ∈ Rn+m to the system (2).

The unsteady discrete Stokes equations (2) is algebraically equivalent to a
simple form through a block-diagonal scaling, say,

S =

(
L 0
0 I

)
1Supported by the National Natural Science Foundation (No. 11101213, No. 11401305, No. 11571171 and

No. 11701409), P.R. China.
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where H = LLT is the Cholesky factorization of the matrix H . The above
mentioned simple form results from

S−1

(
B̆ d

dt
+ Ă

)
S−TST x̆ = S−1b̆,

or equivalently,{(
I 0
0 0

)
d

dt
+

(
L−1ĂL−T L−1B̆T

B̆L−T 0

)}(
LT ŭ
p̆

)
=

(
L−1f̆
ğ

)
.

For the simplicity of notations, we simply rewrite the above form as(
B d

dt
+A

)
x :=

{(
I 0
0 0

)
d

dt
+

(
A BT

B 0

)}(
u
p

)
=

(
f
g

)
:= b, (3)

where A = L−1ĂL−T , B = B̆L−T , u = LT ŭ , p = p̆ , f = LT f̆ , g = ğ . In
the sequel, we consider the numerical solution to the unsteady discrete Stokes
equations (3).

The most frequently used methods for unsteady discrete Stokes equations (3)
are time-stepping methods including Runge-Kutta methods [1] and linear multi-
step methods [1]. The basic idea of time-stepping methods is to adopt temporal
discretization to (3) on a prescribed time-level-sequence, then the evaluation
of solution x is needed on each time level. Therefore, a small time-step-size
always leads to a large number of evaluations of solution x , thus making the
workload of time-stepping methods increasing intensively. In order to overcome
the disadvantages of time-stepping methods with small time-step-size, we employ
a class of nullspace methods whose workload are independent of the length of
the time interval.

An idea to solve the unsteady discrete Stokes equations (3) is to eliminate the
algebraic constraints and solve a reduced system of ordinary di�erential equations
(ODEs). Speci�cally, we suppose that Z ∈ Rn×(n−m) is a matrix with orthonormal
columns spanning the nullspace [2, 3, 4, 5, 6] of the matrix B , i.e., ZTZ = I
and BZ = 0 . Thus, the columns of BT together with the columns of Z become
a basis of Rn , say, Rn = span{BT , Z} . Then the �rst block u of the solution x
to (3) can be written as

u = ûB + ûZ (4)

where ûB is the component of u in span{BT} , speci�cally,

ûB = BT (BBT )−1g, (5)

and ûZ is the component of u in span{Z} , speci�cally,

ûZ = e−tPZAPZ

(
u0 − PAZ f̃

)
+ PAZ f̃, (6)
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where f̃ = f − ABT (BBT )−1g , and PAZ = Z(ZTAZ)−1ZT is called the scaled
projection matrix (when A = I , PAZ is reduced to the orthogonal projection
matrix PZ ). The expressions of the projection matrices PAZ and PZ need to
involve the nullspace basis Z explicitly, which is impractical. In actual imple-
mentation, we have an idea to avoid the explicit access to the nullspace basis Z .
In addition, the second block p of the solution x to (3) is given by

p = (BBT )−1(Bf−BAu). (7)

The formulas (4-7) lead to a nullspace method for the unsteady discrete Stokes
equations (3) as follows.

Algorithm .1 The nullspace method:

1. Solve BBTuB = g to get uB , and compute ûB = BTuB which is the
component of u in span{BT} ;

2. Compute the scaled projection term PAZ f̃ ;

3. Compute the matrix exponential vector product e−tPZAPZ

(
u0 − PAZ f̃

)
;

4. Compute the component ûZ of u in span{Z} by (6);

5. Compute u = ûB + ûZ ;

6. Solve BBTp = Bf−BAu to get p .

The main workload of the Algorithm .1 is the matrix exponential vector product

e−tPZAPZy with y =
(
u0 − PAZ f̃

)
, which can be reformulated to be an integral

in complex plane, i.e.,

e−tPZAPZ y =
1

2πı

∫
Γ

esF (s) ds = IΓ

with F (s) = (sI + tPZA)
−1PZ y . Moreover, IΓ can be approximated by a lin-

ear combination of the values of the integrand evaluated at a small number of
complex numbers {sk}Nk=1 [7, 8, 9, 10, 11, 12],

IΓ ≈ −
N∑
k=1

wkF (sk). (8)

Each evaluation of the integrand leads to solve a linear system,

(skI + tPZA) F (sk) = PZy, k = 1, . . . , N. (9)
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We remark that if the sizes of matrices A and B are quite small, it is accept-
able to solve the shifted linear systems (9) by direct linear solvers, e.g., Gaussian
elimination. Otherwise, iterative linear solvers would be considered, e.g., Krylov
subspace methods [13]. In this work, we consider generalized minimum resid-
ual method (GMRES) for the linear systems (9). The convergence of GMRES
for the linear systems (9) is established, which provide an upper bound on the
convergence rate of the GMRES iterates.

The numerical tests show that the nullspace method, i.e., Algorithm .1, for
the unsteady Stokes equations (3) is much faster than the frequently used time-
stepping methods, i.e., BDF(p), since the nullspace method solves a much smaller
number of linear systems.
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ON THE QUADRATIC EQUATIONS AND MATRIX

FUNCTION1

Zhang X.

Department of Mathematics Science, Guizhou Normal University,
Guiyang 550025, P.R. China

Abstract:The octonions O is an 8 -dimensional algebra over the real num-
bers R with basis {1 := e0, e1, e2, e3, e4, e5, e6, e7} . The multiplication law over
O is non-associative and non-commutative. For an example:

(e1(e4 + 1))e7 = e2 + e6, e1((e4 + 1)e7) = −e2 + e6.

Solving linear equations over non-associative rings O is not a duplicate work
over communitive or associative rings. For an example: In complex �eld,

x2 + bx+ c = (x+ b
2)

2 + c− b2

4
(1)

always holds, thus x2 + bx+ c = 0 can convert to y2 = 1 where y = ± (x+ b
2 )√

( b
2

4 −c)
.

However, the equality is invalid in octonion algebra. We give the explicit expres-
sions of octonionic quadratic equation:

x2 + bx+ c = 0,

x2 + xb+ c = 0,

x2 + ax+ xb+ c = 0.

The preparation work is as follows:
First,we provide the representation of an octonion number. For any

a = a0 + a1e1 + · · ·+ a7e7 ∈ O,

it is correspondent to a vector in R8 ,

ϕ(a) :=
(
a0, a1, a2, a3, a4, a4, a6, a7

)
∈ R8.

The real part and the imaginary part are correspondent to

ϕr(a) :=
(
a0, 0, 0, 0, 0, 0, 0, 0

)
∈ R8,

ϕi(a) :=
(
0, a1, a2, a3, a4, a5, a6, a7

)
∈ R8.

Then the caculation over O can be converted to R.
Secondly, we cite other important work. Let B,E and D be real numbers

such that
1Supported by national fund 11401125
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(i) E ≥ 0 , and
(ii) B < 0 implies B2 < 4E .
Then the real system

T 3 + (B − 2N)T +D = 0
N 2 − (B + T 2)N + E = 0

has at most two solutions (T,N) satisfying T ∈ R and N ≥ 0 as follows.

(a) If D = 0, B2 ≥ 4E , then T = 0 , N = (B ±
√
B

2 − 4E)/2 .

(b) If D = 0, B2 < 4E , then T = ±
√

2
√
E −B , N =

√
E .

(c) If D ̸= 0 and z is the unique positive root of the real polynomial
z3 + 2Bz2 + (B2 − 4E)z −D2 , then T = ±

√
z , N = (T 3 +BT +D)/2T .

Thirdly, to solve the equations,we obtain the alternativity (a−1ba)2 = a−1b2a.
Finally, we get the following main results. The solutions of the octonionic

quadratic equation x2 + bx+ c = 0 can be obtained by following formulas:
Case 1. If b, c ∈ R and b2 < 4c , then

x =
1

2
(−b+ q−1

√
4c− b2e1q),

where q is any nonzero octionion.
Case 2. If b, c ∈ R and b2 ≥ 4c , then

x =
1

2
(−b±

√
b2 − 4c).

Case 3. If b ∈ R and c /∈ R , then

x = −b
2
± r

2
∓

7∑
i=1

ciei
r
,

where c = c0 +
7∑
i=1

ciei and r =

√√√√1
2

(
b2 − 4c0 +

√
(b2 − 4c0)2 + 16

7∑
i=1

c2i

)
.

Case 4. If b /∈ R , then

x =
−b0
2

− (b′ + T )−1(c′ −N),

where b0 = Re(b) , b′ = Im(b) , c′ = c − b0
2 (b −

b0
2 ) , and (T,N) is chosen as

follows: let
B = |b′|2 + 2(c′)0, D = 2(b̄′c′)0, E = |c′|2. (2)

Then

(i) T = 0 , N = (B ±
√
B2 − 4E)/2 provided that D = 0 , B2 ≥ 4E ,
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(ii) T = ±
√

2
√
E −B , N =

√
E provided that D = 0 , B2 < 4E ,

(iii) T = ±
√
z , N = T 3+BT+D

2T and z is the unique positive root of the real
polynomial z3 + 2Bz2 + (B2 − 4E)z −D2 .

Note that not all octonionic quadratic equations can be solved by using above
conclusions. For example, this method is invalid for the equation xax+bx+c = 0
and the following equations: for 0 ̸= a ,

x2a+ bx+ c = 0 is equivalent to x2 + (mx)n+ k = 0,

ax2 + bx+ c = 0 is equivalent to x2 +m(nx) + k = 0,

x2a+ xb+ c = 0 is equivalent to x2 + (xn)m+ k = 0,

ax2 + xb+ c = 0 is equivalent to x2 +m(xn) + k = 0,

The non-linear problems are also interesting in matrix equations. We focus on
some quadratic matrix equations because it can solve some special matrices. Con-
sider the relations between some linear matrix function and the nonlinear
matrix function:

Φ1 = {Y = A−
r |AY A = A, Y AY = Y }, Φ2 = {B−|BXB = B}.

The general solution to BXB = B can be expressed as

X = X0 − LBV1 − V2RB,

where X0 is a special solution of BXB = B , V1 and V2 are arbitrary matrices.
The expression of re�exive g -inverses of A can be expressed as

A−
r = (A† − LAV3)A(A

† − V4RA),

where V3 and V4 are arbitrary matrices. In this talk, we characterize the dis-
tribution of the solutions to some matrix equation. And discuss the relations
between the sets

Φ3 = {Y = A−
r |AY A = A, Y AY = Y }, Φ4 = {X|BXC = D}.

The nontrivial generalization is also obtained. We get the relations between Φ3

and

Φn =

{
n∑
i=1

B−
i

∣∣∣∣∣BiB
−
i Bi = Bi

}
.

The skill is simple and practical: Two matrices A and B with the same size are
equal if and only if r(A−B) = 0 . Two sets Φ1 and Φ2 have a common element
if and only if

min
A∈Φ1,B∈Φ2

r (A−B) = 0.
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Φ1 ⊆ Φ2 if and only if

max
A∈Φ1

min
B∈Φ2

r (A−B) = 0.

We establish the ranks of matrix function

f(X1, X2, X3, X4) = D1 − A1X1 −X2B1 − (A2 −B2X3C2)D2(A3 −B3X4C3),

where X1, X2, X3 and X4 are variable matrices. Discuss the relations between
some matrix sets generated by the linear matrix function

Φ5 = {D3 − A1X1 −X2B1}

and the nonlinear matrix function

Φ6 = {D1 + (A2 −B2X3C2)D2(A3 −B3X4C3)}.

The contained and interacting relations between the above two sets are charac-
terized. Then we obtain some applications:

To begin with, we characterize the relations of

Φ1 = {Y = A−
r |AY A = A, Y AY = Y },

Φ2 = {X|BXB = B}.

X = X0 − LBV1 − V2RB,

Y = (A† − LAV3)A(A
† − V4RA).

In addition, if we put

Mn−1,n =


B1 0 · · · 0 Bn

0 B2 · · · 0 0
...

... . . . ...
...

0 0 · · · Bn−1 Bn

 ,

Nn−1,n =


B1 0 · · · 0
0 B2 · · · 0
...

... . . . ...
0 0 · · · Bn−1

Bn 0 · · · Bn

 ,

Pn+1,n =

[
diag(B1,B2,··· ,Bn)[
A 0 · · · 0 A

] ] ,



90 "Numerical Algebra with Applications"

Qn,n+1 =

 diag(B1, B2, · · · , Bn)

∣∣∣∣∣
A
0
...
A

 ,
De�ne

Φn =

{
n∑
i=1

B−
i

∣∣∣∣∣BiB
−
i Bi

}
,

Φ10 = {Y = A−
r |AY A = A, Y AY = Y }.

Then (a) Φn

∩
Φ10 ̸= 0 if and only if

r

[
0 Qn,n+1

Pn+1,n diag(B1, · · · , Bn, A)

]
− r(Qn,n+1)− r(Pn+1,n) ≤ 0,

(b) Φ10 ⊆ Φn if and only if

r

[
0 Qn,n+1

Pn+1,n diag(B1, · · · , Bn, A)

]
− 2r(A)− r(Mn−1,n)− r(Nn,n−1) ≤ 0.
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BIPARTITE GRAPHS IN THE PROBLEM

OF NFA MINIMIZATION AND ALGORITHMS

FOR CALCULATING THEIR NUMBER

Abramyan M.E.

Southern Federal University, Rostov-on-Don, Russia

1. The problem statement. The main stage of the state minimization
algorithm for a nondeterministic �nite automaton [1, 2, 3] is an analysis of the
special relation # connecting the subsets of the state sets X and Y of two
canonical automata constructed on the basis of the given nondeterministic �nite
automaton K [2, Section 3.3].

The relation # can be described as a bipartite undirected graph G whose
edges connect the elements of the sets X and Y and, due to the properties of
the relation # , none of the vertices of the graph G is isolated, and the sets of
adjacent vertices are di�erent for any two di�erent vertices of G .

The relation # can also be speci�ed as a matrix A , which is the adjacency
matrix of the graph G . We assume that the set X corresponds to the rows of the
matrix, and the set Y corresponds to its columns. The elements of the matrix
A are logical values 0 (false) and 1 (true); the element Axy is equal to 1 if the
vertices x and y of the graph G are are in the relation # , i. e. x#y holds. Due
to the properties of the relation # , the matrix A has the additional property
(*): it does not contain 0-valued or identical rows and columns.

On the set of all matrices satisfying the speci�ed properties, we can introduce
the equivalence relation as follows. Matrices A and B are assumed to be equiv-
alent if the matrix B can be obtained from the matrix A by swapping some of
its rows and / or columns. Equivalent matrices match the same pair of canonical
automata, for which the order of states is speci�ed di�erently.

The problem is to determine the number of di�erent pairwise nonequivalent
M ×N -matrices de�ning di�erent relations # .

2. Brute force algorithm. Lets start with describing a simple algorithm,
in which a comparison is made for the equivalence of all possible matrices of the
given size M ×N (note that the total number of such matrices is 2MN ).

The input to the algorithm is the numbers M and N ; it is assumed, for
de�niteness, that M ≤ N .

First, sets of all possible permutations of order M and N are generated;
each permutation of order K if stored as an array of K elements with values
from 0 to K − 1 .

Then all matrices of M × N size are generated; it is enough to go through
all the numbers from 0 to 2MN − 1 assuming that the binary representations
of these numbers correspond to the values of the matrix elements (0 or 1) in
row-major order.
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All created matrices, for which the condition (*) is ful�lled, are saved in
the List<BMatrix> collection, where BMatrix is the class of Boolean-valued
matrices.

The main method connected with matrix validation for equivalence is the
A.Equiv(B) method, which checks matrices A and B of BMatrix type. We use
the simplest algorithm, which iterates through all combinations of permutations
of rows and columns of a matrix B, until a matrix is obtained that matches the
matrix A (in this case, the metrod returns true), or until all combinations of
permutations are enumerated (in this case, false is returned).

The �nal FindEquivMatr(matrices) method analyzes the matrices collec-
tion of List<BMatrix> type, selects nonequivalent matrices from it and returns
the resulting collection of pairwise nonequivalent matrices. When checking for
each matrix A from the matrices collection, the A.Equiv(B) method is called for
all matrices B, which are already included in the resulting collection of nonequiv-
alent matrices.

The described algorithm was implemented in C# and tested on matrices of
small size; the results are shown in Table 1. The Time column shows the working
time in seconds, the Matr column contains the number of all matrices (of the
given size) that satisfy the condition (*), the Result column contains the number
of pairwise nonequivalent matrices.

Table 1. The results of the brute force algorithm.
Time Matr Result

3× 3 0.042 174 8
3× 4 0.070 840 10
4× 4 48.144 24 360 66
4× 5 8415.5 335 160 168

Although the number of pairwise nonequivalent matrices of 4×5 order is only
three times as large as the corresponding number for matrices of 4×4 order, the
number of matrices to be compared among themselves increased about 13 times,
and the calculation time increased 175 times. It is clear that in this way it will not
be possible to obtain results for larger matrices in a reasonable time. Therefore,
we should consider various heuristics (see, for example, [4]) that accelerate the
basic algorithm.

3. Using matrix properties. The main operation time of the basic al-
gorithm is spent on pairwise equivalence checking of matrices from the source
collection. In the case of nonequivalent matrices, the A.Equiv(B) method will
iterate over all possible row and column permutations of matrix B, and only after
that returns false. However, in some situations, the checking process can be ac-
celerated by analyzing such matrix properties as the total number of true-valued
elements in each row and each column. Two matrices may be equivalent only if
they have the same set of such properties for the rows and for the columns (since
these sets do not change with row and column permutations of the matrix).
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To speed up the comparison, it is convenient to order a set of required prop-
erties for the rows and for the columns of a given matrix and then combine these
two ordered sets into an Info array of integers (of size M+N ). At the beginning
of the A.Equiv(B) method, the Info arrays of the matrix A and B are compared,
and if these arrays are di�erent then the method immediately returns false.

Table 2 shows the working time of the modi�ed algorithm for matrices of
various size.

Table 2. The working time of the modi�ed algorithm.
Time

3× 4 0.012
4× 4 1.867
4× 5 147.6

Thus, the processing time of 4 × 4 and 4 × 5 matrices accelerated by 26
times and by 57 times respectively. However, such acceleration is not enough for
matrices of higher dimensions, due to the rapid growth of the number of matrices
satisfying the condition (*). For example, there are 3 553 200 such matrices of 4×6
size and 15 198 120 matrices of 5× 5 size .

4. Consideration of ordered matrices. Consider another heuristic that
allows us to speed up the algorithm by reducing the number of matrices being
analyzed. Since the belonging of a matrix to the same set of equivalent matrices
does not depend on the order of its rows or columns, we can analyze only those
matrices in which the rows and columns are lexicographically sorted in descending
order of their elements. Examples of such ordered 3× 4 -matrices are as follows: 1 0 0 0

0 1 1 0
0 1 0 1

  1 1 0 0
1 0 1 0
0 0 0 1


These matrices satisfy the condition (*) and, moreover, each next row of them is
�less� than the previous one, if we assume that the rows are compared element by
element and that the value 0 (false) is less than the value 1 (true). In addition,
the same ordering property holds for their columns.

It is clear that the search algorithm for pairwise inequivalent matrices is su�-
cient to implement only for matrices with the speci�ed ordering property. It can
even be assumed that all the various ordered matrices are pairwise nonequivalent
and therefore it is su�cient to obtain the set of all ordered matrices to solve the
main problem. Unfortunately, this assumption is incorrect. For example, it is
easy to verify that two ordered matrices mentioned above are equivalent.

Nevertheless, it is obvious that the number of di�erent ordered matrices with
the property (*) signi�cantly less than the total number of all such matrices of
the same dimension.

As an algorithm for generating all ordered matrices, we use a variant of
the backtracking algorithm with the main recursive function step(i, j, val),
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where i and j de�ne the indices of the matrix element being de�ned and val is
its value. The �rst call to this function is of the form step(0, 0, true), since
the initial element of an ordered matrix cannot be false. Subsequent recursive
calls to the step function are organized so that the matrix is �lled in columns.
Calling step(i, j, false) can be done anyway, calling step(i, j, true) can
be done only if the element to be added maintains the ordering of the already
constructed parts of the previous row and column. After �lling in the next row
or column, the method also checks that this row (column) satis�es additional
properties, namely: it does not consist entirely of false values and it is not
equal the previous row (column).

The �Order� heuristic, whish is based on the use of ordered matrices, can
be combined with previously considered �Info� heuristic, which accelerates the
matrix equivalence test due to the analysis of their additional Info property.

Table 3 shows the results of testing new modi�cations of the algorithm.
This table contains the work time of the algorithm (Time) and the total num-

ber of processed matrices (Matr). The number of found pairwise nonequivalent
matrices is indicated in the �rst column after the matrix size. For comparison,
the table also includes the early described results for the previous versions of the
algorithm.

Table 3. The results of the various versions of the algorithm.
Basic �Info� �Order� �Info�+�Order�

algorithm heuristic heuristic heuristics
3× 4 Time=0.070 Time=0.012 Time=0.001 Time=0.031
10 Matr=840 Matr=19
4× 4 Time=48.144 Time=1.867 Time=0.187 Time=0.016
66 Matr=24 360 Matr=185
4× 5 Time=8415.5 Time=147.56 Time=6.926 Time=0.281
168 Matr=335 160 Matr=706
4× 6 � � Time=142.60 Time=5.117
282 Matr=1639
5× 5 � � Time=3950.9 Time=52.603
1394 Matr=9109

5. Concusion. Thus, the use of two implemented heuristics allowed us to
process matrices of higher dimension in an acceptable time.

With a further increase in the matrix dimension, new problems arise. For
example, for matrices of size 6× 6 and 7× 7 , the number of ordered matrices is
equal to 1 271 091 and 505 051 770 respectively. It is clear that in such a situation
one should not create the entire set of analyzed matrices, and then proceed to
their pairwise comparison: it is necessary to immediately check each obtained
matrix and save only the set of pairwise nonequivalent matrices already found.
Given the exponentially growing number of di�erent possible permutations, one
can also implement a more �intelligent� version of matrix checking, which analyzes
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only permutations of rows and columns with the same number of true-valued
elements. Of course, some acceleration can also be achieved by parallelizing the
algorithm, in which the set of found matrices is distributed for analysis across
several threads connected with di�erent cores of a multi-core processor.

However, even with these modi�cations, one can expect that the analysis of
matrices of order 8 will require some months of calculations.
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ABOUT SOME NEW APPROACHES TO TEXT

SENTIMENT ANALYSIS AND TOXICITY ANALYSIS

USING DEEP LEARNING METHODS

Abramyan M.E., Litovchenko D.E.

Southern Federal University, Rostov-on-Don, Russia

Natural language processing (NLP) is a branch of computer science, com-
puter linguistic and arti�cial intelligence that deals with the interaction between
computers and humans using any natural language. Along with the development
of social networks and other Internet resources, the amount of content generated
by users of these online services is increasing very quickly. Every minute, the
number of reviews in online stores all around the world, news comments on news
web resources, user's photos and videos on Facebook, Twitter, Instagram and
other social networks is increasing at an enormous speed. That's why text data
in the Internet cannot be processed manually, but it may contain important and
useful information for society or commercial and non-pro�t organizations. Timely
processing of information about disasters in a certain place can help save lives.
Processed patient complaints allow specialists to �nd some similar symptoms
that the patient didn't mention. Analyzed customer testimonials can help �nd
the advantages and signi�cant drawbacks of products and predict the out�ow or
in�ux of customers.

That is why the tasks from the �eld of natural language processing are ex-
tremely relevant and important problems of machine learning and computational
linguistics. Representatives of this family of tasks are text sentiment analysis and
text toxicity analysis, the results of which contain important information about
the author's mood, his motives and further behavior. The paper considers two
important natural language processing problems: text sentiment analysis and
text toxicity analysis.

1. Sentiment analysis and toxicity analysis. Text sentiment analysis
(tonality analysis) is a class of natural language processing tasks in computational
linguistics that is necessary for automatic detection of the constructed system of
emotions (for example, negative, neutral, positive) in the text and the emotional
evaluation of the authors of texts in relation to one way or another it is said
(mentioned) in a given text data set.

In general, sentiment (tonality) is a certain attitude of the author, expressed
by emotions, to some object, re�ected in the text. These objects are people, social
(cultural, political) events, �lm releases, music albums and more. The emotional
component, which is expressed at the level of a lexeme or fragment of text, is
called lexical tonality. In the simplest case, the tonality of the entire text is
de�ned as a certain function of the input text data and the combination rules of
the units of this text.
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In practice, the problem of analyzing the sentiment of a text is a non-trivial
task, with which a number of di�culties are associated. Basically, these di�-
culties are justi�ed by the ambiguity of natural languages, which often includes
free word order in a sentence, words with the same spelling and di�erent mean-
ings (homonyms), spelling errors in words, mistypes, the use of sarcasm (irony),
professional slang, jargon and various abbreviations.

This paper presents several practical methods for the implementation of this
task, along with a comparison of the prediction accuracy at the moment for dif-
ferent approaches. It's important to say that the approaches described in this
work are directly related to machine learning and deep learning, which involves
the use of neural networks with a large number of neurons and internal connec-
tions between them. Also, some hypotheses were formulated and tested, allowing
to increase the accuracy of the models in certain cases.

It is important to understand that at the moment there are no universal
approaches that would allow achieving high accuracy on any text dataset of
the chosen language with any stylistics of text, data volume, etc. Most models
are aimed at analyzing the tonality of the text within a certain category of
texts. A possible goal of implementing the approaches described in this task is,
for example, their integration into the service, one of the components of which
would be the ability to determine customer loyalty to the chosen company, relying
on information from various available sources of textual data.

As for text toxicity analysis, a toxic message is a text snippet, compiled in one
of natural languages and being disrespectful/o�ensive/rude/sarcastic to anyone
or anything.

2. Generation of train datasets.With the increasing adoption of arti�cial
intelligence (AI) by companies around the world across all industries, developing
a strategy for machine learning is imperative to gain a competitive advantage.
A key component of this strategy is the data used to train machine learning-
based solutions. Machine learning is a form of AI that uses large datasets to
teach computers how to respond to and act like humans � allows businesses to
optimize operations, deliver better customer experiences, enhance security and
more [1].

It is unbelievable hard to �nd good enough dataset in Russian containing
enough examples to use it for deep learning algorithm. For sentiment analysis
task it was decided to use �Twitter mokoron� dataset for binary sentiment clas-
si�cation created by Yulia Rubtsova [2], the largest one among datasets in the
Russian language but still it lacks accuracy and contains a lot of outliers, It
contains about 300000 marked (as positive/negative) texts from Twitter social
network. For toxicity analysis task it was decided to create new dataset in the
Russian language. It is impossible to collect and mark properly enough data
during this research. Thus, it was decided to use �Kaggle Toxic Comment Clas-
si�cation Challenge Dataset� [3] (dataset in English) stored on open machine
learning competition platform �Kaggle�. In the process, this dataset was partly
translated into Russian using �Google Translate� service. Then some parts of
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Rusentiment dataset [4] were added. Also it was pre-proccesed: clearing unnec-
essary characters, deleting stop-words, etc. With this approach, a new unique
dataset (totally 10000 texts) was formed.

3. Words representation. Any neural network works with a set of vectors
of real numbers, and not with text data or images, so the most important task is
to convert the input data to a vector representation. The word word representa-
tion (word embedding) is a parameterized function that maps words from some
natural language w to number vectors of a certain dimension, this function is
de�ned as follows: W : w → Rn . There are a lot of algorithms of creating vectors
from words that will re�ect the measure of similarity between words: Word2vec,
FastText, Glove, etc.

The purpose and usefulness of Word2vec is to group the vectors of similar
words together in vector space. That is, it detects similarities mathematically.
Word2vec creates vectors that are distributed numerical representations of word
features, features such as the context of individual words. It does so without
human intervention.

Given enough data, usage and contexts, Word2vec can make highly accurate
guesses about a word's meaning based on past appearances. Those guesses can
be used to establish a word's association with other words (e.g. �man� is to �boy�
whereas �woman� is to �girl�), or cluster documents and classify them by topic.
Those clusters can form the basis of search, sentiment analysis and recommen-
dations in such diverse �elds as scienti�c research, legal discovery, e-commerce
and customer relationship management.

The output of the Word2vec neural net is a vocabulary in which each item
has a vector attached to it, which can be fed into a deep-learning net or simply
queried to detect relationships between words.

The vectors we use to represent words are called neural word embeddings,
and representations are strange. One thing describes another, even though those
two things are radically di�erent.

One choice in the task of representing the words for these tasks is to teach the
Word2vec model on textual data from the source dataset. Another option is to
teach Word2Vec models on text data from a large text corpus with similar styling
and text size. Then it is possible to use pre-trained vectors (in this case, on texts
from the social network VK.com). The rationale behind using pre-trained word
embeddings in natural language processing is very much the same as for using
pre-trained convnets in image classi�cation: we don't have enough data available
to learn truly powerful features on our own, but we expect the features that we
need to be fairly generic, i.e. common visual features or semantic features. In this
case it makes sense to reuse features learned on a di�erent problem.

In this work, all three options were tested and compared to each other.
4. Implementation using convolutional neural networks. A convo-

lutional neural network (CNN) is a deep learning algorithm which can take
in an input data, assign importance (learnable weights and biases) to various
aspects/objects in the object and be able to di�erentiate one from the other.
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Pre-processing algorithm required in a convolutional neural network is much
lower as compared to other classi�cation algorithms. While in primitive methods
�lters are hand-engineered, with enough training, CNN have the ability to learn
these �lters/characteristics. The architecture of a CNN is analogous to that of
the connectivity pattern of neurons in the human brain and was inspired by the
organization of the visual cortex. Individual neurons respond to stimuli only in
a restricted region of the visual �eld known as the receptive �eld. A collection of
such �elds overlap to cover the entire visual area.

In 2012, Convolutional Neural Networks made a breakthrough in computer
vision (CV). The solution, based on neural networks with this architecture, took
�rst place in the competition ImageNet 2012. Subsequently it turned out that
convolutional neural networks have great potential in solving other problems,
including the problems of processing natural languages, which are discussed in
this work. The peculiarity of the architecture of such networks is that their work
is similar to the mechanisms of the visual cortex of the brain, which can highlight
the most important details in the input information �ow, which is important not
only for image processing, but also for text processing.

CNN model has been impelemented, compiled and trained using Keras library
(with Tesor�ow library in back-end). It was trained on 70% of each dataset
(divided into 3 folds) and tested on 30% of each dataset.

5. Implementation using bidirectional long-short term memory
neural networks with self-attention. Long short-term memory (LSTM)
is an arti�cial recurrent neural network (RNN) architecture used in the �eld
of deep learning. Unlike standard feedforward neural networks, LSTM has feed-
back connections that make it a �general purpose computer� (that is, it can
compute anything that a Turing machine can). It can not only process single
data points (such as images), but also entire sequences of data (such as speech or
video). For example, LSTM is applicable to tasks such as unsegmented, connected
handwriting recognition or speech recognition.

A common LSTM unit is composed of a cell, an input gate, an output gate
and a forget gate. The cell remembers values over arbitrary time intervals and
the three gates regulate the �ow of information into and out of the cell.

In problems where all timesteps of the input sequence are available, bidirec-
tional LSTM neural networks train two instead of one LSTM neural networks
on the input sequence. The �rst on the input sequence as-is and the second on a
reversed copy of the input sequence. This can provide additional context to the
network and result in faster and even fuller learning on the problem.

Attention is the idea of freeing the encoder-decoder architecture from the
�xed-length internal representation. This is achieved by keeping the intermedi-
ate outputs from the encoder LSTM from each step of the input sequence and
training the model to learn to pay selective attention to these inputs and relate
them to items in the output sequence. Put another way, each item in the output
sequence is conditional on selective items in the input sequence.

6. Comparison of models. After training, all CNN and LSTM models (for
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sentiment and toxicity analysis, with and without pre-trained embeddings from
VK social network) were tested on test dataset containing 30% objects of each
dataset.

Test results are given in Tables 1 and 2, they contain a comparison of models
for accuracy and f1 metrics. Table 1 is devoted to the text toxicity analysis
(with and without pre-trained word embeddings), Table 2 is devoted to the text
sentiment analysis (with and without pre-trained word embeddings).

Table 1. Toxicity analysis
Metrics CNN Bi-LSTM CNN (PTE) Bi-LSTM (PTE)

Accuracy (test) 73.07% 75.18% 83.13% 84.40%
F1-metrics (test) 73.44% 74.90% 82.52% 83.97%

Table 2. Sentiment analysis
Metrics CNN Bi-LSTM CNN (PTE) Bi-LSTM (PTE)

Accuracy (test) 71.43% 72.01% 73.07% 72.90%
F1-metrics (test) 70.07% 70.90% 73.44% 73.01%

7. Conclusion. LSTM neural networks mostly show results that are simi-
lar to CNN's results. In some cases, LSTM neural networks gain 1.5�3 percent
prediction accuracy. Binary sentiment classi�cation and markup errors a�ect the
neural network's possibilities of generalizing predictions. The used method of
automatic translation and marking of data manually allows you to expand the
amount of data in Russian, which is so lacking for solving problems of natural
languages processing.
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The paper considers the problem of state minimization of nondeterministic
�nite automata (NFA). This problem has been formulated in the 1960s (see, for
instance, [1]). In 1993, it was proved to be NP-hard [2], and therefore it is an
important task to describe heuristic algorithms for this problem, i. e. algorithms
that yield an acceptable near-optimal (quasi-optimal) solution at a reasonable
time. Among such algorithms, the so-called anytime algorithms [3] occupy a
prominent place; they are usually based on iterative techniques and work in real
time.

1. Problem statement. The NFA state minimization algorithm considered
in this paper is based on the results of [4, 5]. Its main stage is the analysis of the
special relation # that connects the subsets of the sets X and Y , corresponding
to the states of two canonical automata constructed on the basis of the given
nondeterministic �nite automaton K [5, Section 3.3]. We consider the matrix A
de�ning the relation # in assumption that the set X corresponds to the rows
of the matrix, and the set Y corresponds to its columns. The elements of the
matrix are logical values 0 (false) and 1 (true); the element A [x , y ] is equal to 1
if the relation x # y is satis�ed). By virtue of the properties of the relationship
#, the matrix A does not contain 0-valued or identical rows and columns.

A set of rows X0 and columns Y0 of the matrix A is called a grid if intersec-
tion of these rows and columns contains only 1-valued elements. The grid may
include non-adjacent rows and/or columns of the given matrix. A grid is called
a complete grid if it cannot be expanded by adding a new row or column.

If the set of complete grids includes all the 1-valued elements of the given
matrix, then we will call this set a cover of the matrix, and the number of
complete grids will be called a size of the cover. Our main problem is to �nd
the matrix cover of a minimum size. As shown in [5, Chapter 6], it is possible
(with certain additional conditions being satis�ed) to construct a minimum �nite
automaton equivalent to the given automaton K using the minimal cover of the
matrix A .

2. Description of the basic algorithm. The algorithm for solving the
main problem formulated in Section 1 is based on the branch and bound method
(BBM, see, for example, [3]). The implementation of the algorithm is made in
C# 6.0 for the .NET Framework.

A detailed description of the basic algorithm with an overview of the corre-
sponding C# classes was given in [6]. In this paper, the focus will be on additional
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heuristics (see Sections 3, 4), as well as the results of computational experiments
(see Sections 5, 6). However, we �rst brie�y describe the basic algorithm itself.

To generate complete grids, the MakeGridRnd method is used, in which some
row and column are selected and then a loop starts, and attempts are made to
expand the grid by adding a new row or column. The search for a suitable row
begins with a randomly selected row, after which all rows are visited cyclically
until a suitable one is found or all rows are analyzed. The matrix columns are
processed in the same manner.

The main part of the basic algorithm is the creation and processing of a
sequence of subtasks, each of which is one of the sets of the complete grids for
the given matrix (this set of grids, perhaps, does not form the matrix cover yet).
Along with the creation of a subtask collection named subtasks, a collection
of complete grids named grids is being created, whose elements are used to
generate new subtasks based on existing ones.

Two sets of complete grids are associated with each subtask: the �rst set
(named Yes) contains grids that are already included in this subtask, the second
set (named No) includes those that cannot be selected for this subtask and for all
descendants of it. The No set allows to avoid duplication of subtasks when they
are generated from existing ones.

New subtasks are created by splitting one of the existing subtasks into two
new ones. This action is the main step of the basic algorithm and it is imple-
mented as the MainStep method. Splitting is performed on the basis of the new
complete grid, which, therefore, plays the role of separating element of the BBM
algorithm. The grid is selected from the grids collection in such a way as to
include the maximum number of new 1-valued elements of the given matrix.

For the �rst of two new subtasks, this grid is included in its Yes set, and
for the second one, it is included in its No set. If the grids collection does not
include grids that can be used as a separating element, then a new grid is added
to this collection by means of the MakeGridRnd method described above.

For processing by the MainStep method, a subtask with a minimum weight is
always selected. The weight of subtask characterizes the chances of building the
next quasi-optimal solution on the basis of this subtask. During the implemen-
tation of the algorithm, an additional study was carried out to �nd the optimal
coe�cients of these three characteristics (see Section 5).

The second subtask of the new ones obtained in the MainStep method is
always returned to the subtasks collection, and the �rst one is checked as follows.
If this subtask is not yet a solution to the main problem, then it also returns to
the subtasks collection, if this subtask is a solution to the main problem, then
it is checked for optimality, and in the case when the subtask is optimal from
the previously analyzed subtasks, it is considered to be the next quasi-optimal
solution.

To launch an algorithm of quasi-optimal solution search, two methods were
used: StepRun(steps) and TimeRun(seconds). The StepRun method performs
the number of calls of the MainStep method speci�ed in the steps param-
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eter. The duration of the TimeRun method (and thus the number of calls of
the MainStep method) is determined by the seconds parameter as follows: the
TimeRun method terminates if no new quasi-optimal solution is found within the
speci�ed number of seconds.

3. Subtask cutting o�. A situation often arises when during building a
subtask the number of grids added to it (that is, the size of the Yes set) becomes
equal or larger than the size of the quasi-optimal solution already found. It
is obvious that in this situation it is not worth analyzing this subtask (and, in
particular, to generate new subtasks on its basis). Moreover, one can immediately
terminate the processing of a subtask extracted from the subtasks collection if
this subtask contains OptSize � 1 grids, where OptSize is the size of the quasi-
optimal solution already found. The subtask should also be cut o� if the size
of the Yes set becomes OptSize � 1 after adding the next grid to it, and the
subtask is not yet a solution to the main problem.

It should be emphasized that the cut-o� algorithm is better in terms of mem-
ory usage; this is due to the fact that early termination of subtasks prevents their
subsequent splitting into new subtasks and, ultimately, reduces the size of the
collection of subtasks that are awaiting processing. In addition, due to the early
cutting o�, it is possible to process a larger number of subtasks with the same
number of the MainStep method calls.

4. Additional randomization. The new subtasks are created by means of
a set of complete grids generated by the MakeGridRnd method using a random
number generator. If the other seed values of the random number generator will
be used then the another initial set of grids can be created, on the basis of which
a smaller quasi-optimal solution can be obtained.

The idea related to the additional randomization of the algorithm was used
for its following modi�cation: the BigStep method was added to the algorithm
that implements a new �big step� level, on which the main steps are performed
(by the MainStep method). The main feature of the big step is that a complete
clearing of both the subtasks collection and the grids collection of existing
complete grids is performed at the beginning of each big step.

The BigStep method consists of three stages. On the �rst of them, initial-
ization actions are performed: the grids and subtasks collections are cleared,
a random number generator is created with a new seed value (which is greater
by 1 than the previous one), and an initial empty subtask is created.

On the second stage, the �rst quasi-optimal solution is built on the basis of a
new set of complete grids. At this stage, no more than OptSize + 1 calls are made
to the MainStep method, where OptSize is the size of the best quasi-optimal
solution obtained in the previous big steps. This is due to the previously noted
fact that the �rst constructed pseudo-optimal solution can be further improved
only in small limits. If the �rst solution is not received for the speci�ed number
of the MainStep method calls, then its construction is interrupted and a new big
step begins.

If some solution is built at the second stage, then one can try to improve it
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by executing an additional number of the MainStep method calls. This is the
third stage of a big step.

The StepRun(steps) method for this �BigStep� modi�cation still terminates
as soon as the number of the MainStepmethod calls reaches the value of the steps
parameter (regardless of the big step stage, during which this happened). The
check of the completion of the TimeRunmethod is performed after the completion
of each big step.

5. Subtask weight calculation. As noted in Section 2, the choice of the
next subtask from the collection of available subtasks is based on its weight, which
characterizes the chances of building the next quasi-optimal solution on the basis
of this subtask (the lower the weight, the greater the chances). Therefore, the
optimal determination of the subtask weight is one of the conditions for the
e�ciency of the algorithm.

In the implemented algorithm, the weight of a subtask includes three charac-
teristics: (1) the number of true-valued elements of the given matrix, which are
not included in the grids of the subtask, (2) the size of the Yes set of the subtask,
(3) the size of the No set of the subtasks. Indeed, a small value of the character-
istic 1 indicates that the subtask can be quickly completed, a small value of the
characteristic 2 means that the size of the obtained solution would be small, and
a small value of the characteristic 3 means that there are more available grids to
complete the solution.

Numerical analysis shows that when calculating the weight, it is necessary to
take into account all three characteristics, and the best results are achieved in
the case when the characteristics 1 and 2 are taken with a multiplier equal to 1,
and the characteristic 3 is taken with a multiplier greater than 1. The results of
computational experiments given in this paper (see Section 6) were obtained for
coe�cients 1, 1, 10.

6. Results of computational experiments. Computational experiments
related to the basic algorithm and its modi�cations were performed for a set of
100 matrices of size 30 by 40, which were randomly generated by adding 35 initial
grids. Each of these matrices was processed using the following methods (see
Section 2): StepRun(500), StepRun(5000), and TimeRun(10). Table 1 shows
the average value of size of the best quasi-optimal solution for 100 processed
matrices and (in brackets) the minimum and maximum values. The last three
rows of the table show the results of three versions of the modi�cation of the
cut-o� algorithm with additional �BigStep� randomization (see Section 4), in
which N denotes the number of the MainStep method calls performed at the
third stage of the big step.

The calculations were carried out on a computer with an AMD A10-
6700 processor (3.70 GHz). The average time of the modi�cation BigStep,
N = 100, is 0.08 seconds for StepRun(500), 0.90 seconds for StepRun(5000),
and 15.02 seconds for TimeRun(10).

The results of computational experiments indicate that the implementation
of the algorithm described in Section 2 gives good near-optimal solutions if it is
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Table 1. The size of the best quasi-optimal solution: average (min�max).
StepRun(500) StepRun(5000) TimeRun(10)

The basic algorithm 54.63 (44�69) 51.49 (41�66) 49.09 (40�63)
The cut-o� algorithm 55.61 (44�71) 52.12 (43�66) 49.02 (39�60)
BigStep, N = 25 53.03 (43�67) 49.14 (40�60) 45.90 (38�56)
BigStep, N = 100 53.00 (43�67) 48.27 (39�59) 45.06 (37�54)
BigStep, N = 500 � 47.69 (39�59) 44.57 (36�54)
BigStep, N = 1000 � 47.31 (39�60) 44.23 (36�54)

provided with additional randomization (due to the �big step� level) and cutting
o� subtasks at the early stages of their generation.
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FOURIER ANALYSIS OF MULTIGRID METHOD

WITH HSS METHODS AS SMOOTHERS1

Andreeva E.M., Muratova G.V.

Southern Federal University, Rostov-on-Don, Russia

The local Fourier analysis of multigrid method with a HSS smoothers is
considered.The skew-Hermitian splitting iteration methods is e�ective to solve
non-Hermitian positive de�nite linear systems. HSS methods have been used
as the smoothers of the multigrid method for the solution of linear algebraic
equation systems with a strongly nonsymmetric matrix obtained after di�erence
approximation of the convection-di�usion equation with dominant convection.

I Introduction

Multigrid methods are proving themselves as very successful tools for the
solution of the algebraic equation systems associated with discretization of
boundary-value problems. MGM is not a �xed multigrid algorithm. There is
rather a multigrid technique �xing only the framework of the algorithm. The ef-
�ciency of the multigrid algorithm depends on the adjustment of its components
to the problem in question [1, 2]. Important components of multigrid method are
a smoothing procedure or basic iterative method and the coarse-grid correction.

For nonelliptic and nonsymmetrical problems (or there combinations) a strict
mathematical theory, generally speaking, is not available, and the correct choice
of multigrid components is far from standard approach. In such cases, Fourier
analysis is the main tool for quantitative estimates of MGM convergence. Accord-
ing to the basic idea of Fourier analysis the error (or residual) can be decomposed
into a sum of some periodic functions called Fourier components.

In this paper we consider a local Fourier analysis (LFA). In LFA the basic
discrete operators with constant coe�cients are considered to be formally ex-
tended to in�nite grid. Consequently, the boundary conditions are neglected. So,
according to general assumptions, any discrete operator with, nonlinear, non-
regular coe�cients can be locally linearized and locally replaced by (freezing
coe�cients) by the operator with constant coe�cients. This approach demon-
strates the wide range of LFA applicability and its local nature.

The simplest version of the local Fourier analysis is smoothing analysis. In
this case we research the procedure of smoothing. The e�ect of the coarse-grid
correction is neglected or in other words we consider the "ideal" operator of
coarse-grid correction.

For detail understanding the concept and structure of the multigrid method
we should research two-grid LFA. This analysis gives more information than the

1This research was supported by the Russian Foundation for Basic Research under Grants N 19-51-53013
GFEN-a
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analysis of smoothing. In this paper a Fourier analysis of multigrid method with a
skew-Hermitian splitting iteration methods as smoothers is considered. We used
the technique of Fourier analysis presented in [3].

The one-grid local Fourier analysis (or smoothing analysis) and the two-grid
Fourier analysis (LFA) were used for the suggested MGM modi�cation.

II Model Problem

We consider the model problem of the steady-state convection-di�usion pro-
cess with dominant convection in domain Ω = [0, 1]× [0, 1] :

1
2

(
2∑

k=1

vk(x)
∂u(x)
∂xk

+ ∂(vk(x)u(x))
∂xk

)
− 1

Pe

2∑
k=1

∂
∂xk

(
∂u(x)
∂xk

)
= f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1)

where x = (x1, x2) . Equation (1) has a small parameter at the highest derivative.

We consider incompressible environments so divV⃗ =
2∑

k=1

∂vk
∂xk

= 0 .

FDM with central di�erences was used for discretization of (1). We obtain
a non-Hermitian and positive de�nite matrix, the HSS iteration method was
proposed to e�ectively solve this class of linear systems [4].

Lhuh = fh, (2)

considered on a grid

Gh = {(x1, x2) : xk = ih, h = 1/n, n ∈ N, k = 1, 2, i ∈ Z} ,

uh and fh are grid functions on Gh , and Lh - linear operator

Lh : E(Gh) → E(Gh),

where E(Gh) - linear space of grid functions de�ned on Gh .
The basic strategies in the construction of the HSS iteration method is matrix

splitting and stationary iteration. Any non-Hermitian matrix L can be decom-
posed into its Hermitian and skew-Hermitian parts as

L = L0 + L1,

where L0 =
1

2
(L+ L∗) = L∗

0 > 0 and L1 =
1

2
(L− L∗) = −L∗

1.

Present the matrix L1 as:

L1 = Kl +Ku and Ku = −K∗
l ,
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where Kl and Ku � respectively, lower and upper triangular parts of skew-
symmetric matrix L1 .

To solve the system (2) we suggest using MGM, where the skew-Hermitian
splitting iteration methods is used as the smoothers of MGM [5].

Consider the structure of HSS methods. Any iterative method can be written
in canonical form:

B
un+1 − un

τ
+ Lun = f, n = 0, 1, 2, ... (3)

The choice of operator B de�nes the class of skew-Hermitian splitting iteration
methods. For a standard HSS methods operator B is constructed as follows:

B = E + 2τKl or B = E + 2τKu, (4)

for TIM1:
B = αE + 2Kl or B = αE + 2Ku, (5)

for TIM2:
B = Bc + 2Kl or B = Bc + 2Ku, (6)

where τ � scalar iteration parameter, α = ∥M∥ , elements of Bc = {bcii}
n
0 =

n∑
j=0

|mij|, i = 0, ..., n, where M = {mij}n0 � symmetric matrix, which is con-

structed by M = L0 +Ku −Kl , n � the dimension of the matrix L .
Any method from this class behaviors in the same way as Gauss-Seidel one: it

quickly reduces the high-, but not low- frequency components of error frequencies.
This is the necessary property of the smoother of MGM, that's why we have used
these methods as the smoothers [6].

The convergence of proposed MGM modi�cations with skew-Hermitian split-
ting methods as smoothers is researched [7].

III The basic principles of Fourier analysis

The basic idea of the Fourier analysis is to present the solution error or
residual as the sum of some periodic functions named Fourier components or
harmonics. Fourier analysis gives us a possibility to estimate in�uence of MGM
components on the every Fourier-decomposition component.

In this paper the one-grid local Fourier analysis or the smoothing analysis
and the two-grid Fourier analysis (LFA) were used for the research of MGM
modi�cation with HSS-smoothers [3]. The one-grid analysis allows to estimate
the e�ciency of the smoothing procedure. The asymptotic convergence factors
are considered for the convergence estimation of the multigrid method.

LFA goal is to determine the smoothing coe�cients and two-grid convergence
coe�cients. Denote these coe�cients as µloc(Sh), ρloc(M

2h
h ), where M 2h

h =
Sν2h K

2h
h S

ν1
h � transition operator of two-grid method, K2h

h = Ih − P h
2hL

−1
2hR

2h
h Lh
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� operator of the coarse-grid correction, Sh � transition operator of smoothing
method, P h

2h � prolongation operator, R2h
h Lh � restriction operator.

We consider �ne grid Gh and coarse grid G2h , obtained from Gh standard
coarsening (ie, increasing the mesh size by half for all directions) G2h = {x =
(x1, x2), xk = i2h, k = 1, 2, i ∈ Z} . We also assume that the operators Lh , R

2h
h ,

L2h and P 2h
h are represented by patterns for Gh and G2h .

The smoothing factors have been received for an estimation of smoothing
property of the MGM -modi�cation with triangular skew-symmetric smoothers.
The asymptotic convergence factors are numerically received for the convergence
estimation of the two-grid method with HSS smoothers. Fourier analysis results
allow to compare MGM-modi�cations with di�erent smoothers such as Gauss-
Seidel method, Jacobi method and suggested HSS-smoothers [7].

IV Fourier smoothing analysis

The results of Fourier smoothing analysis, for MGM with di�erent smoothers:
Gauss-Seidel method, Jacobi, HSS iteration methods with large Peclet numbers
and the coe�cients of the convective term v1 = 1 , v2 = 1 are presented in
table 1.

Table 1. The smoothing factors µloc .
Pe TIM1− 2 TIM ω − Jac GS − LEX
1000 0.8875 0.8762 0.9983 0.9999
10000 0.9876 0.9873 0.9999 0.9999
100000 0.9987 0.9987 0.9999 0.9999

V Two-grid analysis

We perform Fourier two-grid analysis, so that the e�ect of the coarse grid
correction and the transfer operators is taken into account.

We calculate ρloc(M
2h
h ), using the technique from [3].

The results of Fourier two-grid analysis with various smoothers for large
Peclet numbers and the coe�cients of the convective terms of the v1 = 1,
v2 = 1 are presented in Table 2. The table 2 contains of the rate of asymptotic
convergence two-grid method, ρloc for various numbers of smoothing iterations
of Ns . Symbol − means that the value of the coe�cient ρloc ≫ 1 .

VI Conclusions

The numerical results show that the smoothing factor µ for Gauss-Seidel
and Jacobi methods is close to unity. For skew-Hermitian splitting methods
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Table 2. The asymptotic convergence factors ρloc .
Pe Ns TIM1− 2 TIM ω − Jac GS − LEX
1 000 5 0.6782 0.5692 2.6591 −

10 0.3673 0.3240 2.6241 −
15 0.2035 0.1844 2.5895 −

10 000 5 0.9787 0.9434 3.7215 −
10 0.9152 0.8901 3.7211 −
15 0.8582 0.8397 3.7207 −

100 000 5 > 1 0.9713 3.762821 3.7383
10 > 1 0.9435 3.762817 3.7139
15 0.9970 0.9164 3.762813 3.6897

smoothing coe�cient factor µ is less than unity for all these cases. This fact
demonstrates the e�ciency of HSS methods as MGM smoothers for convection-
di�usion equation with dominant convection.

Two-grid Fourier analysis allow us to de�ne the optimal number of smoothing
iterations for e�cient solving problems with large Peclet numbers.

According to the Fourier analysis results we can conclude that the sug-
gested skew symmetric methods are e�ective MGM smoothers for solving the
convection-di�usion problem with dominant convection.
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∗∗ Southern Scienti�c Centre of The Russian Academy of Sciences,
Rostov-on-Don, Russia

Convection-di�usion equations are widely used in modeling a diverse range
of problems. These mathematical models consist in a partial di�erential equation
or system with initial and boundary conditions, which depends on the phenom-
ena being studied. In the modeling, boundary conditions may be neglected and
unnecessarily simpli�ed, or even is misunderstood, causing a model does not re-
�ect the reality adequately, making qualitative and/or quantitative analysis more
di�cult.

Numerical simulations, by means of the Finite Di�erence Method, are used
in order to exemplify the boundary conditions' impact.

Considering an initial-boundary value problem in u = u(x, t), x =
x1, ..., xn) ∈ Rn , we have three di�erent boundary condition types: Dirichlet,
Neumann and Robin, each of these being separated in homogeneous, if it does
not involve values beyond u , or non homogeneous, if it does.

Let u is the solution of the boundary value problem, f , g , and h are arbitrary
functions and a and b arbitrary parameters, which may or may not depend
on (x, t) . A Dirichlet, or �rst kind, condition speci�es the value of u on the
boundary, either being zero or any function f that may depend or not on other
variables. A Neumann, or second kind, condition, on the other hand, speci�es the
derivative of the solution u along the boundary, more precisely the directional
derivatives in the direction of the external unitary normal vector n . A Robin, or
third kind, condition involves both the value of u and its derivative, specifying
an equation that must be valid along the boundary.

We consider only one spatial variable (x) . All analyzes are similar for two,
three or even n-dimensional tasks.

We introduce the steady-state convection-di�usion equation

− d

dx
(µ

d

dx
) + v

d

dx
+ βs = f, for x ∈ (0, l), (1)

1Supported by Ministry of Science and Higher Education of the Russian Federation (basic part, project
N1.5169.2017/8.9) and by the Russian Foundation for Basic Research: grant 18-05-80010 "Dangerous phenom-
ena"
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with Robin's boundary conditions

ξ(0)
ds

dx
+ χ(0)s = r(0), (2)

ξ(l)
ds

dx
+ χ(l)s = r(l), (3)

where s(x) is the unknown function, s(x), ξ(x), χ(x) are given su�ciently
smooth functions. The term u(x) can represent vorticity, temperature, mass
concentration, or other physical quantities that are transferred inside the physi-
cal system by convection and di�usion. In the following, v = v(x) stands for the
convection velocity while µ = µ(x) > 0 represents the di�usion coe�cient.

The interior spatial points. To develop the �nite di�erence scheme, the inter-
ested domain is discretized into grid points for numerical calculation. These grid
points are labeled sequentially in space as x0, x1, ..., xN . For a uniform grid with
space step size h , the discrete grid points within a given spatial domain [0, l] are
calculated as:

xi = ih, i = 0, 1, ..., N, where h = l/N.

The quantity s(xi) represents the exact solution at (xi) . The term si is
used to represents the numerical solution at (xi) . The discretization in space is
required to obtain a system of equations for the nodal values of the approximate
solution. Of course, the number of equations should be the same as the number
of unknowns.

For example, the discretized CDR equation (1) for the nodal value si can be
written as

LDhsh + LChsh + βsh = fh, (4)

where sh = {si} denotes the mass matrix, LCh = {LCij} is the discrete transport
operator, LDh = {LDij} is the discrete di�usion operator, and fh = {fi} is the
vector of discretized source or sink terms.

As a rule, the matrices LC , and LD are sparse. That is, most of their en-
tries are equal to zero and do not need to be stored. The sparsity pattern of
the discrete operators depends on the type of the underlying mesh (structured
or unstructured) and on the numbering of nodes. Ideally, the discrete di�usion
operator LD should also be symmetric, as required by the properties of its con-
tinuous counterpart . The discrete convection operator LC is nonsymmetric since
the �ow direction must be taken into account. For example, this matrix can be
skew-symmetric (C = −CT ) or upper/lower triangular.

The �nite di�erence method (FDM) is the oldest among the discretization
techniques for partial di�erential equations. Many modern numerical schemes
for transport phenomena trace their origins to �nite di�erence approximations
developed in the late 1950s through early 1980s.

Taylor series expansions or polynomial �tting techniques are used to approx-
imate all space derivatives in terms of si and/or solution values at a number
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of neighboring nodes. Higher order approximations to the �rst derivative can
be obtained by using more Taylor series, more terms in the Taylor series, and
appropriately weighting the various expansions in a sum.

f(x+ h) = f(x) + hf
′
(x) + h2

f
′′
(x)

2!
+ h3

f
′′′
(x)

3!
+ h4

f (4)(x)

4!
+ h5

f (5)(x)

5!
+ ... (5)

f(x− h) = f(x)− hf
′
(x) + h2

f
′′
(x)

2!
− h3

f
′′′
(x)

3!
+ h4

f (4)(x)

4!
− h5

f (5)(x)

5!
+ ... (6)

f(x+ 2h) = f(x) + 2hf
′
(x) + 4h2

f
′′
(x)

2!
+ 8h3

f
′′′
(x)

3!
+ 16h4

f (4)(x)

4!
+ 32h5

f (5)(x)

5!
+ ... (7)

f(x− 2h) = f(x)− 2hf
′
(x) + 4h2

f
′′
(x)

2!
− 8h3

f
′′′
(x)

3!
+ 16h4

f (4)(x)

4!
− 32h5

f (5)(x)

5!
+ ... (8)

Forward di�erence approximation with second order error (7)− 4 ∗ (5)

f
′
(x) =

−f(x+ 2h) + 4f(x+ h)− 3f(x)

2h
.

Backward di�erence approximation with second order error (8)− 4 ∗ (6)

f
′
(x) =

f(x− 2h)− 4f(x− h) + 3f(x)

2h

and centered di�erence approximations are (5)+ (6)+ (7)+ (8)

f
′′
(x) =

f(x− 2h) + f(x− h)− 4f(x) + f(x+ h) + f(x+ 2h)

5h2
.

The discretized CDR equation (1) for the nodal value si(h = hx) can be written
as

−ai−2si−2 + ai−1si−1 − 4aisi + ai+1si+1 + ai+2si+2

5h2x
+

+v+
3si − 4si−1 + si−2

2hx
+ v−

−3si + 4si+1 − si+2

2hx
+ βsi = fi, (9)

where v+ = 1
2(ui+|ui|), v− = 1

2(vi−|vi|) . Robin's boundary conditions (2)-(3):

−3ξ0 + 2χ0hx
2hx

s0 +
2ξ0
hx
s1 −

ξ0
2hx

s2 = r0, (10)

3ξN + 2χNhx
2hx

sN +
2ξN
hx

sN−1 +
ξN
2hx

sN−2 = rN . (11)

Five-point scheme (9)

BiSi−2 +BCiSi−1 +BDiSi + EiSi+1 + FSi+2 = fi. (12)

In scheme (12) with i = 1 there is a node −1 and with i = N − 1 there
is a node N + 1 . To exclude �ctitious nodes, we ground the �rst derivative
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Si−2
v+

2hx
− ai−2

5h2x
Bi ≤ 0(hx ≤ 2ai−2

5v+ )

Si−1
−4v+

2hx
− ai−1

5h2x
Ci ≤ 0

Si
3v+

2hx
− 3v−

2hx
+ 4ai−2

5h2x
Di ≥ 0

Si+1
4v−

2hx
− ai+1

5h2x
Ei ≤ 0

Si+2
v+

2hx
− ai−2

5h2x
Bi ≤ 0(hx ≤ 2ai+2

−5v− )

in the boundary conditions by central di�erences. The compact notation of the
di�erential analogue of the third kind of boundary condition (2)-(3) will look
like:

gΘš+ pΘŝ+ qΘs̃ = rΘ, (13)

where š, ŝ, s̃ are the concentrations of a substance, respectively, in some bound-
ary and two corresponding border nodes, the symbol Θ denotes a �ve-point
template node. Express in (13) the boundary nodes through the border and
substitute them in (12).

Contributions of the boundary conditions entered the coe�cients of the di�er-
ence scheme pattern, violating the positivity of the elements of the main diagonal
and the negativeness of the side diagonals, and hence the diagonal dominance
of the SLAE matrix (12). This e�ect is not observed in the case of boundary
conditions of the �rst kind.
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POSITIVE DEFINITENESS AND M-MATRIX

CONDITIONS OF A CONVECTION-DIFFUSION

DIFFERENCE OPERATOR WITH BOUNDARY

CONDITIONS OF THE THIRD KIND1

Chikina L.G., Shabas I.N., Martynova T.S.

Southern Federal University, Rostov-on-Don, Russia

I Introduction

A 3-dimensional stationary convection-di�usion equation is considered. Finite
di�erences are used to approximate the �rst derivatives.

The properties of the di�erence convection-di�usion operator depend on the
fact, what di�erences are � central or upwind � the convective terms are ap-
proximated. Thus, in the case of boundary conditions of the I kind, the central-
di�erence approximation of the convective terms gives a positive de�nite di�er-
ence operator if the symmetric form for the convective terms is chosen [1, 2],
and the upwind approximation of the convective terms provides the M-matrix
property, if the non-divergent form is chosen [3, 4]. But the presence of the III
kind boundary conditions can violate these properties.

We investigate the in�uence of the boundary conditions of the III kind on
the properties of the convection-di�usion di�erence operator. We need su�cient
conditions for the positive de�niteness and M-matrix property, since the pres-
ence of these properties in matrices arising after approximation of the problem
signi�cantly a�ects the convergence of most iterative methods.

II Formulation of the problem

A 3-dimensional stationary convection-di�usion equation in the domain Ω̄ ,
Ω̄ = Ω ∪ Γ that describes the substance transfer process in an incompressible
medium is considered

−
3∑
i=1

∂

∂xi

(
νi
∂S

∂xi

)
+ γ

3∑
i=1

∂

∂xi
(viS) + (1− γ)

3∑
i=1

vi
∂S

∂xi
+ βS = f, (1)

divv̄ = 0, (2)

1Supported by Ministry of Science and Higher Education of the Russian Federation (basic part, project
N1.5169.2017/8.9) and RFBR, grant N19-51-53013, GFENa



Chikina L.G.. . . POSITIVE DEFINITENESS AND M-MATRIX. . . 117

where S = S(x) is the substance concentration; {νi} are coe�cients of turbulent
di�usion; βS is the source term of the equation; β = β(x) ≥ 0 ; v̄ = {v1, v2, v3}
is the velocity vector; γ is the parameter.

The convective terms in (1) can be written in the non-divergent form (γ = 0)
and in the divergent form (γ = 1). The condition (2) allows to write them in
the equivalent symmetric form (γ = 1/2) [1, 2].

The system (1)-(2) is complemented by boundary conditions

µ(x)
∂S(x)

∂n̄
+ χ(x)S(x) = r(x), x ∈ Γ, (3)

where µ(x), χ(x), r(x) are piecewise smooth functions. Depending on the equal-
ity of the zero functions µ(x), χ(x), r(x) it is possible setting conditions of I, II
and III kind.

III Finite di�erence approximation

The uniform grid Ω̄h = Ωh ∪ Γh with vector parameter h = (hx, hy, hz) has
been introduced in the domain Ω̄ . Here Ωh is the set of internal grid nodes, Γh
is the set of the boundary nodes.

When the system is approximated, it is necessary to preserve the properties
of the original di�erential operators. Therefore, when approximating the equa-
tions (1), the convective terms of which are written in the symmetric form, a
central-di�erence scheme is chosen, and for non-divergent form of the convective
terms, the upwind scheme is chosen.

Figure 1. 7-point stencil

Consider, for example, the di�erence analogue on a 7-point stencil on the axis
WE (Fig.1) boundary conditions of the III kind. It looks like this:

−µ
W

s1jk − s0jk
hx

+ χ
W
s0jk = r

W
, µ

E

sNjk − sN−1jk

hx
+ χ

E
sNjk = r

E
,
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or after the transformation

(µ
W
+ χ

W
hx)

hx
s0jk −

µ
W

hx
s1jk = r

W
,
(µ

E
+ χ

E
hx)

hx
sNjk −

µ
E

hx
sN−1jk = r

E
.

Thus, in the general, the approximation of the III kind boundary condition
will have the form:

g
Θ
š+ p

Θ
ŝ = r

Θ
,

where š , ŝ are the concentration values of the substance, respectively, at some
boundary and near-boundary node. For the coe�cients g

Θ
, p

Θ
, r

Θ
is true

g
Θ
=

(µ
Θ
+ χ

Θ
hα)

hα
, p

Θ
= −µΘ

hα
, r

Θ
= r

Θ
,

where Θ is replaced by symbols W,S,B, T,N,E , if the boundary of the region
falls on the node (i− 1), (j − 1), (k − 1), (k + 1), (j + 1), (i+ 1) of the 7-points
stencil, respectively, α = x, y, z .

Thus, the di�erence analogue is put in correspondence to the problem (1)-(3):

Lhsh = fh(x), x ∈ Ωh, (4)

g
Θ
š+ p

Θ
ŝ = r

Θ
, x ∈ Γh, (5)

where
Lh = LDh + LCh + Lβh,

LDh is the di�erence di�usion transfer operator, LCh is the di�erence convective
transfer operator, Lβh is the di�erence analog of the interaction function of
substances.

Eliminating the solution at the boundary points of the domain Ω̄h we obtain

L̄hsh = f̄h. (6)

Here L̄h is the operator Lh, taking into account the boundary conditions.

IV Positive de�niteness of the di�erence operator

For the di�erence operators L̄ch obtained as a result of approximation of the
system (1)-(2) with the central-di�erence approximation of the convective terms
and γ = 1/2 , under the presence of boundary conditions of the III kind, we
prove a su�cient condition for the positive de�niteness of the di�erence operator
under consideration.
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The following di�erence scheme written on the 7-point stencil corresponds to
the operator L̄ch in the grid domain:

W c
ijksi−1jk + Scijksij−1k +Bc

ijksijk−1 +Dc
ijksijk+

+T cijksijk+1 +N c
ijksij+1k + Ec

ijksi+1jk = fijk. (7)

In the above notation we have

Θc
ijk = Θc

Dijk +Θc
Cijk,

where the di�usion component Θc
Dijk corresponds to the operator L̄cDh , and

convective component Θc
Cijk corresponds to the operator LcCh . Note that, the

contributions of boundary conditions of the III kind enter the diagonal of the
operator L̄cDh and the operator LcCh save the skew-symmetry.

Theorem IV.1 Let in the convection-di�usion equation (1)-(2), written in the
symmetric form (γ = 1/2), with the boundary conditions of the III kind and
β = β(x, y, z, t) ≥ 0 , convective terms are approximated by the central di�er-
ences. In order to the operator L̄ch be a di�erence analogue stationary problem of
convection-di�usion was a positive de�nite matrix, it su�ces to satisfy inequal-
ities

βijk −
∑

Θ=W,S,B,T,N,E

δ
Θ

((
1 +

p
Θ

g
Θ

)
Θc
Dijk +

p
Θ

g
Θ

Θc
Cijk

)
≥ 0, (8)

i = 1, ..., Nx − 1, j = 1, ..., Ny − 1, k = 1, ..., Nz − 1,

where at least one of the inequalities (8) is strict.
Here Θc

Dijk , Θc
Cijk are coe�cients of the di�erence scheme (7); δ

Θ
is

the Kronecker symbol for the corresponding boundary; g
Θ
, p

Θ
are coe�cients

from (5), g
Θ
̸= 0 .

V M-matrix property of the di�erence operator

For the di�erence operators L̄ph obtained as a result of the approximation
of the equations (1)-(2) with upwind approximation of the convective terms in
convection-di�usion equation for γ = 0 in the presence of boundary conditions
of the III kind, a su�cient condition for the M-matrix of the di�erence operator
is proved.

Theorem V.1 Let in the convection-di�usion equation (1)-(2), written in a
non-divergent form (γ = 0), with boundary conditions of the III-kind β =
β(x, y, z, t) ≥ 0 convective terms are approximated by upwind di�erences. Then
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in order to the operator L̄ph (a di�erence analogue of the stationary convection-
di�usion problem) is a nonsingular M-matrix, it su�ces to satisfy inequalities

βijk −
∑

Θ=W,S,B,T,N,E

δΘ

(
1 +

pΘ
gΘ

)
Θp
ijk ≥ 0, (9)

i = 1, ..., Nx − 1, j = 1, ..., Ny − 1, k = 1, ..., Nz − 1,

where at least one of the inequalities (9) is strong.
Here Θp

ijk are elements of the matrix Ap of the operator L̄ph in the near-
boundary node for the corresponding boundary; δ

Θ
is the Kronecker symbol for

the corresponding boundary; g
Θ
, p

Θ
are coe�cients from the (5), g

Θ
̸= 0 .

VI Conclusion

The presence of the properties of positive de�niteness and M-matrixity in
the matrix is very important when solving systems of linear algebraic equations
by iterative methods. The results presented above are necessary when choosing
an iterative method for solving a system of linear equations arising from the
approximation of convection-di�usion problems.
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A REGILARIZATION METHOD ON THE BASE

AUGMENTED SYSTEM FOR IDENTIFICATION

PROBLEM FOR INTENSITY OF ATMOSPHERIC

POLLUTION SOURCE

Chubatov A.A.∗ , Karmazin V.N.∗∗

∗ Armavir State Pedagogical University, Armavir, Russia
∗∗ Kuban State University, Krasnodar, Russia

In present study a special case of the identi�cation problem for intensity
of the source is studied in application to the modelling of the transport of air
pollution [1]. The considered approach uses as input parameters the set of known
sensitivity coe�cients and corresponding pollution measured in given locations
M̄j = (xj, yj, zj) : cji = q(M̄j, ti) , j = 1, . . . , J , i = 1, . . . , N , where J is the
number of sensors, N is the number of time steps. Then, the source identi�cation
problem is represented by the following approximate matrix equation

Ah · g = fδ, (1)

where Ah ∈ R(N ·J)×N , g ∈ RN , fδ ∈ RN ·J , g is unknown intensity of the source,
Ah , A are the approximate and the exact matrices of sensitivity coe�cients [1]
and fδ , f are the approximate and the exact measured data written in terms
of sensitivity, h and δ are the maximal allowable errors in approximations of A
and f . Approximate matrix and approximate measured data satisfy following
inequalities ||Ah − A|| ≤ h , ||fδ − f || ≤ δ , where h and δ are unknown.

In the following the optimization problem for the residual of (1)
µ = inf ∥f − A · g∥ = ∥f − A · g∗∥ is considered. However, the presence of er-
rors h and δ in (1) overdetermines (µ > 0) the matrix equation of this ill-posed
problem. It is more convenient to solve (1) with respect to its pseudo-solution
determined as

g := g∗ = argmin ∥fδ − Ah · g∥ = A+
h · fδ,

where A+ = (AT · A)−1 · AT .
The equation (1) is transformed to the form

Ah · g + r = fδ,

where r = fδ − Ah · g is the residual and both values g and r are unknown.
Applying the least squares and considering that

AT · r = 0

the following augmented system is obtained

Rω · x = d,

Rω =

(
ω · E Ah

AT
h O

)
, x =

(
ω−1 · r̂
ĝ

)
, d =

(
fδ
0

)
,

(2)
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where ω is the scaling factor, r̂ , ĝ are the approximations of residual and in-
tensity, E ∈ R(N ·J)×(N ·J) , O ∈ RN×N are the identity and the zero matrices,
respectively.

The matrix equation (2) is solved by applying the standard Tikhonov regu-
larization [2] and by applying the method of an imaginary shift of the spectrum
(using RT

ω = Rω ) proposed by Faddeeva [3]. For the choice of the regularization
parameter α two approaches are used here: a priori and a posteriori.

For numerical computation of the solution of ill-posed problem (2) the sin-
gular value decomposition (SVD) [4] is applied

A = U · S · V T ,

where A, S ∈ R(N ·J)×N , U ∈ R(N ·J)×(N ·J) , V ∈ RN×N , U ,V are the unitary
matrices, S = diag (σ1, σ2, . . . , σN) is the diagonal matrix with singular values
σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0 on its diagonal.

Then the augmented system (2) is written as follows

Rω · x = d,

Rω =

(
ω · E Sh
STh O

)
, x =

(
ω−1 · ρ
w

)
, d =

(
b
0

)
,

(3)

where w = V T · ĝ , ρ = UT · r̂ , b = UT · fδ . This system of equations can be
solved e�ciently since the matrix Rω is sparse (tridiagonal matrix).

We use the fact proved by Morozov V.A. and Gilyazov S.F. [2] that
∥g(α)− g∗∥ = O(h+ δ) for µ = 0 and α = h . The a priori choice of α for
which αapriory = h guarantees the asymptotic convergence to the exact solution
g(α) →

h,δ→0
g∗ = ḡ , where ḡ is the exact solution.

In the case of large �xed values of h and δ , parameter α is determined
a posteriori using the generalized discrepancy principle as the root of equation
corresponding to (3)

φω(α)− ψω(α) = 0,

where φω(α) =
√

∥b− Sh · w(α)− ρ∥2 +
∥∥ω−1 · STh · ρ

∥∥2 and

ψω(α) = δ +
√
2 · h ·

√
∥w(α)∥2 + ∥ω−1 · ρ∥2 .

The Newton method provides the fast convergence solving this root-search
problem with the following initial approximation α0 = 10 · h .

The quality of the choice of the parameter α is controlled using the value

ηeff(α) = ∥g(α)− ḡ∥ / ∥g(αbest)− ḡ∥ ,

where αbest is chosen as ∥g(αbest)− ḡ∥ = min
α

∥g(α)− ḡ∥ .
The time-e�cient algorithm developed and used in this work provides a stable

numerical solution of the considered source identi�cation problem. The solution
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obtained by applying the regularization approach with singular decomposition
(SVD) is numerically approved by authors considering numerical experiments.
Two considered approaches for the choice of regularization parameter α are found
to have following e�ciency control parameters: ηeff(αapriory) < 2 for the a priori
choice of α , ηeff(αapost) < 1.3 for the a posteriori choice of α .
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PHYSICAL AND MATHEMATCAL

MULTIFUNCTIONAL MODELS, SPECIALIZED

NUMERICAL ALGORITHMS AND SOFTWARE FOR

MODELING OF PROPAGATION OF

CONTAMINATION, TAKING INTO ACCOUNT

THREE-DIMENSIONAL URBAN OR INDUSTRIAL

BUILDING

Dzama D.V., Sorokovikova O.S., Asfandiyarov D.G.

Nuclear Safety Institute, Russian Academy of Science, Moscow,
Russia

Industrial objects with using nuclear energy are potentially dangerous due to
probability of arising emergency situ, accompanying atmospheric release and fur-
ther propagation of radionuclides on the territory of industrial object and further.
So, problem of safety justi�cation arises. At safety justi�cation needed forecast of
atmospheric propagation of radionuclides. Today several mathematical models of
atmospheric dispersion of contamination intended for di�erent scales of distances
exist: simples models, such as Gaussian and Lagrangian, narrowly specialized ro-
bust models, based on numerical solving of Reynolds averaged Navier-Stokes
equations with some simpli�cations and special boundary conditions near solid
surfaces of ground and buildings (so-called misroscale metheorological models,
MMM), and engineer models of general use, which require compression of compu-
tational grid near solid surfaces. In simplest models wind �eld is uniform in space
or vary in vertical direction. However, buildings with signi�cant sizes in�uence on
three-dimensional wind �eld formation. Scale of plume of contamination in the
vicinity of the source comparable with sizes of buildings. Di�erent aerodynamical
e�ects may signi�cantly in�uence on the propagation of contamination � local
magnitude and direction of the wind may signi�cantly di�er from macroscale
averaged values. Thus, application of simplest models in the local scale of dis-
tances (in scale of industrial or city buildings) may be unacceptable. In turn,
application of engineer model is complicated by need of condensation of compu-
tational grid near solid surfaces, in case of complex building. So, in NSI RAS
has been developing narrowly specialized multi-functional model (further RANS
model) and robust computer code, which using Cartesian rectangular computa-
tional grid. Distinctive feature of the model � is using uniform grid, condensation
of space integration step do not applied. In this paper presented some of main
veri�cation results of three-dimensional RANS computer code, developing in NSI
RAS. Description of the model and some of the veri�cation results is given in
papers [1, 2, 3, 4].

Test calculations with hypothetical building show, that concentration �eld are
sensitive to such parameters as geometry of the building, source location, and
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wind direction. Comparison of RANS with Gaussian (Smith-Hosker parametriza-
tion) model has been made. Depending on source location and wind direction,
values of concentration may di�er on three orders of magnitude in the vicinity of
the source. But Gaussian model do not applicable in such distances (<100 m).
Regarding calculation results, concentration trend, calculated using RANS may
signi�cantly di�ers from trend, calculated using Gaussian model. Along the line,
where application of Gaussian model gives max values of near-ground concentra-
tion, application of RANS model gives small values (on two orders of magnitude
lower). Vice versa, along the line, where application of RANS model gives max
values, application of Gaussian model gives values on several orders of magni-
tude lower. The largest concentrations, obtained by RANS model several times
exceed max values, obtained using Gaussian model. Max values line, obtained
with RANS model very di�ers from max values line, obtained with Gaussian
model.

Validation of hydrodynamic and advection-di�usion modules has been car-
ried out using the set of full-scale and laboratory experiments. Veri�cation of
advection-di�usion module has been carried out using analytical solution of
advection-di�usion equation. Veri�cation of deposition module has been carried
out using quasi-analytical solution (allowing to get solution with arbitrary accu-
racy). For veri�cation of advection-di�usion and deposition modules, task with
homogeneous wind and di�usion �elds and boundary condition of full re�ec-
tion/absorption on the ground has been used. Veri�cation of doses calculation
module has been carried out using quasi-analytical solutions too.

Developed three-dimensional computer code, to which is dedicated this pa-
per, is multi-functional software. It able to calculate: three-dimensional wind and
turbulent viscosity (di�usion) coe�cient �elds, three-dimensional �eld of volume
concentration and deposition of contamination on the ground and building, doses
of external exposure from plume (three-dimensional cloud), contaminated sur-
face, and inhalation.

In current paper some of main results of veri�cation and validation of devel-
oped RANS three-dimensional model and computer code are presented.

For veri�cation of the module of concentration propagation calculation, based
on CABARET scheme, has been considered tasks with homogeneous �elds of
wind and turbulent di�usion coe�cients, which allow analytical solution. Con-
vergence of numerical to exact analytical solution has been shown while decreas-
ing space/time integration steps. First task is propagation with no advection
and non-zero turbulent di�usion, and with full re�ection of contamination from
ground (∂C/∂z|z=0 = 0) , where C � is volume concentration of contamination.
Second task � is propagation of initial narrow (4 cells) Gaussian pro�le with
�ow without turbulent di�usion. Third task � is task with non-zero advection
and turbulent di�usion. The task was solved as with boundary condition of full
re�ection, as boundary condition of full absorption (C|z=0 = 0).

For validation of RANS model international open database CEDVAL [5],
especially developed and recommended by European scienti�c community for
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validation MMM, has been used. Experiments have been carried out in aero-
dynamic tube with reduced copies of real objects. In�ow wind was created in
accordance with atmospheric boundary layer, but in smaller scale of heights.
Two sets of experiments and experiment with large amount of obstacles (COST-
MUST), are accessible in CEDVAL database. First set of experiments called A1,
second � B1. A1 set consists from experiments with one obstacle. B1 set consists
from experiments with several obstacles. Within CEDVAL database validation
of wind velocity components calculation in the RANS model has been carried
out using 8 experiments (A1-1, A1-2, A1-3, A1-4, A1-6, A1-7, B1-1, COST-
MUST). Validation of concentration has been carried out using experiment A1-5
and COST-MUST. Special statistical quantitative parameters of the quality of
simulation have been used. For calculation of these parameters an array of pairs,
where �rst value � is the value, observed in experiment, and second � is val-
ue, obtained in numerical simulation, is needed. First parameter � is so-called
FA-2, which shows the proportion of the total number of measurement points
for which the condition below is met: (Cobs ≤ W ) or (1/2 ≤ Ccalc/Cobs ≤ 2) .
Second parameter � is so-called Hit rate , which shows the proportion of
the total number of measurement points for which other condition is met:
(|Cobs − Ccalc| ≤ W ) or (|Ccalc − Cobs| /Cobs ≤ D) . Cobs � is observed value in
current measurement point, Ccalc � is obtained by simulation value in the cell,
closest to the measurement point. For wind velocity components recommended
values of W and D are 0,34 and 0,25 respectively. In each experiment amount
of measurement points was su�cient for calculation of these parameters for wind
velocity components: total amount of such points was ∼ 14, 000 . Acceptance
criterion of the quality of simulation is: FA-2 ≥ 66% , Hit rate ≥ 55% . General
values of FA-2 and Hit rate , calculated using data of all listed experiments are
presented in Table 1.

Table 1. FA -2 and Hit rate for longitudinal (u), transverse (v ), and vertical
(w ) velocity components in CEDVAL experiments.

A1 and B1 set u v w COST-MUST u w
FA-2, % 87 96 93 FA-2, % 89 29

Hit rate, % 76 82 75 Hit rate, % 73 20

For validation of RANS model (hydrodynamic and advection-di�usion mod-
ules) used tunnel experiment COST-MUST � laboratory analog of MUST �eld
experiment. Experiment COST-MUST has been carried out using reduced in 75
times copies of original buildings. As an imitation of buildings quasi-ordered ar-
ray of 119 identical containers was used. Containers was arranged in scheme of
12× 10 exclude 1. Each container has sizes (full scale) 12, 2× 2, 42× 2, 54 m3 .
Mean distance between containers was 12,9 in X and 7,9 m in Y direction. Hori-
zontal components of wind velocity and concentration of the passive tracer have
been measured. In Figure 1 presented containers and wind �eld around one con-
tainer, simulated by RANS. FA -2 and Hit rate , obtained by RANS model
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Figure 1. Containers and wind �eld on the height of 25 cm above the ground,
obtained by RANS model, in numerical COST-MUST experiment

(see Table 1), are at the level of values, obtained by commercial codes MISCAM
(MMM ) and ANSY S (engineer code of general use).

Consider results of validation of concentration calculation. Simulated values
have been compared with data of laboratory experiments. In the experiment A1-5
four vent �ows from lee side of the obstacle near the ground were created constant
�ow of passive tracer. Hydrodynamic part of staging of the experiment was the
same as in A1-5. As an obstacle considered cuboid with sizes 20× 30× 25 m3 .
Tunnel experiment has been carried out with reduced in 200 times copy of the
obstacle. Measurements of tracer concentration carried out in 6 planes: z =
2 , z = 7 , y = 0 , y = −12 , y = −15, 2 , x = 10, 2 m . Total number of
measurement points was 1195. With probability of 95% the ratio of simulated
and measured concentration lies in the range from 1/9,7 to 9,7. For calculation
of this probability, all numerical and measured values were limited to the bottom
by 1% from max measured concentration. Max values on speci�c distance have
better agreement with experiment: with probability of 95% the ratio of max
simulated and measured concentration on speci�c distance lies in the range from
1/4,5 to 4,5.

In the experiment COST-MUST was 244 points, where were made measure-
ments of concentration of the tracer. All points were located on the same height
� 1,28 m above the ground. With probability of 95% the ratio of simulated and
measured concentration lies in the range from 1/13 to 13. As in the experiment
A1-5, all numerical and measured values were limited to the bottom by 1% of
max measured concentration.

Veri�cation of deposition calculation module has been carried out using two
tasks with di�erent boundary condition on the ground. Deposition on the ground
has been calculated. First type of boundary condition � is the condition full ab-
sorption. Wind and di�usion �elds were homogeneous in space. Flow of the con-
tamination to the ground in this case de�ned by di�usion �ow: J = D ∂C/∂z| ,
where D is di�usion coe�cient. Zero concentration was maintained near the
ground. In case of point and instantaneous source of contamination this task
allows solution in form of integral from analytical expression over the time. This
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integral was computed numerically with high accuracy. This solution was com-
pared with solution, obtained by the RANS model. Second boundary condition is
more realistic. Zero di�usion �ow is assumed, deposition occurring from viscous
sub-layer: J = Cud (kg/m2/s), where ud � is the velocity of dry deposition. If
C = const , deposition increases linear with the time, what has been con�rmed
by simulation results, obtained by RANS model.

In the case of radioactive contamination developed computer code calculates
external and internal radiation doses. Radiation doses calculate taking into ac-
count shielding e�ect of the γ -radiation by buildings. Module of calculation of
doses from plume has been veri�ed on the task with spherically-symmetrical dis-
tribution of contamination concentration with and without spherical obstacle.
Without obstacle doses from plume were obtained by numerical integration of
analytical expression. Obtained values were compared with values, obtained by
RANS model. With spherical obstacle shielded region were calculated analytical-
ly. In the RANS model shielded region calculates using universal e�ective special
method, which suit for obstacles of arbitrary shape. Task with spherical obstacle
allowed to verify this method. Module of calculation of doses from contaminated
buildings was veri�ed on the task with conic surface. This task allows solution
in form of integral from analytical expression over the conic surface. This inte-
gral was calculated with high accuracy, and obtained values were compared with
values, obtained by RANS model.

So, all sub-modules (hydrodynamic, advection-di�usion, deposition, radiation
doses calculation) of the computer code has been either veri�ed or veri�ed and
validated.
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INVESTIGATION OF THE STABILITY OF

TWO-DIMENSIONAL FLOWS CLOSE TO THE SHEAR

Kirichenko O.V., Revina S.V.

Southern Federal University, Rostov-on-Don, Russia

We consider the two-dimensional (x = (x1, x2) ∈ R2 ) viscous incompressible
�ow driven by an external forces �eld F (x, t) that is periodic in x1 and x2
with periods ℓ1 and ℓ2 , respectively. The �ow is described by the Navier-Stokes
equations

∂v

∂t
+ (v,∇)v − ν∆v = −∇p+ F (x, t), div v = 0,

where ν = 1/Re is the kinematic viscosity and Re is the Reynolds number.
The period ℓ1 = 2π , and the ratio of the periods is characterized by the wave
number α : ℓ2 = 2π/α , α → 0 . Let ⟨f⟩ denote the average with respect to x1 ,
while ⟨⟨f⟩⟩ denote the average over the period rectangle Ω = [0, ℓ1]× [0, ℓ2] :

⟨f⟩ = 1

ℓ1

ℓ1∫
0

f(x , t) dx1, ⟨⟨f⟩⟩(t) = 1

|Ω|

∫
Ω

f(x , t) dx1 dx2.

The spatial average velocity is assumed to be given: ⟨⟨v⟩⟩ = q . The velocity
�eld is assumed to be periodic in x1 , x2 with the same periods ℓ1 , ℓ2 as the
�eld of external forces.

A longwave asymptotics (α → 0) is constructed for the stability problem of
the steady �ow close to the shear, which will be called the basic �ow:

V = (αV1(x2), V2(x1)), ⟨V2⟩ ̸= 0. (1)

The class of �ows under consideration generalizes the Kolmogorov �ow with
a sinusoidal velocity pro�le

V = (0, γ sin(x1)). (2)

In [1], the review of some published works on the Kolmogorov �ow is given. The
problem of investigating the stability of a two-dimensional �ow under the ac-
tion of spatially periodic force was proposed by A.N. Kolmogorov in his seminar.
In [2], nonstationary time-periodic structures are obtained using long-wave per-
turbations of the Kolmogorov �ow. The long-wave asymptotic behavior of the
stability problem for two-dimensional parallel �ows of general form

V = (0, V2(x1)), ⟨V2⟩ ̸= 0

was considered in [3]. Research [4] is devoted to the study of self-oscillations
arising in the loss of stability of parallel �ows of a viscous �uid a�ected by
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long wavelength perturbations. In [5], the main terms of the asymptotics of the
secondary self-oscillatory regimes in the case of the basic �ow close to parallel
were found, but general rules in coe�cient expressions were not obtained.

In [6], recurrence formulas for �nding the k th term of the long wavelength
asymptotic for the stability of steady shear �ows were derived in the case of
nonzero average. The coe�cients of the expansions are explicitly expressed in
terms of some Wronskians, as well as integral operators of Volterra type. In the
particular case, when the deviation of the velocity from its mean value V2(x)−
⟨V2⟩ is an odd function of x , the coe�cients of expansion of the eigenvalues in
series in powers of α , starting from the third, are zero and the eigenvalues can be
found exactly: σ1,2 = ±im⟨V ⟩α,m ̸= 0 . In [7], recurrence formulas for �nding
the k th term of the long-wave asymptotics for the stability of two-dimensional
basic shear �ows of a viscous incompressible �uid with zero average are derived.

The linear inviscid damping phenomenon for the linearized Euler equations
around the Kolmogorov �ow is proved in [8]. Kolmogorov �ow for 2D Navier-
Stokes equation on a torus is considered in [9].

The aim of this research is to generalize the results [6] related to shear �ows
in the case of basic �ows close to shear.

Looking for a solution (ṽ, p̃) linearized on the basic �ow (1) perturbation
equation in the form of normal oscillations, we obtain the linear eigenvalue prob-
lem (here and below, x = x1 , z = αx2 ):

σφ1 + α2φ2
dV1
dz

+ αV1(z)
∂φ1

∂x
+ αV2(x)

∂φ1

∂z
− ν

(
∂2φ1

∂x2
+ α2∂

2φ1

∂z2

)
=

= −∂P
∂x

, (3)

σφ2 + φ1
dV2
dx

+ αV1(z)
∂φ2

∂x
+ αV2(x)

∂φ2

∂z
− ν

(
∂2φ2

∂x2
+ α2∂

2φ2

∂z2

)
=

= −α∂P
∂z

, (4)

∂φ1

∂x
+ α

∂φ2

∂z
= 0,

2π∫
0

φ1(x, z)dz = 0, ⟨φ2⟩ = 0. (5)

The value of the parameter ν at which one or several eigenvalues σ lie on the
imaginary axis is called critical. The unknown perturbations of velocity φ(x, z) ,
the function P (x, z) , the eigenvalues σ and the critical viscosity ν are sought
in the form of series in powers of α :

σ(α) =
∞∑
k=0

σkα
k, ν = ν∗ +

∞∑
k=1

νkα
k, (6)

φ =
∞∑
k=0

φkαk, P =
∞∑
k=0

P kαk. (7)
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Up to αk , k > 1 , from (3) � (5) we derive the following system of equations:

ν∗
∂2φk1
∂x2

=
∂P k

∂x
+

k∑
j=1

σjφ
k−j
1 −

k−1∑
j=1

νj
∂2φk−j1

∂x2
−

k−2∑
j=0

νj
∂2φk−2−j

1

∂z2
+

+V2(x)
∂φk−1

1

∂z
+
dV1
dz

φk−2
2 + V1(z)

∂φk−1
1

∂x
, (8)

ν∗
∂2φk2
∂x2

=
k∑
j=1

σjφ
k−j
2 −

k∑
j=1

νj
∂2φk−j2

∂x2
−

k−2∑
j=0

νj
∂2φk−2−j

2

∂z2
+

+{W (φk1, θ
′′)}+ ⟨V2⟩

∂φk−1
2

∂z
+ V1(z)

∂φk−1
2

∂x
+
∂{P k−1}

∂z
, (9)

∂φk1
∂x

+
∂φk−1

2

∂z
= 0,

2π∫
0

φk1dz = 0, ⟨φk2⟩ = 0. (10)

For a non-parallel basic �ow (1), the coe�cients of expansion of the critical
viscosity ν and the eigenvalues σ have the following structure:

νk = [νk] + ν̃k, σk+2 = [σk+2] + σ̃k+2, (11)

where the square brackets are used to denote the coe�cients of viscosity and
eigenvalues in the case of basic shear �ow, and the wave is used to denote addi-
tional term. If V1(z) = 0 then that additional term is equal to zero. It will be
shown later that components of eigenfunctions and pressure φk1 , P

k at k = 1, 2, 3
and φk2 at k = 1, 2 have the same structure:

φk1 = [φk1] + φ̃k1 + ⟨φk1⟩, φk2 = [φk2] + φ̃k2, P k = [P k] + P̃ k + ⟨P k⟩.

while for large values of k , additional terms appear in the expressions of the
eigenfunctions φ and the pressure P . These terms depend on the mean values
of previous coe�cients.

The coe�cients of the expansion in a series of eigenfunctions have the follow-
ing structure:

φk1 = [φk1] + φ̃k1 + φ1
1(⟨φk−1

1 ⟩) + ⟨φk1⟩,
φk2 = [φk2] + φ̃k2 + φ1

2(⟨φk−1
1 ⟩) + φ0

2(⟨φk1⟩),

and the coe�cients of decomposition in a series of pressure have the following
structure

P k = [P k] + P̃ k + P 1(⟨φk−1
1 ⟩) + ⟨P k⟩.

Here k = 1, 2, 3, 4 . The expressions in square brackets [φki ] , [P
k] are the solu-

tions of the same equations, as in the case of shear basic �ow and coincide with
corresponding coe�cients if ν̃j = 0 , σ̃j = 0 .
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The �rst terms of the asymptotics, found analytically, are used to calculate
on Maple the eigenfunctions and critical viscosity for two types of �ows. These
are cases of the main shear �ow and the �ow close to the shear �ow. As an
example of a shear �ow, we consider a �ow that di�ers from the Kolmogorov
�ow (2) by the presence of a non-zero mean V = (0, sinx+ 1) . As an example
of a �ow close to a shear one, we consider a �ow close to the Kolmogorov �ow
V = (α, sinx+1) . For the indicated �ows, as well as for other similar �ows, the
graphs of neutral curves (Re = 1

ν(α) ) have the following form (Fig. 1, Fig. 2):

Figure 1. V = (0, sinx+ 1) Figure 2. V = (α, sinx+ 1)

The asymptotics found allows to investigate the trajectories of the motion of
passive impurity particles in the secondary self-oscillatory �ow [5]. The trajecto-
ries of particles in the linear approximation satisfy the equation:

ẋ = V(x) + u(x, t), u(x, t) = φeiωt + φ∗e−iωt.

For V = (−α sin z,− sinx − 2 cos x − 4 cos 2x + 1),m = 1 , phase portrait
in coordinates x = (x1, y), y = x2 − ⟨V2⟩ , has the form as shown in Fig. 3. For
general �ows, as well as for special case considered above, a similar qualitative
behavior is detected.

Figure 3. Trajectories of the motion of particles of a passive admixture
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1. Introduction.
A large number of various theoretical and applied problems are reduced to

the knapsack problem. We present two problems that can be reduced to this
problem: counting the number of cyclic codes and counting the number of roots
from special languages.

Consider the �rst problem. Finite �eld of q will be denoted by Fq , q is
a degree of prime. A cyclic (n, k) -code over a �nite �eld Fq (where n is the
length and k is the number of information symbols) is uniquely determined by
the generating normed polynomial g(x) over Fq , satisfying two the following
conditions:

• degree of polynomial g(x) equals n− k ;

• the polynomial xn − 1 is divided by g(x) in a ring of polynomials Fq[x] .

Let the decomposition of polynomial xn − 1 on irreducible normalized factors
over a �eld Fq be known; note that it is su�cient that the degrees of these
polynomials are known. Also note that if n and q are co-prime integers, then
all factors in the decomposition are di�erent, otherwise the multiplicity of each
factor equals v which is the greatest common divisor of n and q . We count the
ways of representing the number n− k as the sum of the degrees of polynomials
from the expansion, taken no more than v times.

This task is equivalent to the special case of the knapsack problem. The result
will be equal to the number of di�erent cyclic codes with �xed parameters n ,
k and q . Note that to �nd the degrees of the polynomials in the decomposition
of the polynomial xn − 1 into irreducible normalized factors over the �eld Fq ,
there exists an e�cient algorithm. A detailed description of the solution to this
problem can be found in [1].

Let us formulate the second problem. For the given language A over alphabet
Σ and given n ∈ N , we have to construct all the languages B such that A=Bn .
In this case, we call language B by the root of nth degree of language A .

Let M be a �nite subset of N ; for this problem, we shall consider languages
Σ(M) only, which contain words over Σ of the length i ∈M .

Let us consider the problem of �nding all roots of the n -th degree from the
language Σ(t1, t2) containing all sorts of words over the alphabet Σ of length
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from t1 to t12 (where t1 6 t2 ). As we noted in [2, 3], the operation of extracting
the root is an ambiguous function: for example, not only the �obvious� square
root Σ(1, 5) is extracted from the language Σ(2, 10) , but also Σ(M) , where
M = {1, 2, 4, 5} . This follows from the fact that any natural number from 2 to
10 can be represented as the sum of two (not necessarily di�erent) terms from
the set {1, 2, 4, 5} .

We note also an obvious fact: in order for the n -th root of the Σ(t1, t2)
language to be extracted, it is necessary and su�cient that t1 and t2 be divided
by n . Besides, let t1 = n · n1 and t2 = n · n2 . The language Σ(M) is a root of
n -th degree from the language Σ(t1, t2) if and only if M is a subset of the set
{n1, n1 + 1, , n2} satisfying the following condition: each number from t1 to t2
is the sum of n terms from the set M (not necessarily di�erent).

Thus, the task of checking this condition is equivalent to a special case of the
problem of an unbounded backpack, for which a classical solution is known that
�nds the exact answer in polynomial time.

2. Preliminaries: versions of setting the knapsack problem.
Problem 1. Given N items, W is the capacity of the knapsack. Let w1 , w2 ,

. . . , wN be the positive weights of the respective items, and c1 , c2 , . . . , cN be
the costs of the corresponding items. We need to �nd a set of binary values b1 ,
b2 , . . . , bN , where bi = 1 , if item i is included in the set, and bi = 0 , if item i
is not included in the set, such that:

1. b1w1 + b2w2 + · · ·+ bNwN 6 W ;

2. b1c1 + b2c2 + · · ·+ bNcN → max .

Such problem is the formulation of one of several types of knapsack tasks.
This type of task is sometimes called �Backpack 0-1�. There are also other kinds
of knapsack problems.

We consider a generalization of the previous problem, when any object can
be taken any number of times. A special case of this problem is the equivalence of
the values of all items. Therefore, in the future, the cost of items can be ignored.
Also we sometimes add a condition that we must take exactly M items. Let us
formulate the last problem.

Problem 2. The problem of the unlimited knapsack. Given N items, W is
the capacity of the knapsack, M is the number of items we have to take. Let
w1 , w2 , . . . , wN be the positive weights of the respective items. It is necessary
to �nd a set of non-negative values x1 , x2 , ..., xN , where xi is the number of
items of this type taken into the set, such that:

1. x1 + x2 + · · ·+ xN =M ;

2. x1w1 + x2w2 + · · ·+ xNwN 6 W ;

3. x1w1 + x2w2 + · · ·+ xNwN → max .
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3. Preliminaries: solving the problem using the dynamic program-
ming.

The classical solution to Problem 2 is a solution using dynamic programming.
We introduce a binary value Di,j , where Di,j = 1 if we can obtain the weight i
using j any items. If it is impossible, then Di,j = 0 .

Suppose that now we are in the admissible state Di,j = 1 . Then we shall try
to add the item k to the knapsack from the current state Di,j . Let q = wk be
the weight of the k -th object. Since the current state Di,j = 1 , then, when we
add an item with the number k , we shall move to the state Di+q,j+1 and it will
also be equal to 1 .

The initial state of the binary value D will be D0,0 = 0 , since it is always
possible to gain zero weight without using a single object (i.e., we can always
take nothing). The answer to the problem is

R = max{i | i 6 W &Di,M = 1};

this value shows the maximum weight we can gain using exactly M items.
We can show, that the asymptotic complexity of corresponding algorithm is

O(M ·N ·W ) .

4. Algorithm for solving the problem using the lunar arithmetic.
In lunar arithmetic, the operations of addition and multiplication over the

numbers are replaced with the operations of �nding the maximum and minimum,
respectively. More information about the features of lunar arithmetic can be
found in [4]. In the binary case, the addition corresponds to the disjunction, and
the multiplication coincides with the usual multiplication of binary numbers.

Let us consider the weights of objects in the form of a binary vector u . Denote
by w̃ the set of weights of all objects. Let ui be the binary value in the binary
vector u located at position i . Then in the vector u , for all ui the following
condition holds:

ui =

{
1, i ∈ w̃

0, i /∈ w̃.

Binary vectors in the usual way de�ne polynomials in lunar arithmetic. Let us
move from the binary vector u to the polynomial y and write it in the form

y = {xwi | 1 6 i 6 N} = xw1 + · · ·+ xwN . (1)

We assign a new polynomial z which is equal to the polynomial y raised to the
M degree, i.e. z = yM . We also denote by zk the coe�cient for the degree xk

in the polynomial z .
We can obtain the following theorem.

Theorem 1. In the polynomial z , all nonzero zk denote that there is some set
of exactly M objects, not necessarily di�erent, for which the sum their weights
is equal to k . �
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By combining the theory proposed above, as well as a simple algorithm for
rapid exponentiation in lunar arithmetic, we can obtain the following algorithm
for solving the backpack problem.

Algorithm 1.

1. According to the set of weights of all objects, we determine the polynomial
y n the form (1).

2. We raise y to M degree using binary exponentiation in binary lunar
arithmetic. This can be done, since in the binary lunar arithmetic, the
multiplication of polynomials is an associative operation.

3. We �nd the answer of the problem as R = max{i | yMi = 1} . �

We can show, that the asymptotic complexity of this algorithm matches to
the algorithm considered before.

5. Conclusion.
Thus, as we said before, a large number of various theoretical and applied

problems are reduced to the knapsack problem. It is applied in various �elds
of knowledge: in mathematics, computer science, cryptography, economics, etc.
Some applications of the backpack problem for calculating the number of error-
correcting cyclic codes were considered in the paper cited before. According to the
authors, the material presented in the paper combines two di�erent approaches
to the description and solution of discrete optimization problems; it can be used
in other variants and in other tasks.
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NUMERICAL STUDY OF THE SKEW-SYMMETRIC

PRECONDITIONERS1

Pichugina O.A.

Regional Mathematical Center, Southern Federal University,
Rostov-on-Don

The described below method for solving strongly non-symmetrical system
of linear equations (SLE) was proposed by prof. Krukier in 1979 [2]. The main
feature of the method is it takes triangular part of skew-symmetric initial system
as inverse matrices. Such approach leaded to a class of iterative methods that
have simple enough structure and at the same time suitable exactly for e�cient
solving of strongly non-symmetrical systems. Construction of the skew-symmetric
part of initial matrix does not require large amount of operations and preliminary
analytical actions. In major cases it appears explicitly at a stage of constructing
of discrete model. Its use in the inverse operator of the method allows to take
into account the structure of changes exactly this part of matrix. It is especially
important when skew-symmetric part of matrix dominates. The only restriction
for these methods is requirement of initial matrix to be positive real.

In this paper the skew-symmetric methods are used as preconditioner to
improve the Krylov subspace methods for solving strongly non-symmetrical SLE.

We use the convection-di�usion problem for numerical study of skew-
symmetric preconditioners because its a meaningful test for established or new
computational methods. Consider two-dimensional steady convection-di�usion
equation in Ω with homogeneous Dirichlet boundary conditions. The convective
terms are described by ¾symmetric form¿ [3].

−Pe−1L2u+ L1(u) + L0u = f, u(x, y)|∂Ω = u0, (1)

L2u =
2∑

α,β=1

∂

∂xα
(Kαβ

∂u

∂xβ
), (2)

L1u =
1

2
(K1

∂u

∂x1
+
∂K1u

∂x1
+K2

∂u

∂x2
+
∂K2u

∂x2
), (3)

L0u = K0u, (4)

Pe is Peclet number (di�usion coe�cient), Kαβ = Kαβ(x1, x2) , α, β = 1, 2 ,
Kγ = Kγ(x1, x2) , γ = 0, 1, 2 , K0(x1, x2) ≥ 0 , K12 = K21 , f = f(x1, x2) ,
(x1, x2) ∈ Ω .

1Supported by Ministry of Science and Higher Education of the Russian Federation (project
N 1.13558.2019/13.1)
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Suppose, the ellipticity condition is satis�ed

c1

2∑
α=1

ξ2α ≤
2∑

α,β=1

Kαβ(x)ξαξβ ≤ c2

2∑
α=1

ξ2α.

where c1 > 0 , c2 > 0 are constants, ξ = (ξ1, ξ2) is arbitrary vector . At �rst
assume ξ1 = 1 , ξ2 = 0 , then ξ1 = 0 , ξ2 = 1 �nd out 0 < c1 ≤ Kαα ≤ c2 ,
α = 1, 2 .

Also assume DivK = 0 , K = {K1, K2} .
De�ne a uniform grid in the Ω

ωh = {xij = (ih1, jh2), 0 ≤ i ≤ N1, 0 ≤ j ≤ N2, hαNα = lα, α = 1, 2}.

Approximate the problem (1)-(4) on the grid ωh .
Approximate operator Lαβu according to [4] by di�erence operator

Λαβu =
1

2
[(Kαβuxβ)xα + (Kαβuxβ)xα],

determined by α ̸= β on 7-point scheme:

(x1, x2), (x1 ± h1, x2), (x1, x2 ± h2), (x1 − h1, x2 + h2), (x1 + h1, x2 − h2).

Where uxi = (u(xi) − u(xi − hi))/hi is a left side derivative at xi , uxi =
(u(xi + hi)− u(xi))/hi is a right side derivative at xi .

We use the central di�erence scheme

uxi0 = (u(xi + hi)− u(xi − hi))/2hi.

In [2] was proved that skew-symmetric operator appears. The applying of the
central di�erence scheme for approximation convection-di�usion problem eases
the found of the solution by iterative methods [3].

Set constants K11 = K22 = 1 , K0 = 0 for system (1)-(4). The condition
K12 = K21 is necessary for the symmetry of the di�usion operator, set K12 =
K21 = 1 . Thus, using �nite di�erence approximation and special arrangement of
grid nodes we get a seven-diagonal ribbon matrix

Ax = b. (5)

The resulting system was solved by BiCG and GMRES(m) methods with
preconditioning using MatLAB.

We use triangular skew-symmetric iterative methods (TS) [2]

B(ω) = BC + 2ωKL (6)

and product triangular skew-symmetric iterative methods(PTS) [1]:

B(ω) = (BC + ωKL)B
−1
C (BC + ωKU) . (7)
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In equalities (6) and (7) matrix BC is symmetric, ω is real numerical parameter.
Diagonal elements BC for TS- and PTS-preconditioners were determined as

bCii =
1

2
{max

i

n∑
j=1

(|a0ij|+ |a1ij|)}, i = 1, ..., n, (8)

where a0ij are elements of matrix A0 , a1ij are elements of matrix (KU −KL) .
We consider preconditioners without parameters (ω = 2) because of clear

practical advantage.
Computational experiments were carried out for the problems with di�erent

velocity coe�cients (see Table 1).

Table 1. Velocity coe�cients
N Problem K1 K2

1 1 -1
2 1− 2x1 2x2 − 1
3 x1 + x2 x1 − x2
4 sin(2πx1) −2πx2 cos(2πx1)

Table 2. GMRES(m) with preconditioners
Pe GMRES GMRES+TS(2) GMRES+PTS(2)
Problem 1, K1 = 1, K2 = −1
10 31 (4) 31 (6) 28 (9)
103 22 (2) 13 (2) 8 (10)
105 953 (2) 525 (10) 172(1)
Problem 2, K1 = 1− 2x1, K2 = 2x2 − 1
10 38 (8) 37 (5) 37 (10)
103 33 (3) 22 (9) 11 (4)
105 1170 (9) 579 (5) 307 (1)
Problem 3, K1 = x1 + x2, K2 = x1 − x2
10 27 (7) 27 (3) 27 (4)
103 37 (10) 20 (9) 8 (10)
105 1095 (4) 454 (8) 188 (2)
Problem 4, K1 = sin(2πx1), K2 = −2πx2 cos(2πx1)
10 24 (9) 30 (3) 27 (7)
103 71 (8) 35 (1) 18 (3)
105 3346 (4) 1519 (3) 710 (2)

The test function K to cover various functions. The �rst problem: the mod-
ule and direction of the velocity vector is independent of a point on the plane,
we have constants for convective terms. The second problem contains separable
coe�cients and the third task contains linear coe�cients for convective terms.
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Table 3. BiCG with preconditioners
Pe BiCG BiCG+TS(2) BiCG+PTS(2)
Problem 1, K1 = 1, K2 = −1
10 181 173 172
103 191 127 35
105 1247 1539 645
Problem 2, K1 = 1− 2x1, K2 = 2x2 − 1
10 184 182 182
103 212 153 93
105 881 917 638
Problem 3, K1 = x1 + x2, K2 = x1 − x2
10 203 197 199
103 364 189 91
105 2450 2538 1173
Problem 4, K1 = sin(2πx1), K2 = −2πx2 cos(2πx1)
10 208 200 189
103 628 381 185
105 1760 1768 1055

The fourth problem: the velocity �eld models the vortex motion. The last two
problems are the most di�cult for numerical solution.

The right hand side is chosen so that u (x1, x2) = ex1x2 sin(πx1) sin(πx2) is
a analytical solution of (1)�(4). We use 32 × 32 grid for the �nite di�erence
approximation. The Peclet number varies from 10 to 105 . This leads to the
system of linear algebraic equations with strongly non-symmetric matrix (the
skew-symmetric component of the matrix is much larger than its symmetric
component in a certain norm [2]) for Pe > 103 .

Numerical results are presented in Tables 2 and 3.
Numerical experiments for the GMRES(m) and BiCG methods demonstrate

e�ciency for solving the system (5). They converge even when the system matrix
loses diagonal dominance and becomes strongly non-symmetric. However, the
product triangular skew-symmetric preconditioners improve the properties of
the resulting system, they reduce the matrix condition number by 2 times (we
are talking about the ratio of the maximum eigenvalue to the minimum, it easily
computed in MatLAB), hence convergence properties of the methods improve.
Product triangular preconditioners speed up method BiCG by 2-3 times and even
more for method GMRES(m).

Unfortunately, there is no good enough results for triangular skew-symmetric
preconditioners. It was found that preconditioning does not improve the matrix
condition number in this instance.

General conclusion: we recommend the product triangular skew-symmetric
preconditioners for accelerating Krylov subspace methods solving the convection-
di�usion problems.
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