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RIGOROUS CONVERGENCE ANALYSIS OF
ALTERNATING VARIABLE MINIMIZATION WITH
MULTIPLIER METHODS FOR QUADRATIC
PROGRAMMING PROBLEMS WITH EQUALITY
CONSTRAINTS!

Zhong-7Zhi Bai*, Min Tao**

* State Key Laboratory of Scientific/Engineering Computing,
Institute of Computational Mathematics and Scientific/Engineering
Computing, Academy of Mathematics and Systems Science,
Beijing, P.R. China,

** Department of Mathematics, Nanjing University, Nanjing,
China

Let R be the domain of all real numbers, R” be the n-dimensional real
linear space equipped with the Euclidean inner product, say, (-,-), and R™*" be
the m-by-n real matrix space. Denote by ()7 and || - || the transpose and the
Euclidean norm of either a vector or a matrix of suitable dimension, respectively.
We consider numerical solutions of equality-constraint quadratic programming
problems of the form

{mm g, 0

where A € RP*" and B € RP*™ are two matrices, b € RP is a known vector,
and ¢ : R" — R and ¢ : R"™ — R are two quadratic functions defined by

{ o(x) = %:CTFJC + 2T f, 2)
v(y) = ' Gy+y'y,

with F' e R™" G € R"™" being symmetric positive semidefinite matrices and
feR" ge R"™ being given vectors. We assume that some standard assumptions
are imposed on the matrices F', G and A, B as well as on the vectors f,
g and b such that the solution set of the problem (1)-(2) is nonempty. This
class of constraint programming problems occurs in many areas of computational
science and engineering applications such as economics [1], electrical circuits and
networks [2, 29, 7|, electromagnetism [24, 4], finance [21, 22|, image reconstruction
|17], image registration |23, 15] and optimal control |3]. It also captures a number

L* The work of this author is supported by The National Basic Research Program (No. 2011CB309703),
The National Natural Science Foundation (No. 91118001) and The National Natural Science Foundation for
Creative Research Groups (No. 11321061), P.R. China,

** The work of this author is supported by The National Natural Science Foundation (No. 11301280) and The
Fundamental Research Funds for the Central Universities (No. 020314330019), P.R. China
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of important applications arising in various areas such as the [;-norm regularized
least-squares problems, the total variation image restoration and the standard
quadratic programming problems; see, e.g., [19, 18] for more details.

One of the most popular and effective iterative methods for solving the
equality-constraint quadratic programming problem (1) is the so-called alter-
nating direction method with multipliers, or in short, the ADM method. At
each iteration step, it first alternatively minimizes the augmented Lagrangian
function L,(z,y, z) with respect to the variables x, y, and then update the La-
grange multiplier z according to the steepest ascent principle so that violation
of the original constraint Ax + By = b is penalized. More precisely, the ADM
method for solving the problem (1) can be algorithmically described as follows.

Method 0.1 (ADM Method for the Problem (1))
Given initial guesses y® € R™ and 2V € R?, for k = 0,1,2,...
until the iteration sequences {z™}*, < R", {y¥}> c R™

and {2%}>*  C RP are convergent, compute x**l), ylk+) and z(k+D)
according to the following rule:
pFH) - = argm?nxew {¢(z) — (Ax + By® — b, 2®) + )| Az + By® — |2},
y* = argming g {9 (y) — (Ae™D + By — b, W) 4 G| A + By — b}, (3)
Z(k+1) — Z(k) . ﬁ(A.I'(kJrl) 4 By(kJrl) . b)

Intuitively, Method 0.1 is an alternating variable minimization with multiplier
(AVMM) method. The AVMM method is intended to blend the decomposabil-
ity of dual ascent with the superior convergence properties of the method of
multipliers [6]. In [12] Gabay illustrated this iteration scheme as an application
of the Douglas-Rachford splitting method [20] to the dual of the problem (1),
and Eckstein and Bertsekas [9] showed in turn that Douglas-Rachford splitting
is a special case of the proximal point method. Hence AVMM is a special case
of the proximal point method; see Eckstein and Ferris [10] for more discussions
explaining this approach. On the other hand, it is also a natural generalization
of the classical Uzawa method for solving the saddle-point problems; see [1, 5, §].

Many papers have analyzed the AVMM method from the perspective of max-
imal monotone operators [9, 25, 26, 27, 28|. Its global convergence was proved
under some mild conditions such as the solution set of the problem (1) is nonemp-
ty; see [13, 11, 12]. Also, it has been known that this method converges linearly,
but an accurate estimate about the convergence rate is still in its infancy; see,
e.g., [20, 14, 19, 30, 18].

In this paper, based on a weighted inner product and the corresponding
weighted norm, by adopting matrix preconditioning strategy and utilizing pa-
rameter accelerating technique, we establish a class of preconditioned alternating
variable minimization with multiplier (PAVMM) methods for iteratively solv-
ing the equality-constraint quadratic programming problem (1). This method
includes the AVMM or the ADM method as special case. By making use of
blockwise matrix transformation, from null space relationships of the involved
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sub-matrices we discuss solvability of the equality-constraint quadratic program-
ming problem (1)-(2) and give sufficient and necessary conditions for guaran-
teeing existence and uniqueness of its solution. By exploring an explicit formula
about eigenvalues of the iteration matrix, we demonstrate asymptotic conver-
gence property and analyze asymptotic convergence rate of the PAVMM method.
By making use of matrix splitting, we also discuss an algebraic derivation of the
PAVMM method, which shows that this method is actually a modified block
Gauss-Seidel iteration method for solving the augmented linear system resulting
from the weighted Lagrangian function with respect to the equality-constraint
quadratic programming problem (1)-(2).
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PARALLEL IMPLEMENTATION OF
MODULUS-BASED MATRIX SPLITTING ITERATION
METHOD FOR LINEAR COMPLEMENTARITY
PROBLEMS

Zhong-7Zhi Bai*, Li-Li Zhang™*

* State Key Laboratory of Scientific/Engineering Computing,
Institute of Computational Mathematics and Scientific/Engineering
Computing, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing , P.R.China

** School of Mathematics and Information Science, Henan
Unwversity of Economics and Law, Zhengzhou, P.R.China

Many problems in scientific computing and engineering applications demand
to compute solutions of linear complementarity problems. Such class of problems
includes, for example, the convex quadratic programming, the bimatrix game, the
free boundary problems of fluid dynamics, the network equilibrium problems, the
contact problems, and so on. For given matrix A € R™" and vector ¢ € R", the
linear complementarity problem, abbreviated as LCP (¢, A), consists of finding
a pair of vectors r, z € R" such that

r.=Az4q¢q>0, z>0 and ZT(Az+q)=O,

where 2z denotes the transpose of the vector z.

Bai proposed a class of modulus-based splitting iteration methods in [1] for
solving the LCP(q, A). This class of iteration methods is essentially based on
an equivalent transformation of the LCP(g, A) into a system of fixed-point
equations involving only absolute value of certain vector. It not only includes
as special cases the modulus-based relaxation methods such as Jacobi, Gauss-
Seidel, SOR and AOR, but also provides a general framework for the existing
modulus iteration methods. Theoretical analyses and numerical implementations
have shown that the modulus-based relaxation methods are often superior to the
projected relaxation methods.

This talk includes two parts. The one is about the synchronous parallel coun-
terpart of the modulus-based splitting iteration method by making use of multiple
splittings of the system matrix A. The other is about the two-stage multisplit-
ting iteration method by employing the modulus-based matrix splitting iteration
and its relaxed variants as inner iterations.

First, in order to suit computational requirements of the modern high-speed
multiprocessor environments, we present the modulus-based synchronous multi-
splitting (MSM) iteration method by making use of multiple splittings of the
system matrix A. Let (M, Ny, Ex) (k= 1,2,...,¢) be a multisplitting of the
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system matrix A, € a positive diagonal matrix and ~ a positive constant. Then,
the MISM iteration method can be described as follows:

1. Choose an initial vector z(® € R”, and set m := 0;

2. For k=1,2,...,¢, we solve the linear subsystem

(Q+ M)z = Nz ™+ (Q — A)|z™)] — yq,

on the k-th processor, and obtain the solution z(m+1#)

3. By combining the local updates of ¢ processors together, we get

12
x(m—i—l) _ ZEkx(m—i-l,k:) and Z(m—i—l) _ l(lx(m—i-l)’ + x(m—i—l));
Y
k=1

4. If 2m*tD gatisfies a prescribed stopping rule, then terminate. Otherwise,
set m :=m + 1 and return to 2.

This class of modulus-based synchronous multisplitting iteration methods
only needs to solve sub-systems of linear equations rather than linear comple-
mentarity sub-problems. With special choices of the multiple splittings of the
system matrix, we can obtain a sequence of modulus-based synchronous mul-
tisplitting relaxation methods, including Jacobi, Gauss-Seidel, SOR and AOR,
respectively. When the system matrix A is an H,-matrix, we prove the con-
vergence of the modulus-based synchronous multisplitting iteration methods as
well as their relaxed variants. Numerical results show that the modulus-based
synchronous multisplitting Jacobi, Gauss-Seidel and SOR methods can achieve
high parallel computing efficiency in actual implementations.

Second, in the matrix multisplitting iteration method discussed by Machida,
Fukushima and Ibaraki in [2] and by Bai in [3], we have to spend a vast major-
ity of time in solving the linear complementarity sub-problems exactly at each
iteration step. For saving time, inner iteration can be introduced to solve them
approximately. Thus, we present the two-stage multisplitting iteration method
by employing the modulus-based matrix splitting iteration and its relaxed vari-
ants as inner iterations. Let (My: Fy, Gi; Ni; Ey) (1 < k < f) be a two-stage
multisplitting of the matrix A. Then, the steps of the two-stage multisplitting
iteration method are listed as follows:

1. Choose an initial vector () and a positive constant v. Set m := 0 and
20) — %(35(0) + [20)]).

2. Given 2™ and 2™, For each k (1 < k < (), solve the LCP (¢™*) M),
with ¢"F) := g— N,z by employing the modulus-based matrix splitting



Zhong-Zhi Bai... PARALLEL IMPLEMENTATION OF MODULUS-BASED ... 15

iteration method:
(Q+ Fk)z(m,kdﬂ) _ ka(mk,j) +(Q— Mk)‘$(m’k’j)
j=0,1,..., 0" —1,

- /Yq(mk)?

(1)
with z(™*0) .= 2(m) Here, Q is a positive diagonal matrix.

12
3. Set 2™+ = 3 FamFh™) and 2t = L(pm+) 4 |pm+1))y,
’ v
k=1

4. If 2+ gatisfies a prescribed stopping rule, then terminate. Otherwise,
set m :=m 4+ 1 and return to 2.

In order to solve (1) explicitly, we consider the classic accelerated overrelazx-
ation (AOR) splitting M), = Fj, — Gy, i.e., the matrices Fj and G}, in (1) are
of the forms

Fy= = (Dy, — BLuy).
¢ 0<f<a,
G = a [(1 — Oz)DMk + (Ck — ﬁ)LMk + OéUMk] ,
where Dy, Ly, and Uy, are the diagonal, the strictly lower-triangular and the
strictly upper-triangular matrices of the matrix M, respectively. In this case,
the above two-stage iteration method gives the two-stage multisplitting MAOR
(TMMAOR) iteration method. Specially, if o = g, the TMMAOR iteration
method reduces to the two-stage multisplitting MSOR (TMMSOR) iteration
method, and if « = 8 = 1, it further reduces to the two-stage multisplitting
MGS (TMMGS) iteration method. And, if @« = 1 and g = 0, it is the two-
stage multisplitting M.J (TMMJ) iteration method.

In the two-stage methods, the modulus-based matrix splitting iteration meth-
ods are used as inner iterations to solve the linear complementarity sub-problems
inexactly. This makes the two-stage multisplitting iteration methods easier to be
programmed and more economical in memory storage. Moreover, these two-stage
multisplitting iteration methods are convergent for any number of inner itera-
tions when the system matrix is an A, -matrix. This makes these methods more
flexible and effective than earlier similar methods in actual computation. Numer-
ical experiments show that the two-stage multisplitting relaxation methods are
superior to the matrix multisplitting iteration methods in computing time, and
can achieve a satisfactory parallel efficiency. Numerical experiments also show
that the computing time is the least for only a few inner iterations.
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CALLS FORECAST FOR THE MOSCOW
AMBULANCE SERVICE. THE IMPACT OF
WEATHER FORECAST

Bykov F.L.*, Gordin, V.A.**

* Hydrometeocentre of Russia, Moscow, Russia

** Higher School of Economics, Hydrometeocentre of Russia,
Moscow, Russia

The number of calls to the ambulance service in Moscow is equal about 5
million per year. About two thirds of the calls lead to ambulance trips. We
analyse here only such kind of the calls (NAT!). The function is noted as Q(t).
We considered it as a random process. Than we approximate the function by a
cubic spline Vg (t).
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Figure 1. a. The long-term trend changes NAT Q(¢). b. Calculated typical NAT Wq(t) —
the 28 years periodic function, which depends only on the time of year and day of the week. It
also shows daytime, night shifts and their sum. On the horizontal axis are marked on January
1.

We can use the function as a forecast of NAT, but the approach is not good;
see the curves 1 on the Fig.2. We can realise the approach for various subgroups
of diseases, too.

We used in the study the archives of the Ambulance Service in Moscow? as
well as meteorological archives of the Hydrometeorological Center of Russia. We

!The number of the ambulance trips.

2The operative data about the calls are available on the site http://www.mos03.ru/about/about.php. We
used the depersonalized database of trips during 2009-2013.
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used an additional information about the air temperature 7'(¢) to improve the
forecast of NAT, see the curves 2.

We use the known statistics of the calls for the current and previous days
to predict them for tomorrow and for the following days. We assume that this
algorithm will work operatively, will cyclically update the available information
and will move the horizon of the forecast.

Sure, the accuracy of such forecasts depends on their lead time, and from
a choice of some group of diagnoses. For comparison we used the error of the
inertial forecast (tomorrow there will be the same number of calls as today). Our
technology has demonstrated accuracy that is approximately two times better
compared to the inertial forecast.

We obtained the following result: the number of calls depends on the actual
weather in the city as well as on its rate of change. We were interested in the
accuracy of the forecast for 12-hour sum of the calls in real situations. We evaluate
the impact of the meteorological errors [Bagrov 2014] on the forecast errors of
the number of Ambulance calls.
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300r -
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Figure 2. The RMS error of the forecast of the total NAT per 12 hours depending on
the lead time z (days). Data is divided into daytime shifts (solid line) and night (dashed
line). 1 — the deviation Q(t) from Wq(t). 2 — the deviation Q(t) from Vo1, 1. (t). 3
— the error of the forecast, which uses information about NAT from several previous days,
but without separation into super-groups of diseases; the data about air temperature were
ignored. 4 — forecast without separation onto super-groups of diseases, but with impact of
the temperature. 5 — we use the separation onto super-groups A, B, C, and do not use air
temperature. 6 — we use the separation onto super-groups A, B, C, and take into account the
air temperature for our forecasting. Here the temperature was assumed to be known exactly
for the curves 2, 4, and 6. Curves 7 describe the forecast which is similar to 6, but it use
the forecasted air temperature with corresponding lead time [Bagrov 2014| instead of real air
temperature.

The weather and the Ambulance calls number both have seasonal tendencies.
Therefore, if we have medical information from one city only, we should separate
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the impacts of such predictors as "annual variations in the number of calls" and
"weather". We need to consider the seasonal tendencies (associated, e. g. with the
seasonal migration of the population and government holidays), week periodicity,
and the impact of the air temperature simultaneously, rather than sequentially.

We forecasted separately the number of calls with diagnoses of cardiovascular
group, where it was demonstrated the advantage of the forecasting method, when
we use the maximum daily air temperature as a predictor. We have a chance to
evaluate statistically the influence of meteorological factors on the dynamics
of medical problems. In some cases it may be useful for understanding of the
physiology of disease and possible treatment options.

In future we are going to assimilate some personal archives of medical param-
eters for the individuals with concrete diseases and the relative meteorological
archive. As a result we hope to evaluate how weather can influence the intensi-
ty of the disease. Thus, the knowledge of the weather forecast for several days
will help us to predict a state of health. The person will be able to take some
proactive actions to avoid the anticipated worsening of his health.
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THE SEMI-LAGRANGIAN FEM TO THE
NAVIER-STOKES MODEL FOR VISCOUS
INCOMPRESSIBLE FLUID!

Dementyeva E.V., Karepova E.D., Shaidurov V.V.

Institute of Computational Modeling SB RAS, Krasnoyarsk, Russia

The Navier-Stokes equations are of interest both itself and in combination
with additional equations for more complex physical phenomena. At the same
time, efficient and robust numerical methods for its solving is extremely chal-
lenged up to now.

In present talk the 2D system of the Navier-Stokes equations is considered
for a viscous incompressible fluid in a channel € with I';,, Iy and T'yigiq as
inlet, outlet, and rigid sides boundary correspondence. On outlet boundary the
modified “do nothing” boundary condition is imposed [1]. Its efficiency is shown
by numerical experiments.

To construct a discrete analogue, we use a semi-Lagrangian approach to ap-
proximation of the transport derivatives [2|. In our case the set of transport
derivatives is considered to be a (Lagrangian) first-order derivative along a given
direction 1= (1,u,v):

of 0 0 _af of af _of

\

+ incompressibility

which may be approximated by finite difference or inside the finite element
method. Then we consider in a channel the following problem

1
a—U—VAU—I——Vp:f,
61 Lo

V-U=0

under the conditions
U(t,x) =U;, V(t,x) € (0,T)xTy, U(t,x) = (0,0) V(t,x) € (0,T)xI}igia,

1 1
—v0, U+ —pn = —pen V(t,x) € (0,T) X Ty
o Po

Here U = (u,v) is a velocity vector, p is a pressure, v is a kinematic viscosity,
po is a constant density, f = (f1, f2) is a given vector of body forces.

We use combination of semi-Lagrangian approach to approximation of the
transport derivatives and a conforming finite element method to approximation

IThe work was supported by Russian Foundation of Fundamental Researches (grant 14-01-00296-a)
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of other terms (namely, Stoks problem). Velocity components are approximated
by biquadratic elements and the pressure does by bilinear elements on rectangles.
As a result of this combined approach, the stationary problem with a self-
adjoint operator is obtained on each time level. This problem is numerically
solved by the multigrid method which allows one to decrease the computational
time.
The theoretical results are confirmed by numerical experiments.
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FLEXIBLE GLOBAL GENERALIZED HESSENBERG
METHODS FOR LINEAR SYSTEMS WITH MULTIPLE
RIGHT-HAND SIDES!

Chuanqging Gu, Ke Zhang

Department of Mathematics, Shanghai University, Shanghaz,
P.R.China

A variant of the global generalized Hessenberg method is presented which
allows varying preconditioning at each restart. Theoretical results that relate
the residual norm of this new method with its original version are developed.
As two special variants, the flexible global GMRES method and the flexible
global CMRH method are investigated both theoretically and experimentally.
Numerical examples are conducted to illustrate the performance of these two
flexible global methods in comparison with both the original global methods and
weighted global methods.

We consider the solution of large and sparse linear systems with multiple
right-hand sides of the form

AX = B, (1)
where A € R™" and X, B € R"** with usually s < n.

I The matrix Krylov subspace

For X, Y € R™*  we define the Frobenius scalar product (X,Y)p =
tr(XTY). Moreover, a system of matrices in R"** is said to be F-orthogonal if
it is orthogonal with respect to the product (-,-)g.

The matrix Krylov subspace K,,(A, V) is spanned by V., AV, ... A"V
or equivalently, for any W € KC,,,(A, V), we have

W=> A", (2)
i=1
where V € R"¢ and a; € R for ¢ = 1,--- ,m. This is different from the block

Krylov subspace exploited in the usual block methods. Associate with the matrix
Krylov subspace is the product x defined by

m

V. kT = Z(:U)ZV;, (3)

i=1
where 7, = [Vi,--+, V] €R™™ and o = [(2),- -+, (2)n]T € R™.

IThe work is supported by Shanghai Natural Science Foundation (10ZR1410900), Key Disciplines of Shang-
hai Municipality (S30104) and Innovation Program of Shanghai Municipal Education Commission(13ZZ068)
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IT The global generalized Hessenberg methods with fixed
preconditioning

We now consider a right preconditioning for the original linear system (1),
namely,

AM Y (MX) = B, (4)

where M is an appropriate preconditioner. It should be noted that M ! is solved
from an equation instead of forming explicitly.

The GI-GH process generates a matrix basis span{Vy,- -, V,,} of the matrix
Krylov subspace IC,, (A, Ry) through the relations

Vi=Ry/B and (H,)is1iVigr = AV, — Z(Hm)j,ivja (5)

j=1
where 8 and (H,,);+1, are scaling factors for i = 1,--- ,m. Let Yi,--- Y, be
linearly independent matrices, where Y; € R"** for ¢ = 1,--- ,m. The scalars

(Hy)ji in (5) are opted by imposing the orthogonality condition
‘/;+1J—F}/177}/;7 'L:l,,m (6>
Using (5) and (6), we have

tr(Y;'U)

tr(YTV;)

<

( 7U)
( ‘7V‘)

where U = AV — Zgzl(Hm)jLVj With the above relations, we sketch out the
global generalized Hessenberg process with fized preconditioning. Based on Al-

— F
(Hm)j,i - -
F

<

Algorithm 1. The GI-GH process with fixed preconditioning.

= V|, Vi=V/B;

2. for i=1,---,m do

3 Z; = M~'V;: % inner process with a fixed preconditioner M
4 U= AZL,

5 for y=1,---,7do B

o () = tr(YTU)r(YV)); U = U = ()05

7. end for

s (Hp)ivri = |Uls Vigr = U/(Hp)iv14;

9: end for

gorithm 1, the global generalized Hessenberg method with fixed preconditioning
for solving (4) can be presented as follows.
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Algorithm 2. GI-GH: the global generalized Hessenberg method with fixed pre-
conditioning.
1: Choose X and compute Ry = B — AXj. Set 8 = ||Ro||, Vi = Ro/0;
2: Generate the block matrix ¥, = [Vi, -, V] from Algorithm 1. Update
Xy = Xo+ MY, % yp, where y,, = argmingegn ||Se; — Hyyll2 and
e; = [1,0,---,0]7 € Rm*L,
3: If converged then stop; otherwise set Xy = X,, and goto line 2.

ITT The global generalized Hessenberg methods with flex-
ible preconditioning

In Algorithm 2, recall that the same preconditioner M is used throughout
the iterations. On the contrary, if we employ flexible preconditioners M;, that is,
preconditioner changes at each step, then it can be expected the preconditioner
will be improved from one step to the next with the newly information. This
is the idea behind the main algorithm in this paper, i.e., the flexible global
generalized Hessenberg method (FGI-GH) which is shown below. We are ready

Algorithm 3. FGI-GH: the flexible global generalized Hessenberg method.

1: Choose X and the restarting frequency m.

2: Compute Ry = B — AXj. Set = ||Ryl|,V1 = Ro/5;

3 forvo=1,---,m do

& 4= M[lvi; % inner process with a flexible preconditioner M;
3 U= AZZ,

6: for j=1,---,i do

7 (Hpn)ji = tr(Y]U) /tr(Y]V;): U=U — (Hp)iVj:

8
9

end for )
: (Hm)ivri = U5 Vi = U/(Him) i1
10: end for
11: Form %5, = [Z,--+,Zy] by solving an inner system at line 4. Update

Xy = Xo+ Z5, * Ym, where y,, = arg mingcpn ||Be; — Huyls.
12: If converged then stop; otherwise set Xy = X,,, and goto line 2.

to comment on Algorithm 3 in comparison with Algorithm 2. If M; = M, then
Algorithm 3 reduces to Algorithm 2. Further, in Algorithm 3, we need to save an
additional block matrix %, , which presents the major difference between these
two algorithms. As a result, a relation of the form holds:

Agm - /VTYL+1 * Hma (7>
Where nf/erl = [Vi, s ,Vm+1] and Qom = [Zl, s ,Zm] .
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NUMERICAL METHODS FOR SYSTEMS WITH
COMPLEX MATRICES

Xue-Ping Guo

Fast China Normal University, Shanghai, China

Systems of nonlinear equations with complex symmetric Jacobian matrices
can be derived in many practical problems, such as nonlinear waves, chemical
oscillations, quantum mechanics, turbulence, and so on. we consider an effective
and robust algorithm for solving large sparse systems of nonlinear equations

F(x)=0, (1)

where F' : D C C" — (C" is nonlinear and continuously differentiable. The
Jacobian matrix of F(x) is large, sparse and complex symmetric, i.e.,

/

F(x)=W(x)+iT(x)

satisfies W (z)T = W(z), T(z)T = T(x). Moreover, matrices W (x) and T(z)
are real positive definite and real positive semi-definite matrices, respectively.

By making use of the special structure of the coefficient matrix A |, Bai et
al. in [2]| derived a modification of the well-known HSS iteration method [4], i.e.,
MHSS. In order to further accelerate the convergence rate of MHSS, Bai et al. in
[3] preconditioned the complex symmetric linear system by choosing a symmetric
positive definite matrix V' € R"™". The new splitting iteration method can be
described as follows.

The PMHSS iteration method
Let xyp € C" be an arbitrary initial guess. Compute zp.q for £k =0,1,2,---
using the following iteration scheme until {x} converges,

{(OJ + W)z = (al —iT)xzy, +b, )

(al + T)wpsr = (al +iW)zy 1 — b,

where « is a given positive constant and V' € R"™™" is a prescribed symmetric
positive definite matrix.

By making use of the preconditioned modified Hermitian and skew-Hermitian
splitting (PMHSS) iteration as the inner solver to approximately solve the New-
ton equations, we establish the modified Newton-PMHSS method.

The local convergence properties under the Hélder continuous condition are
analyzed and numerical results are given to confirm the effectiveness of our
method.
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The modified Newton-PMHSS method(MN-PMHSS)
1. Given an initial guess x(, positive constants « and tol, and two positive
integer sequences {l;}7°,, {mi}ry;
2. For k=0,1,--- until ||F(x)| < tol||F(x)| do:

2.1. Set dk;,O = hk:,O = 0;
2.2. For1=0,1,---,l; — 1, apply Algorithm PMHSS to the linear
system:

(aV(@p) + Wizp))dy 1 = (@V () — T (xp))drg — F(x),
(aV(@p) + T(xp))di i = (V (zp) + W (@p) ) dg gn + 0F (1),
and obtain dj;, such that

|F(xr) + F (z)dig, || < mill F(azi)|| for some my € [0,1).  (3)

2.3. Set yr = x + dk,lk-

2.4. Compute F(yg).

2.5. For m=0,1,---,my — 1, apply Algorithm PMHSS to the linear
system:

(@V(r) +Wler) hy iy = @V (2r) =T (2n) e — F(yr),
(@V(r) +T(xr) hkmr = (@V () + W (2n)) g gt + 2F (),

2

and obtain hy ,, such that

1F (i) + F (1) || < Tl F i)l for some 7 € [0,1). (4)

2.6. Set Tp41 = yr + him, -




28

/

"Numerical Algebra with Applications'

Bibliography

1.

10.

11.

12.

13.

LS. Aranson and L. Kramer The world of the complex Ginzburg-Landau
equation, Rev. Mod. Phys., 74(2002), pp: 99-143.

Z.-74. Bai, M. Benzi and F. Chen Modified HSS iteration methods for
a class of complex symmetric linear systems, Computing, 87(2010), pp:
93-111.

Z.-7. Bai, M. Benzi and F. Chen On preconditioned MHSS iteration meth-
ods for complex symmetric linear systems, Numer. Algor., 56(2011), pp:
297-317.

Z.-7. Bai, G. H. Golub and M. K. Ng Hermitian and skew-Hermitian split-
ting method for non-Hermitian positive-definite linear systems, SIAM J.
Matrix Anal. Appl., 24(2003), pp: 603-626.

Z.-7. Bai, G. H. Golub and J.-Y. Pan Preconditioned Hermitian and skew-
Hermitian splitting method for non-Hermitian positive-definite linear sys-
tems, Numer. Math., 98(2004), pp: 1-32.

Z.-7. Bai, G. H. Golub and C.-K. Li, Convergence properties of precondi-
tioned Hermitian and skew-Hermitian splitting method for non-Hermitian
positive-definite linear systems, Math. Comput., 76(2007), pp: 287-298.

Z.-74. Bai, G. H. Golub, L.-Z. Lu and J.-F. Yin Block triangular and skew-
Hermitian splitting methods for positive-definite linear systems, SIAM J.
Sci. Comput., 26(2005), pp: 844-863.

Z.-7. Bai, G. H. Golub and C.-K. Li Optimal parameter in Hermitian and
skew-Hermitian splitting method for certain two-by-two block matrices,
SIAM J. Sci. Comput., 28(2006), pp: 583-603.

Z.-7. Bai and G. H. Golub Accelerated Hermitian and skew-Hermitian
splitting iteration methods for saddle-point problems, IMA J. Numer.

Anal.; 27(2007), pp: 1-23.

Z.-7. Bai and X.-P. Guo On Newton-HSS method for systems of nonlin-
ear equations with positive-definite Jacobian matrices, J. Comput. Math.,

28(2010), pp: 235-260.

M. Benzi, M. J. Gander and G. H. Golub Optimization of the Hermi-
tian and skew-Hermitian splitting iteration for saddle-point problems, BIT
Numer. Math., 43(2003), pp: 881-900.

T. Bohr, M. H. Hensen, G. Paladin and A. Vulpiani Dynamical Systems
Approach to Turbulence, Cambridge University Press, 1998.

M.-H. Chen, R.-F. Lin and Q).-B. Wu Convergence analysis of the modified
Newton-HSS method under the Hélder continuous condition, J. Comput.
Appl. Math., 264(2014), pp: 115-130.



Xue-Ping GuoNUMERICAL METHODS FOR SYSTEMS. .. 29

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

M. T. Darvishi and A. Barati A third-order Newton-type method to solve
systems of nonlinear equations, Appl. Math. Comput., 187(2007), pp: 630
635.

R. S. Dembo, S. C. Eisenstat and T. Stethaug Inexact Newton methods,
SIAM J. Numer. Anal., 19(1982), pp: 400-408.

S. C. Eisenstat and H. F. Walker Globally convergent inexact Newton
methods, STAM J. Optim. 4(1994), pp: 297-330.

X.-P. Guo On semilocal convergence of inexact Newton methods, J. Com-
put. Math., 25(2007), pp: 231 242.

X.-P. Guo and I. S. Duff Semilocal and global convergence of the Newton-
HSS method for systems of nonlinear equations, Numer. Linear Algebra
Appl., 18(2011), pp: 299-315.

C. T. Kelley Iterative Methods for Linear and Nonlinear Equations, STAM
Philadelphia, 1995.

Y. Kuramoto Chemical Oscillations, Waves, and Turbulence, Dover Publi-
cations, Inc., Mineola, New York, 2003.

J. M. Ortega and W. C. Rheinbolt Iterative Solution of Nonlinear Equations
in Several Variables, Academic Press, NewYork, 1970.

Y. Saad Iterative Methods for Sparse Linear Systems, The 2nd edn., STAM
Philadelphia, 2003.

C. Sulem and P. L. Sulem The Nonlinear Schrodinger Equation, Self-
focusing and Wave Collapse, Springer Verlag, New York, 1999.

Q.-B. Wu and M.-H. Chen Convergence analysis of modified Newton-
HSS method for solving systems of nonlinear equations, Numer. Algor.,
64(2013), pp: 659-683.

A.-L. Yang and Y.-J. Wu Newton-MHSS methods for solving systems of
nonlinear equations with complex symmetric Jacobian matrices, Numer.
Algebra, Control and Optimization, 2(2012), pp: 839-853.



30 "Numerical Algebra with Applications"

ON THE COMPUTATION OF THE INVERSE
STURM-LIOUVILLE PROBLEM IN IMPEDANCE
FORM

Huang Zhengda

School of Mathematical Science, Zhejiang University, China

This is a report of our group’s work on the application of numerical algebra
methods in the computation of the inverse Sturm-Liouville problem in impedance
form.

The inverse Sturm-Liouville problem in impedance form considered here is
to recover the unknown impedance function a(z) > 0 on [0, 1] in the equation,

(a(z)y(x)) + Aa(x)y(z) =0, 0<z<l, (1)
with Dirichlet boundary conditions

y(0) =y(1) =0. (2)

Problem 1: Given the first n eigenvalues, Ay < Ay < -+- < A, of (1) with
boundary conditions (2), we seek an approximation to the impedance a(zx).

Since the impedance can only be determined up to a multiplicative constant,
it will be assumed in what follows that the normalization

a(§) =1 (3)
for some ¢ € [0, 1].
Over the mesh
, 1
O:$0<$1<$2<°'°<$K<$K+1:1, $Z':Zh,h:r+1, (4)

where K is a undetermined positive integer, (1) is approximated by difference
equations

a;iYi—1— (ai —|—a¢+1)y¢ + Qi 1Yiv1 = —AthZ'(CLZ'-FCLZ'_H)/Q, 1=1,2,..., K (5)

with
Yo = 07 YK+1 = 07 (6)
where y; =~ y(z;), A~ X\, and a; ~ a(x; — h/2) for i =1,2,..., K + 1.
The matrix form of (5) and (6) can be

BY = ADY, (7)

where Y = (y1,vs,...,yx)’, D, adiagonal matrix, and B, a tridiagonal matrix,
are determined by a;,7=1,2,--- | K.
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Two cases, without and with the symmetric assumption for the impedance,
are considered.

For the case without the symmetric assumption, we choose ¢ =0 and K = N
a suitable positive integer, and seek a least square approximation a(x) € 1+

span{¢1(x), po(x) - -+ , dm(x)}, where {¢p;(x)}", are appropriately chosen basis
functions. In other words, a(zx) is in the form of

a(x) =1+ Z oi(x).

Let ¢g(x) =1 and ¢y = 1, then (7) is changed to

m m

(> aBy)Y(c) = Ac) (D eDy)Y(c),

i=1 =1

where ¢ = (ay,ca,...,cn)t, Alc) ~ X and Y(c) = (y1,99,...,yn)T, B; and
D; are diagonal and tridiagonal matrices 1 =1,2,--- | N.

Now Problem 1 for the case without symmetric assumption is transferred
to

Problem 2: Given the first n eigenvalues, \y < Ay < --- < A, we find
c € R™ such that the function

n

G(c) = (Aic) +e(i, h) — \)?

=1

is minimized, where

2
h?

:2(1imh
sin (52
e(i, h) :z2w2—4y i=1,2,---,n
are corrections (or regular conditions or preconditioners) which will improve ac-
curacies in numerical computations.

Three methods are constructed to solve Problem 2. Firstly, by solving the
equation
dc(t)
dt

numerically with the fourth order Runge-Kutta method we get the descent flow
method, where c(¢) is called the steepest descent flow on R™ for G(c) and ¢t is
a certain artificial parameter.

Secondly, let P be a positive matrix. By solving the equation

= —VG(c)

dc(t)
dt

= —PV(G(c)
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numerically with the fourth order Runge-Kutta method combined with BFGS’s
method we obtain a modified descent flow method.
Thirdly, by solving Problem 2 with ULM-Newton like method combined with
the descent flow method above, we construct a ULM-like descent flow method.
For the case of the symmetric impedance, let K = 2n + 1. Since the
impedance function a(z) is assumed to be symmetric, we have

a; = A2p+43—i, i:1727"'7n+17

and let a,+1 = 1 for matching the normalization (3). Then (7) can be substituted
with
B(a)Y(a) = Ala)D(a)Y (a), (8)

where a = (a1, as,...,a,)", and D(a) is a positive definite matrix since a; > 0
forall e =1,2,...,n.

Now Problem 1 is transferred to

Problem 3: Given the first n eigenvalues, Ay < Ay < --- < \,, we seek
based on (8) a m-vector a whose i-th component, i = 1,...,n, is a good
approximation to a((i — 1/2)h), where h = 1/(2n + 2).

Define f: R" — R" by

(f(a))l :Al(a)—l—s(z,h) —)\Z’, 1= 1,2,...,71, (9)

where _

1 — cos(imh)
B2

are corrections (or regular conditions, preconditioners) too. Then Problem 3

may be solved by computing the zeros of the nonlinear equation

f(a) = 0. (10)

(i, h) == i*n* — 2

7221727”'7n

We use the simple Newton’s method
£'(0)(ancr1 — ax) = —f(ax),

where the initial approximation ag is chosen with all entries equal and f'(0) =
is the nonsingular Jacobian matrix of f at a = ag with entries

£(0)];; — 2 cos((2] — 1)i7rl;b)(1 — cos(2i7rh))7 i i=12...n

We have for n € N if there exists a constant C'(n) > 0 such that || ZI((;:)) |2 <
C'(n) and ay is positive for each k, then the sequence generated by the simple
Newton’s method with ag, which is chosen with all entries equal, converges to a
solution of (10).

Numerical examples for smooth, non-smooth and discontinuous impedance

functions are performed to show the efficiency of these methods.



Karyakin M.I. ... USING COMPUTER ALGEBRA. .. 33

USING COMPUTER ALGEBRA SYSTEM FOR THE
STABILITY ANALYSIS OF NONLINEARLY ELASTIC
CYLINDER WITH INTERNAL STRESSES!

Karyakin M.I., Shubchinskaya N. Y.

Southern Federal University, Rostov-on-Don, Russia

Introduction. The concept of internal, or residual, stresses existing in solids
that are free from external loads was appeared firstly in the works of V.Volterra
[1] at the beginning of the XX century. One particular reason of such stresses
could be the existence of isolated linear defects, well known due to A.Love [2]
terminology as Volterra dislocations. The idea of dislocation as a linear defect of
the crystal lattice arose in physics much later — in the thirties of the last century
[3]. The concept of disclinations (rotational defects or rotary dislocations) ap-
peared even later though having found practical confirmation not only in lattices
but in different various material structures either [4-5].

Simulation of dislocation within the continuum description is quite wide and
rapidly developing branch of modern mechanics. A significant contribution to its
development was made by the Rostov-on-Don school of mechanics, some results
of the work of which had been presented in [6], particularly in matters related
to the generalization of the theory of elastic dislocations and disclinations to the
nonlinear case.

[solated screw dislocation was the object rather “convenient” for the study
within the framework of the nonlinear continuum mechanics, since the corre-
sponding stress-strain state is described by a function of the radial coordinate,
namely the function of radial displacement of the points of the cylinder. Various
aspects of this problem, including the elimination of singularities at the axis of
dislocation, the existence of discontinuous solutions etc. for incompressible media,
were considered, for example, in [7]. In this paper we consider the equilibrium
and stability of nonlinear elastic cylinder with a screw dislocation in the case of
a compressible material. The influence of defect formation on the length of the
load-free cylinder was studied. Some questions of the stability of the expansion
and contraction processes were discussed.

The main method used for this analysis is so-called “semi-inverse” method
when the nonlinear boundary value problem of equilibrium is formulated by
means of pre-determined semi-inverse representation of deformation. When appli-
cable this method reduces 3D problem to the BVP of smaller dimension. Despite
rather narrow area of usage — simple geometric deformations of canonic-shaped
bodies — this method could deliver answers for many fundamental questions of
qualitative and quantitative behavior of essentially nonlinear problems’ solutions.
It is quite effective in analysis of standard experiments — stretching, torsion, bend-
ing etc. — which are carried out while studying new materials and developing new

!Supported by Russian Ministry of Education and Research, project 9.665.2014 /K
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models of nonlinear behavior for real-life materials. This method is very algorith-
mic but for many specific strain energy analytical derivation of boundary value
problem is excessively hard and not always reliably.

Within the framework of computer algebra system Maple an interactive pro-
gram package for analysis of nonlinear elastic problems has been developed [§].
This package is based upon the semi-inverse method and includes set of algo-
rithms of automatic generation of boundary-value problems of equilibrium, in
Cartesian as well as in orthogonal curvilinear co-ordinate systems. The goal of
the package is full computer automation of semi-inverse method and so releasing
the researcher from cumbersome analytic derivation routine. Computer algebra
system Maple have been chosen as a shell due to combining powerful and re-
liable analytic transformation tools, effective algorithms and variety of graphic
representation of results.

To analyze the stability the bifurcation approach was used that based on
linearization of the equilibrium equations in the neighborhood of the obtained
solutions. The bifurcation point was defined as such value of the "loading" pa-
rameter (Burgers vector magnitude, stretch ratio or other strain characteristic)
for which the linearized problem has a nontrivial solution. Numerical determina-
tion of the bifurcation points was based on the analysis of the homogeneous linear
boundary value problem of sixth order whose coefficients expressed through the
radial displacement function and its derivative. The similar problem of compres-
sion was used for verification purposes. Some extensions of the package 8] for
stability analysis were used to obtain numerical results presented hereafter.

The equilibrium of the cylinder with a screw dislocation. The ap-
pearance of a screw dislocation in the cylinder is described by the following
semi-inverse representation:

R=P(r), ®=p+vz, Z="z+ap, (1)

where {R,®, 7}, {r, ¢, z} — cylindrical coordinates of the actual and reference
configuration, respectively, stretch ratio v describes changing of the cylinder
length, a = |b| /2w — dislocation parameter, b — Burgers vector, P (r) — function
of radial displacement of points of the cylinder. Since the formation of dislocation
may be accompanied by twisting [9, 10|, parameter ¢ — twist angle per unit
length of the cylinder — was introduced in the semi-inverse representation (1).
Given a semi-inverse representation (1) all tensorial characteristics of strain
could be determined, namely deformation gradient C', Cauchy-Green strain mea-
sure G, and its invariants I, k = 1,2,3 [11]. After setting up the specific po-
tential energy function W, the equilibrium equations for Piola stress tensor D
can be written as follows
divD = 0. (2)

We will limit our considerations by the simple boundary conditions on the lateral
surface of the cylinder
e, D=0, (3)
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meaning no applied loads there; {e,,e,,e.} — orthonormal basis in a cylindrical
coordinate system of reference configuration. By using (1) problem (2)-(3) is
reduced to a boundary value problem for an ordinary differential equation of
second order for the function P (r).

To describe the mechanical properties of the cylinder we will use two models
of compressible medium, i.e. two specific energy functions.

W = A%If (U — E) 4 ply [(U - Eﬂ , (4)
and

W:ul(l—ﬁ) 12131+3(1§“—1)—3] +u16 [ll+l(13a—1) —3] (5)
2 « 2 «

Model (4) is known as harmonic material, while Eq. (5) presents Blatz and Ko

material. In (4)-(5) U = G'/? — distortion tensor, A, j, 3, & - material param-

eters. In the case of small strains parameter « is associated with Poisson ratio

by relation a = v/(1 —2v).

Investigation of the stability of the cylinder under tension or compression
should obviously begin with an analysis of the “proper” length of the cylinder,
due to the formation of dislocations. Following the scheme presented in [12], it is
convenient to introduce following representations of axial force () and twisting

moment M in the form:
Q= / / D.,dS (6)
S

M = / /S D.oRdS. (7)

Consider firstly the case of non-twisted cylinder assuming ¢ = 0 in (1). Then,
following the scheme in [12], from the condition @ = 0 we obtain the dependence
between the stretch factor v and dislocation parameter a. For the case of har-
monic material (4) numerical calculations show that the dislocation formation
in the cylinder always leads to its shortening. For the model (5) the situation is
more complicated: the cylinder can be shortened or stretched depending on the
parameter (5. These results are consistent with the asymptotic formulas given in
[12].

To analyze the cylinder with free ends both parameters v and v should
be considered as varying, wherein to determine these parameters it is necessary
to vanish the axial force (6) and twisting moment (7). Calculations show that
change of length is not monotonic for values « close to 0.5, which corresponds
to a Poisson ratio v = 1/4; the cylinder is shortened for all other considered
values of parameter «. Analysis of the loading diagrams show that for different
values of parameter a corresponding curve has the maximum point, followed by
a decreasing segment. Such segment may indicate a stability loss of the cylinder
at tension.
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Stability analysis. Let us give small displacements to all points of the cylin-
der from the known equilibrium state by changing the semi-inverse representation
(1):

R = P(T)+€U1 (T79072>7
O =p+pz+eUy(r,p, 2), (8)
Z=~z+ap+eUs(r,p 2),

¢ — small parameter, U, k = 1, 2,3 — new unknown functions. The linearization
process is reduced to computation following expressions for all strain character-
istics y

F = d_é“F (Ro + €”w) ‘5:0. (9)

Here Ry — the radius vector of the known equilibrium position, w — vector of
small displacements expressed in terms of the unknown functions. Finally, by
linearizing Piola stress tensor we change the original nonlinear problem (2)—(3)
by its linearized version:

div lo) =0, (10)
¢r-D =0, (11)
Equations (10) are linear partial differential equations of second order with
respect to the unknown functions Uy. System (10)-(11) admits solution in the
form
Ui (r, ¢, 2) = uy (r) cos (ng + bz) ,
Us (1,0, 2) = us (r) sin (np + bz) , (12)
U3 (Ta 2 Z) = us (T) sin (ngp + bZ) )

where b = mm/l; n,m € N; | — initial length of the cylinder.

The substitution (12) turns the system (10)—(11) into a linear boundary val-
ue problem for a system of three ordinary differential equations of second order
in relation to wuy (7). Detailed scheme of analysis of the existence of non-trivial
solutions for such systems was described in [13]. Analysis of typical bifurcation
curves was performed for both material models as well as for compression and
for tension. Instability of sufficiently long cylinder at compression occurs by the
mode (n,m) = (1, 1), at tension — by the mode (n,m) = (0, 1), i.e. by axially
symmetric mode. It can be seen in particular that the effect of dislocation on
buckling during compression is much more important than in tension. One spe-
cific feature of Blatz and Ko model is non-monotonic character of the bifurcation
curve at tension that appears to be connected with the inverse Poynting effect

14].
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NUMERICAL SOLUTION OF STEADY
CONVECTION-DIFFUSION EQUATION IN
COMPRESSIBLE MEDIUM!

L. A. Krukier, B. L. Krukier

Southern Federal University, Institute of MM and CS SFU,
Rostov-on-Don, Russia

Introduction

The convection-diffusion-reaction (CDR) equation is the base for mathemat-
ical modeling in many fields of science and engineering. But up to now the main
attention of researchers has been connected with convection-diffusion (CD) prob-
lems and their numerical solution [11]. The most difficult problems for numerical
solution of CD equation are [23]:

1. diffusion is quite small which means that the dimensionless parameter
Pe > 103,

2. the field of velocity has stagnation points,

Many different approaches have been proposed [15], [19], [23] to resolve the
difficulties - exponential fitting, compact differences, upwinding, streamline diffu-
sion [5], artificial viscosity and so on. Approximation of the first order derivatives
in CD is the most interesting moment of the solution for problem and very im-
portant work. It is well known [22], [15] that using for approximation first order
derivatives upwind schemes gives us linear equation systems with M-matrix [21],
but matrix which can be obtained by using central FD schemes [6] is positive
real. Each of these schemes have their own advantages and deficiencies which
have been discussed in [23], [15].

When CRD equations investigate it is necessary to take into account the sign
of reaction coefficient. If it is nonnegative than there is no problem with numerical
solution, but if it is negative than the difficulties can arise. So if the negative
coefficient reaction exists in CDR equation it means that after approximation it
moves spectra of arising matrix in the left half part and matrix can lose property
of being positive real. So, there is one more difficulty added to CDR equation in
this case:

3. the coefficient of reaction is negative.

Consider the convection-diffusion-reaction equation written in symmetric
form [10] in bounded domain © = [0, 1] x [0, 1] with boundary condition:

~FAC+ ] (uGE + 2D 4 08C 4 20N) L aC = fay), (1)

! This work was supported by RFBR, grants N15-01-00441a, N15-51-53066 and N14-01-31076
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Cl 50 = Cyy, (2)
divlU = 0, (3)

where Pe is Peclet number, U = {u,v} is the field of velocity in Q, C is un-

known function, « is reaction coefficient, divU = 0 (for incompressible medium),
[ is the right part of equation, 6€) is the boundary of €2, C,, is the boundary
value.

Finite difference approximation of the equation

The uniform grid €2;, with step h, = h, = h  has been introduced in
domain €. Introduce functions C(xz;, yx) = Ci, x; = i * %, yp = k % % All
unknowns are calculated in the middle of the cell. The boundary conditions on
0f2 are interpolated on the boundary 02, with a second order truncation error.
The standard notation originating from [17] is used. The boundary conditions,
with appropriate coefficients, are taken into account on the right-hand side of the
difference equations. The central difference approximation of the first derivatives
has been used. So, we obtain for (1)

1
_ A -
Pe hC+2

1 Civik — Cic1ir - Uis1kCigar — Ui1:Ci—1pe
(Uz o + 57 + (4)

Cik+1 — Cigp—1 n Vit+1Cik+1 — Vie—1Cin—1
2h 2h

Here A,C is the difference analogue of Laplace operator. Transform (4),
multiply both parts of equation by Peh?. Then

Vik ) + aCy, = fir.

Peh |U;,. + U;
(4Cik — Civ1g — Cic1p — Cigy1 — Cig—1) + 5 [ d 5 2 i—
Uir + Ui Vit + U; Vit + Uip—
_%@_m N %CM - %Cm_l} N

+aPeh*Cy, = Peh® fi,

or

Peh - Peh -~
(4 + OzPehQ)Cik + [(—1 + TeUzk) Cz‘+1k + (—1 — TeUllk) Ci_1p+ (5)

Peh -~ Peh -~ ~
(—1 + TVHC) Cik+1 + (—1 — Tvm—1> Cik—1:| = fir,
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where U + U Uy + U
Uik _ ik z+1k7 0@'—1k _ ik zflk7
2 2
Vet Vi - Vi + Vi
‘/ik _ ik +2 1k+1 7 ‘/z‘k—l _ ik +2 ik 1’

fix = Peh’ fiy.
The coefficients in (5) include the quantity

Rej, = Peh/2 (6)

which was called cell Reynolds number or the skew-symmetry coefficient of the
problem.

System of linear algebraic equation

Using natural ordering of the unknowns, we transform (5) to the nonsym-
metric linear system of equations

Au = f,
A=A+ A4+ D, Ay=1(A+A") = An+ D = A], (7)
Ay =L (A= AT) = = AT,

where A is (N — 1) x (N — 1) matrix, N = %, u = {uyy, Ut ..., Un_1N_1}7 iS
the vector of solution, f = {fi1, fi2, ..., fy_1inv_1}? is the vector of the right
part. Matrix A can be naturally expressed [6] in the case of central difference
approximation of the convective terms in (5) as a sum of symmetric positive
definite matrix Aa, skew-symmetric matrix A; and diagonal matrix D. Aa is
a difference analogue Aj, of operator A, describing a diffusion process, D is
discrete analogue of the reaction term in the equation (1). A; is a difference
analogue of the convective terms. Thus, linear system (7) with non-symmetric
matrix A is constructed.
If in (7)
Ay = Aj >0,

then matrix A is called positive real.
The linear system (7) is called strongly non-symmetric if

[Aoll / [ Ax]] ~ O(1),

where [|x|| is one of matrix norms.
It can be easily verified that system (7) becomes strongly nonsymmetric for
large values of Pe and o = 0. As a result we have

[ Aollc = 4,
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| A1][oe = Rep max;(vij + vii 1] + [viij + viija| +
+ |v9i j + Vaiv1 | + [v2i + v2ic14])/2,

Theorem 1. Let equation (1) be approximated by finite difference scheme
(5). Then the system (7) is positive real if o > 0.

Proof.

The symmetric part Ay of matrix A has the form Ay = Ax+ D and doesn’t
have a definite sign in general case, but it is well known [17] that matrix Aa
is positive definite. So, if diagonal matrix D has nonnegative elements than A
will be positive definite as the sum of positive definite and nonnegative definite
matrices. The last means that Ay > 0 if a > 0 and system (7) is positive real.

It is well-known [15], [19] that using upwind scheme for equation (1) leads us
to the system (7) with A being M -matrix [20], but in this case the obtained sys-
tem won't be essentially nonsymmetric because matrix A has diagonal dominant.
It is necessary to pay our attention [10] that the form in which we will approx-
imate convection-diffusion equation plays a great role in successful numerical
solution.

Consider case when coefficient o < 0. If Q = [0, 1] x [0, 1], boundary con-
ditions are (2) and regular mesh is used, then eigenvalues and eigenvectors of
L = —3:A), + a are well-known (18], [12]:

4 h h
Amp(Ln) = Do <sin2 mTﬁ + sin? p%) + a,

2T h < <
= 07 7>
Pe - Peh?

+ a,

i=1,2,...N, N=(n-1)x(n—-1).

So, for a < —%, difference operator for diffusion and reaction terms can lose
the property of being positive real then from Hirsh theorem [13], its spectrum
can move to the left half plane.

Theorem 2. Matriz (7), obtained from (5) is positive real, if

272

Qeonv Z - Pe-

Two-parameters skew-symmetric iterative solvers

Besides important role in the mathematical modeling convection-diffusion-
reaction equation is a good test for iterative methods. A lot of papers [1], [4],
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23] have already described numerical experiments with CD or CDR equations
for different parameters.

Different basic iterative methods such as ILU [1], [3], [16], SOR [21], |22]
have been used directly for solution of arising after approximation of CD or
CDR equations by linear equation systems as well as preconditioners for CG or
BiCG type’s methods [14]. As it was shown in [1|, ILU as a preconditioner for
GMRES(20) and BiCGStab has been broken for large Rej,, a = 0 from (6) and
natural ordering of the unknowns.

We present a two parameters triangular [7] and product triangular iterative
2] methods that use the skew-symmetric part of the matrix as an input and
only require the matrix (7) to be positive real. Some ideas for using the splitting
of skew-symmetric part of the matrix to solve linear equation systems arising
after central difference approximation of first order terms in (5) have been firstly
proposed in [6].

Let us approach (7) by considering the iterative method of the following form:

n+1 n

Y Ay =, n>o0, (8)

B(w
where f,yo € H,H is an n-dimensional real Hilbert space, f is the right
part of (7), A, B(w) are matrices)in H, A is given by equation (7), B(w) is
invertible, o is an initial guess, vy, is the k-th approach, 7,w > 0 are iterative
parameters, v is the solution that we obtain, ef = ¢* —u and r* = Ae* denote
the error and the residual in the k-th iteration, respectively.

Here it is important to note that B(w) is in a certain sense a preconditioned
matrix. In general, B(w) is supposed to be nonsymmetric.
Method (8) may be also represented as

Y =Gy" 4T,

G = B Hw)(B(w) — TA). (9)

Consider the two ways of choosing matrix B. The first is

B(w) = Bo+w((1+j)Kr+ (1 -j)Ky), j==+1, B.=Bl  (10)

and the second is
B(w) = (BC + OUKU)Bgl(BC + wKL), B. = BCT (11)

where K; + Ky = A, K, = —Kg, Be = Bg. The matrices K; and Ky
represent strictly upper and lower triangular parts of a skew-symmetric matrix
Ay from (7) and matrix B can be chosen arbitrarily, but has to be symmetric.
These methods are called two-parameters triangular (TM) and product triangu-
lar (PTM) methods respectively.

Matrix B is non-symmetric and can be represented as
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B=By+Bi,By==(B+B")=DBj,Bi=-(B-B")=-Bf.

DN | —
DO | —

We find the symmetric and the skew-symmetric parts of matrix B for TM
1
By = Be + 2(,0] (KU — KL) = =1, B; = —OUAl (12)

and PTM
By = Bo +Ww*KyBi' 'Ky, By = wA,;. (13)

The iteration matrix G from (9) for these methods is

G =B Y (B—7A)=(By+B)) ' (By+ By — 1Ay — T4,). (14)

We consider the norm of iteration matrix G in (14). Let us require that
matrices (10) and (11) are positive real and define matrices

1
Lor = By — §WA0, (15)

and
LOPT = BO - OUA(). (16)

Using (12), (14) and (15) iterative matrix Gp for TM can be represented as

Gr = (B() + %wAl)_l (BO + %wAl — TAO — TAl) =
== (BO - %WAO + %WAO + %UJAl)_l (BO — %CUAO + %CUAO + %WAl — TAO — TAl) ==
— (LOT + %CUA)il (LOT — (T — %UJ)A)

Introduce matrices

Por = LOT AL, 2, (17)
and 1 1
Popr = LoprALypy. (18)
and require for TM that
Lor = By — —wAO Ly >0 (19)
and for PTM
Lopr = By — wAy = L pp > 0 (20)
Then

Gp = ‘1/2(1 + wPOT) YT — (1 — Sw)Por) Lt = Ly, QGPLOT,

Gp=(I+ wPOT) "I — (1 — %W)POT)
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The last equality means that matrix Ly generates energy norm |G|, =~ and

(6l = |+ GoPir) 7 = (7 = 3 o 21)

2

Lemma 1. Let C' be positive real, o, 5 are positive numbers. Then inequality

—a<pf<aa>0 (22)

(I +aC)™ (I -B0)| <1 (23)
Proof.

First of all we point out that matrices (I +aC)™! and (I — 3C) are com-
mutative. Later we consider matrix

T = (I+aC) I - B0O)

and estimate its norm

2 To|]? I+aC) Y (I—BC)v,(I+aC) Y (I-BC)v
\wnzwm#ﬁwafwmﬂf*; PR =
I— I+aC) 1o, (I- I+aC) 1y
= SUp,4g (I-BC)(I+aC) (1)21()) BC)I+aC)” v)
Let
u=(I+aC) v
then
2 _ ({=BC)u,(I-BCYu) _ (u,u)=2B(Cuu)+5(Cu,Cu) _
HTH = SUPux0 (I+aC)u, ((IgaC;) () )S(Cpuc#(; (u, u)+2a(C’u u)+a?(Cu,Cu) —
=1- (Oé + /6) 1nfu7é0 (u,u)+20(Cuyu)+a?(Cu,Cu) *
So, if
a+5>0
a—p3>0 (24)
a>0
and
(Cu,u) >0
then
T < 1.
and (23) fulfills. Inequalities (24) transform to (22).
J

Lemma 2. 8] Let D = DT >0 and A be positive real. Then

H(D oA (D - JA)HD <1,
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where o > 0 s parameter.
Proof Let

T=(D+cA) (D—-0cA).

First we note that

T =D V(I + oD Y2AD1/2) ' x
x(I —oD2AD~1Y/2)D1/?

and
I7ll, = ||7| (25)

where N
T={I+ocM)'(I—oM),
M =C™2AC1?

Then we obtain from (25) and Lemma 1 with o« = § = w result of Lemma 2.

(]

We applied Lemma 1 to matrix G in (21) and get following Theorem.

Theorem 3.Let A in (7) be positive real. Then iterative method (8), (10)
converges in Hp,. if (19) fulfills and

0<7<w (26)

Proof of this theorem consists of two step:

-show that Pyr is positive real (Its the property of positive real matrix [18§],
if A is positive real, then C = QAQT is positive real, too). So, from (17) Pyr
1s positive real.

- insert in (22) a = jw, 8 = (T — jw) then we've got (26).

Similar laying out we can repeat for PTM just replace (21) on

Gl 1y = |+ wPopr) (I = (T — w) Popr)|
using (13), (14), (16), (18) and (20).

g

Theorem 4. Let A in (7) be positive real. Then iterative method (8), (11)
converges in Hp,,. if (20) fulfills and

0<717<2w

The proof of this theorem is the same of the previous one.
]
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Problem No. V1 V9
1 1 —1
2 1—2x 2y — 1
3 rT+y T —y
4 sin2mx | —2my cos 27w

Table 1. Velocity coefficients for test problems.

Numerical experiments

In this section we present the results of numerical experiments in which the
technique described above is used to solve nonsymmetric linear systems with
a < 0 and a = 0. We compare the performance of SSOR [14] and PTM [2] iter-
ative methods to solve linear systems arising from the standard 5-point FD ap-
proximation of the steady convection-diffusion-reaction problem (1) - (3) where
F' is chosen so that the solution of (1) is defined as

u(x,y) = e sinTrsinmy.

Equation (1) has been discretized by centered differences on a uniform grid
with 33 x 33. In the table 1 the used velocity coefficients of (1) are presented.
Note that, for each model problem they are chosen to satisfy the constraint
divt’ = v, + ve, = 0 (which follows from the medium incompressibility for the
problem (2)). On the whole, in order to the test results to be comparable with
those obtained in the other adjacent papers we take the analytical solution and
the velocity coefficients similar to those in [3].

The initial guess in all runs was a zero vector and iterations were performed
until

I /1) < 107°, (27)

where 7™ is the residual vector, and || % || represents the Euclidean norm. Check-
ing and comparing iterative methods SSOR and PTM for different negative «
(Table 2) we show that methods are very good for |a| > 100. It means that ma-
trix (7) is strongly diagonal dominant. This is connected with existence on main
diagonal of elements a; = (4 + aPeh?), which we obtain after approximation
of coefficient of reaction. It includes numbers o and Rey, grows by module «a
and Rej,. As we can see from the Table 2 the number of iteration for « = 0
grows with the increasing Peclet number. In contrast of this behavior of both
iterative methods, the number of iteration decreases with grow of Peclet number
and modula coefficient of reaction.
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Pe Problem 1 Problem 2 Problem 3 Problem 4
PTM [ SSOR | PTM [ SSOR | PTM [ SSOR | PTM | SSOR
a=0

10°] 77 113 50 106 66 107 68 157

10%] 565 | 863 | 297 | 565 | 279 | 632 | 369 | 1054

10° | 5196 | 6725 | 1990 | 3531 | 1694 | 4980 | 2538 | 7416

a=—10

10°] 51 72 31 37 45 54 59 108

107 32 41 22 23 33 34 33 65

10°] 30 41 23 23 32 33 32 65
a=—100

108 7 5 9 6 9 7 12 13

100 7 5 9 6 9 7 12 13

100 7 5 9 6 9 7 12 13
a = —1000

10°] 5 3 6 3 5 3 7 4

10°] 5 3 6 3 5 3 7 4

10°] 5 3 6 3 5 3 7 4
a = —5000

10°] 5 2 4 3 4 3 6 3

10t 5 2 4 3 4 3 6 3

10°] 5 2 4 3 4 3 6 3
a = —10000

100 4 2 4 3 4 3 5 3

100 4 2 4 3 4 3 5 3

10°] 4 2 4 3 4 3 5 3

Table 2. Number of iterations for different «
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Conclusions

The behavior of iterative methods to solve (7) which was obtained after ap-

proximation of CD (a = 0) and CDR («a < 0) equations is quite different (Table
2). The case with o« = 0 shows that matrix loses the property of diagonal dom-
inance and the methods require more iterations as Rej, increasing. Case with
a < 0 for big numbers a shows a very quick convergence of both methods for
big numbers of Rey,.
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ITERATIVE SOLUTION OF THE CONSTRAINED
NONLINEAR LEAST-SQUARES PROBLEMS!
Martynova T.S.

Southern Federal University, Rostov-on-Don, Russia

Solving the nonlinear least squares problems arising in nonlinear data fitting is
considered. This problem holds, for example, in the simulating of the environment
pollutants by X-ray analysis.

Let z, a local minimizer, R : R” — R"™ continuously differentiable. Nonlin-
ear least squares problem (NLLS) can be written in the following form:

m

;161}% F(x) = %R(m)TR(x) = %Zri(fv)Q,

1=1

where m > n (usually, m > n), ri(z) are nonlinear functions. Parameter
estimation and curve fitting are typical applications for NLLS, where data sets
(ti,yi), i = 1,...,m should be approximate by nonlinear model M (x,t). The vec-
tor x € R" contains the n parameters to be estimated. The residual functions
ri(z) = M(x,t;) —y; are the differences between the model and the observations.
Most specialized algorithms for NLLS exploit the special structure of the non-
linear least-squares objective function. Let J(x) € R™*" is the Jacobian of the
R(x),i.e. J(x);; = Ori(z)/0x;, H(x) is the Hessian and g(z) is the gradient of
the F'(z) respectively. Then [1] H(x) = J(x)TJ(2)+ Q(z), g(x) = J(x)TR(x),
where Q(x) = >, ri(x)H;(x). For NLLS problems we approximate the Hessian
as H~ JUJ, sofaras Q(z) — 0 if z — x,.

For solving unconstrained NLLS we have used trust-region algorithm. The
quadratic model function my at each iterate xj is

1 1
my(d) = 5\\3,4\3 +dVJE Ry, + §dTJ,€TJkd. (1)

Thus at each iteration, we seek a solution dj € R" of the subproblem based on
the (1) subject to some trusted region:

1
min o{|Jyd + Rilly, | Drdlls < Ay, (2)

where Ap > 0 is the trust-region radius, D € R™*" is a diagonal matrix with
positive diagonal entries. The solution of the (2) satisfies an equation of the form
(JE T + AD2)d = —JF Ry, A > 0 [1]. It is the Levenberg-Marquardt method.

Many approaches exist for the solution of nonlinear least-squares problems,
however, most research has focused on the NLLS without constraints.

!Supported by Ministry of Education and Science of the Russian Federation (basic part, project N1420)
and RFBR, grant N15-01-00441-a, grant N15-51-53066 GFEN-a.
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Let the constraint function h(x) is a vector-valued linear function describing
any constraints on the parameters. The method of Lagrange multipliers can
be used to solving this problem. Optimality conditions for the problems with
equality constraints are as follows [2]:

{ V.L(x,\) = VF(x) + Vh(z)\ =0, 3)
ViL(z,\) = h(zx) =0,

where L£(x, )\) is the Lagrange function, i.e. L(z,\) = F(z) + M h(z), X € R?
is a vector of Lagrange multipliers, p < n is a number of the constraints. Then
(24, A\x) € R™P? ig a saddle point of the Lagrange function.

The Gauss-Newton (GN) method for solving (3) is [2]:

Tpr1 = Tp + ATp,  App1 = Ap + AN,

were (Axy, AX;) € R™P can be obtained from the following system:

V2L(25, A [ﬁi’;] = —VL(1, M)
or
[ JL Ty Vh(xk)] [Amk} _ [Vxﬁ(xk,)\k)}
Vh(zp)Y 0 AN, h(zy) '
Let h(z) = Ex — f =0, the matrix £ € RP*™ has full rank and f € R?. Then

Mk ET AZL‘k L U (4>
E 0 A/\k o Vi ’
where My = JI'J, € R™™ are positive semidefinite, (ul,vl)T € R"™ and
Up = Jng—{—ET/\k, ve=Frp—f, u €eR", v e R, £k =0,1,.....

We employ the augmented Lagrangian method [3|, the matrix M will be

replaced by a positive definite matrix My, = M, +v.ETE, v, > 0 and iteration
methods can be applied to solve the augmented linear system.

m BT Axy, L uk+7kETvk (5>
E 0 AV U '

Many computational difficulties can be overcome by using preconditioning (4)-
(5). We can rewrite the saddle-point linear system into non-symmetric form [4]

Aw = b,

[ M ET | Az | —u
ol ST e B
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where @ = u + yETv (hereinafter subscript of the Gauss-Newton iterations
omitted for convenience).

Analogous to [5] the matrix A can be split into its symmetric and skew-
symmetric parts as

A=A+ A,

where
Ay = %(A+ AT, Ay = %(,4— AT)

are the symmetric and the skew-symmetric parts of the matrix A:

[ Mmoo [ o ET
“40_[0 o]’ Al_[—E o]'

The skew-symmetric part A; can be split into

0 O 0 ET
.A1=]CL+ICU=[_E O]+[O 0 ],

where 0 is a zero matrix with suitable dimension, K; and Ky are the strictly
lower- and the strictly upper- triangular parts of A;. Note that p = —IC%.
Based on these splittings in [6] the authors established generalized skew-
Hermitian triangular splitting iteration method (GSTS) for solving non-
Hermitian saddle-point linear systems. Let the matrix Bc be defined as

where By and B are symmetric and nonsingular matrices. Then GSTS - pre-
conditioner is defined as [6]:

B(wi,ws) = (Be +wiKp)Ba (B + waKy),

or in block form
_[ B 0[B! 0 ][B wE"
B(W17W2) - [ —w1E B ] [ 0 32_1 ] [ 0 B |

where wy; and wo are nonnegative acceleration parameters and, at least, one of
them is nonzero. In actual implementations we choose By = M . Then

—~

M OUQET

B(wy,ws) = N
( ! 2> —le BQ —wl(UQEM_lET

Y
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and preconditioned block-structured linear system is:
Bil(wl, OUQ).AW = Bil(wl, CUQ)b.

We consider three cases for the GSTS according to the different choices of the
matrix Bs, and obtain the GSTS-preconditioned GMRES iteration method.

We construct a model of the scattering group of chemical elements that may
be contained in water. In the description of the profile of experimental scattering
pattern we select the profile function for the peak shape. Clarification of the line
profile based on the introduction of the function F' which must be minimized
with respect to all parameters:

b il =y
iy

are experimental data set, yf‘”c

obs

where

; are calculation data set and

k
gl =N LPV (b)), MY D) + oty @, oo ).

J=1

Here £ is the number of peaks, I; is the integrated intensity, ¢(¢;, x1, ..., ;) is the
background. The parameter sets specifies by the nonlinear least squares are peak
shape {1}, xgj), Az} weight coefficients {7V}, j = 1, ..., k and the parameters
belonging to the ¢: {x;},l = 1,....,s. We approximate ¢ by a cubic spline
with natural boundary conditions. Equality constraints in the constrained NLLS
problem are Iy/1; = 31/3;,j = 2,....k,n¥) = 0l Azl = Azl i 5 =1, k,
the values {J,}, j = 1,..., k are taken from the [7].

At first we solve unconstrained NLLS problem by the Levenberg-Marquardt
method. Our implementation of this algorithm uses QR-decomposition of the
Jacobian matrix and does not require any matrix factorization for determination
of the parameter A. Figure 1 shows experimental and model scattering pat-
tern for the problem with 112 parameters. Then the equality-constrained large-
scale NLLS problem is solved by the GN method. Iterations of the Levenberg-
Marquardt algorithm and outer iterations of the GN method are terminated if the
current iterations satisfy |R||; < e1, ||vp1 — anlli <2, e1=1070, 69 = 1077,

When the saddle-point linear system is solved by preconditioned GMRES at
each step of the GN method then inner iterations terminated if

1B7'b — B AW |, < 1079B7'b — B~ 1AW ..

The iteration methods GSTS(1), GSTS(2) and GSTS(3) with different choices
of the matrix By (Table 1) are employed as preconditioners to full GMRES. In

—

actual calculations By = M . The optimal values of the parameters are numerical
optimal values, w; = wy = weypy. The choice v, = [[My|l2/||Ell3 [3] has been
found to perform well in practice.
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Figure 1. Experimental (dash-dot line) and model (continuous line) of the scat-
tering pattern for the problem with 112 parameters
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MATHEMATICAL MODELING OF NEURAL
ACTIVITY!

Muratova G.V., Andreeva E.M., Bavin V.V., Belous M.A.
Southern Federal University, Rostov-on-Don, Russia

An important development in present science is the increased use of methods
from mathematics, computer science and theoretical physics in the exploration
of biological systems. This is due to great advances in the understanding of living
systems, establishment of new experimental techniques, methodological advances
in mathematical modeling, and the continuing growth in available computer pow-
er for numerical calculations and simulations.

Neuroscience is among the biological sub-disciplines where the use of mathe-
matical techniques are most established and recognized. An important reason for
this is the success of Hodgkin and Huxley [1] more than 50 years ago of describ-
ing signal transport in a single neuron (nerve cell) as a modified electrical circuit
where the charge carriers are Na™, K, Ca*", Cl™ and other ions flowing
through the neuron cell membrane. This mathematical formulation, known as
Hodgkin-Huxley theory, could not only account for the results from experiments
used to construct the model and fit the model parameters. From their model they
could also predict the shape and velocity of the so called action potential which is
a pulse-like electrical disturbance travelling down thin outgrowths, called azons,
of neurons [2].

Due to its obvious success in describing action potentials, the Hodgkin-Huxley
approach has later been generalized to include modeling of the signal processing
properties of entire neurons [3]-[4]. Thus modelers now have a relatively firm
starting point for mathematical explorations of neural activity.

Mathematical models in neuroscience can be distinguished by their pur-
pose [5].

Mechanistic models aim to account for the properties of neurons or neural
circuits on the basis of the underlying biophysical properties of neurons and neu-
ral networks. This corresponds to the traditional physics approach to modeling
nature.

Descriptive (or statistical) models try to account mathematically for experi-
mental data without the aim to explain what aspects of the neurons or neuronal
circuitry gives rise to the mathematical structure. Interpretive models aims to
elucidate the functional roles of neural systems, i.e., relating neural responses to
the task of processing useful information for the animal. Information theory is
typically used in such modeling [5]. Interpretive modeling is unique to biological
systems which have developed under evolutionary pressure.

So there exist the various approaches for modeling neural activity.

On the basis of dynamic mechanisms of neuron various mathematical models
are constructed. Among them there are relatively simple ones, such as “Inregrate

! This work was supported by RFBR, N15-51-53066
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and Fire”, in which a neuron is represented as a capacitor connected in parallel,
corresponding to the capacitive current for the membrane, and a resistor simu-
lating the leakage of ions through ion channels [6]. More complex, biologically
plausible model were created, for example, Hodgkin-Huxley model [1], which is
much more difficult computationally and in terms of the analysis of its dynamics,
but it is much more accurate to describe the dynamics of the membrane potential
of the neuron. This model belongs to the class of point models. Point models do
not share a neuron into segments, not isolated parts of the dendrite and soma.
The spatial geometry of the nerve cells is complex and diverse. Therefore,
modeling of neurons using the point model is big enough simplification. More
complex multisegment models were constructed for example cable equation.

I Izhikevich model

We investigate Izhikevich model 7], which is a certain compromise between
computational complexity and biophysical verisimilitude. Despite the computa-
tional simplicity of the model, depending on the parameters it can operate in
different dynamic modes, relevant neurons present. Izhikevich model described
as a fast-slow system of two differential equations describing the dynamics of the
membrane potential of the neuron. Depending on the initial conditions and the
applied current model can be in two dynamic modes, the movement to the rest
potential P1, or the generation of an electrical pulse P2 [8].

Izhikevich model belongs to the class of phenomenological models. In these
models the dynamics of the membrane potential is reproduced as a phenomenon.

The full Izhikevich model is the following:

( dV
Cmﬁ =k(v—0v)(v—v) —u+ Lgyn + Logt
aw
dt

if v>Vp,B>{

a(b(v—uv,) —u)

V¢
U+—U-+d

\

where b — sensitivity U to subliminal volatility of V', C),, — membrane capac-
itance, ¢ — potential after spike, d — growth U after spike, v, — rest potential,
v; — minimum potential of generating action potential, k — coefficient inverse
membrane resistance.

As a result of research the model of the neural electrical activity based on
the Izhikevich model is constructed. The algorithm of its implementation using
technologies GPGPU is suggested. GPGPU technology enabled the maximum
use of the processing power of the computer by dividing the original data stream
of neural network model into a plurality of parallel processing threads in a GPU.

Some numerical results are presented. The vector field and nerve impulse
form obtained by Izhikevich model are shown on the figure 1.
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Figure 1. The Izhikevich model
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DISCRETE ANALOG OF CONJUGATE-OPERATOR
MODEL OF A PROBLEM OF HEAT CONDUCTIVITY
ON NON-MATCHING GRIDS!

Sorokin S.B.

Institute of Computational Mathematics and Mathematical
Geophysics SB RAS, Novosibirsk State University, Novosibirsk,
Russia

Using a nonuniform non-matching grid for variable parameters of the medium
(in particular, a discontinuous parameter), we construct and numerically inves-
tigated a new difference scheme for the conjugate-operator model of the heat
conductivity problem [1]: in the domain € equations hold

R*W:divvv:[a%, a%] [wl} =,

w2

boundary conditions u|pn = 0.
The difference scheme has second order accuracy.
Computational domain and grids used are shown in Figure 1.
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Figure 1. The calculation domain and grids.
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Vertical line I" (dashed) divides the domain into two parts
Q=0Q,UQ.

In domain Q was set grids: grid w for v — dark circles, grid w1 for w?, gt
— dark and gray squares. Gray circles auxiliary and do not participate in the
calculation.

H), — space of grid functions «” defined in points w and becomes zero at the
boundary 09. H} — space of grid functions w! defined in the points wi.

The operator R in the defining relations is taken as the support operator.
His approximation Ry, : H;, — H; is determined in each rectangular cell of grid
area as follows [2, 3| (numbering points see Figure 1)

l(u4ju1 + Usjuz) R
[qh]5(Rhuh)5—[§ Iy ] :([R;Z]“h)5'
2 5

Here hy, ho grid steps in the first and second directions, respectively. They shall
take appropriate value for each subregion. For points (z1,x2) of the €y : hy =
hll,ﬁg = hgl, for pOiIltS (5151,562) of the Qg . ;Ll = hlg,ﬁg = hgg = h21/2. The
first index indicates the number of coordinate direction, the second — the number
of the subregion.

For nodes w1 black squares marked the action of Rj is determined by the

same rule. The differences is that Bg = hoo and in this case involved the fictitious
nodes marked gray circles are replaced by interpolation from the closest vertical
neighboring nodes w :

near 0€2 from three nodes interpolation type

h 3 6 —1
u(wy + 5) — éu(xg) + gU(LUQ +h) + 5 u(xe + 2h) + O(hg),

otherwise from four nodes interpolation type

h 1 9 9 1 \
u(x2+§) =15 u(xg—h)+1—6u(x2)+ﬁu(x2+h) — Eu(x2+2h)+0(h ).

We define a scalar product in the Hj, and H} :

(uh,vh)Hh = Z uh(xl,wg)vh(wl,xg)ﬁlﬁg Vu' e Hy, o" € Hy,

(21,22)Ew

2
(Wh,O'h)H;; = ng(l’l,ibg)O’Z(ICl,ﬂSg)hlhg, W Wh € H;;, O'h € H;;
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For the points (z1,x2) € ' the first step hy = % — %, the second hy = hoy.
For nodes (1, z9) € o black squares marked: iLl = hq1, the second BQ = hos.
In the approximation R;:H; — Hj, of the operator R* choose adjoint to R,
14, 3]:
(Rhuha Wh)HZ - (uh7 R;kzwh)Hh'

If you enter e; — orthogonal basis in Hj, (in the scalar product (-, )y, ) the R;w"
— element of Hj, can be represented as an expansion

Prwh — f: (Riw"se))m, EN: (W", Rue;)my

(ej,€j)m,

ej.
J=1

As a basis in Hj, take the system of network functions e(,, ,,), each of which is
equal to one in one of the grid points w and at all other points is equal to zero:
~ o~ O, T, T 7& 5?1,12‘2 ; ~ o~

Clar00) (L1, T2) = { . E$1,$2§ 7 th@;, V(x1, 29), (T1,T9) € w.

Then the value Rjw" at the point (z1,75) € w is represented as

(Whﬁh@(i | ))H*
awh (1, 29) = 3 -k
h ) (€(3, 50)5C(51 .50) ) H

(#1.52) € (21,22):%(21,22) /) Hp,

(Wh7R}Le(:61,I2))H;;

e($1=12)’e(9517962))Hh

6(51@2)([61,1’2) — T e(ml,mg)(xth) .

For all grid points w, except for the points located on the vertical nearest I,
latter formula gives (numbering points see Figure 1).

wh bfwil w? 5711){7'8 ’Ll}g 87’([)3 ’LU2 5—(Wy )6
by = dehlectud)e | fuboctub)e) y gelatet) | (uh)etudle)

*
hW

For the grid points located in the vertical nearest I' expression for R;‘Lwh more
complicated.
Approximation of tensor K:H; — H; :

Finally, discrete conjugate-operator model has the form of

RZWh = fh,
Wh — thh7
q" = Ryu”,

u € H,, whe H;.

The tables contains the results of test calculations, confirming the second
order convergence of difference scheme.
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The calculations were made in the domain € = (0,2) x (0,1). The area was
divided into two equal parts

Q:QlLJQQ:(O,l)X (0,1)U(1,2)X (0,1)

In each sub-region was set uniform grid: in €2; with the steps hi1 = hoy, in 21—
his = hoy = ho1 /2. Use the steps shown in the first two columns.
The remaining columns indicate different characteristics of error

Zh:[wh, uh]T—[W, u]T

Here [W, U ]T — a solution of the differential problem, [Wh, u” ]T — the
solution of the difference problem.
In the third column the error rate of the second component

max ‘u(xLxg) — uh(xl,xg)‘ = Max,.
(x1,m2)EW

The fourth — the rate of the second component of the error

max| max |w; (21, 22)— wi(x1, x5)|, max |[wa(x1, 2o)— wh (w1, 22)|] = Maxy.
(Jcl,xg)Ew% (l‘l,l‘g)EW%

In the fifth column of the norm of the projection of the second component error
on interface of subdomains I'

max ‘u(xl,xg) — uh(xl, xg)‘ = maxr.
(Jcl,xg)ef

Finally, in the last — error rate

Z (U(xl,xz) - Uh(xl, $2))2B1B2+
(21,22)Ew
2
\ + > > (wk(5517352)_ w;@(m,fz))
(:cl,:cQ)Ew% k=1

Table 1 corresponds to the calculations with the thermal conductivity tensor

12"l =

2~ ~

hihy

10
K($17x2) - [O 1 ] ) (x17x2) € Ql UQQ?

and the exact solution u(zy, x5) = sin®(7x;)sin®(7y), (21, 22) € O U Qy.
Table 2 corresponds to the calculations with the thermal conductivity tensor
(mixed derivatives and discontinuous coefficients)

0.002 0.01 2 1
K(z1,29)= [ 0.01 0.002 ];(%@2) €y, Kz, 29)= [ 1 9 ];(%@2) c ()
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hi; = hay | his = hoo Max, MAL v maxr Y -
1/10 1/20 0.8802E-01 | 0.2137E+00 | 0.1043E-01 | 0.1158E+00
1/20 1/40 0.2069E-01 | 0.5404E-01 | 0.2492E-02 | 0.2765E-01
1/40 1/80 0.5096E-02 | 0.1348E-01 | 0.6164E-03 | 0.6837E-02
1/80 1/160 | 0.1266E-02 | 0.3371E-02 | 0.1534E-03 | 0.1705E-02
Table 1.
and the exact solution
w(zy1, 29) = sin® (may)sin® (7xy), (21, 12) € O,
u(z1, r2) = sin® (1072, )sin® (107xs), (21, 22) € Qo.
hi; = hay | hys = has maw, MAL maxr Zh "
1/40 1/80 0.1514E-+00 | 0.8146E+01 | 0.6161E-01 | 0.4028E-+01
1/80 1/160 0.3462E-01 | 0.1944E-+01 | 0.1453E-01 | 0.9287E-+00
1/160 1/320 0.8446E-02 | 0.4831E-+00 | 0.3501E-02 | 0.2281E-+00
1/320 1/640 0.2065E-02 | 0.1199E+00 | 0.8270E-03 | 0.5677E-01
Table 2.

This study differs from those above by the following:

1. All components of the discrete analogs of vectors are given at the same grid
nodes. This enables us to correctly define the action of the discrete analog of the
thermal conductivity tensor on the discrete analog of the temperature gradient
and, in conjunction with the approximation method for the gradient, have the
second order of convergence.

2. The second order of convergence holds not only for scalar grid function
(approximations to temperature) but also for the grid vector functions (approx-
imations to the heat flow).

3. A scheme of the second order of accuracy (on nonuniform non-matching
grids for the variable medium parameters) is constructed only by the approaches
of the theory of difference schemes. From a methodological point of view, the
method for scheme designing presented in this is much clearer and easier than
constructing a second-order scheme with the use of projectional statements.
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DYNAMIC BEHAVIOUR OF HETEROGENEOUS
POROELASTIC STRUCTURES

Vatulyan A.O., Gusakov D.V.

Southern Federal University, Rostov-on-Don, Russia

We consider the steady oscillations of heterogeneous poroelastic transversely
isotropic layer under the action of harmonic load applied to the upper face in the
framework of the plane deformation. All mechanical characteristics considered
to be the functions of transverse coordinate. We follow the Biot [1] theory for
modeling poroelastic media.

The dimensionless equations of motion, constitutive equations and the equa-
tion of pressure in the pores are:

G111 + 0133 + KUy = 0,

0131 + 0333 + KUz = 0,

o1 = Y111 + yrus 3 — Bip, (1)
033 = Yl + Yalz s — 33D,

O13 = V5 (U3 +us31),

Hpa1 + (M3]5,3)73 + ik (g + n3tss) + ikép = 0.

where the following dimensionless parameters and functions are introduced: u; —
displacement vector elements, p — pore pressure, 0;; — stress tensor elements,
7; — elastic tensor elements, 3; — Biot effective stress coefficients, ji; — intrinsic
permeability coefficients, k£ — frequency.

[t is important to note that order of the material constants and the values
of the functions in original equations several orders of magnitude different from
each other. In this case dimensionless equations (1) are employed. The symbol é
is dropped below.

The Fourier transform along the longitudinal coordinate is applied to the
equations (1). The transformed equations are second order differential equations
on functions u; and p with variable coefficients. For solving this equations shoot-
ing method |2] is employed. Main idea of this method is representing solutions as
the linear combinations of the solutions for several Cauchy problems. Note that
with the growth of the transformation parameter || system takes the form of
"stiff" system of differential equations, which is equivalent to the presence of a
small parameter at the highest derivative. To solve such a system we use Gear
method [3|, with the boundary conditions replaced by:

[:&=0: uy=0, uy=0, p' =0 o33 =e 5 0;3=0, p=
H:&;z():ul:O, U3=0, pIZO 0'3320, 0.13:€|Sa| p:O
IIT:65=0: u1 =0, u3=0, p=0 033 =0, o153 =0, p = e 15

where S is the normalization parameter [4].
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To obtain values for the parameter S all variable coefficients in (1) replaced
by their top estimates 4; > |v;|. The characteristic equation takes the form:

A+ (K — a*41)  —ia(fr + 95)A Z'Oéﬁs
—ia(7 +95)A AN + (k2 — a®Hs) — B3\ =0 (2
Koy IKM3A fsA? + (ikd — o)

We introduce replacement A = S|a|, and o — oco. In this case equation (2)

splits into two equations:
fi35* — fi1 =0
3592t — (57 + 45)* + 95 + 51%) S + 4195 = 0

Obtained S values for cancellous bone [5] are: S} = =Sy =1, 5, = =55 =
0.497, S5 = —S5 = 1.463.

Solution of the original problem in general has the form:

(0.¢]
w6 ) = o [ DABEE) g
21 J_o Do(a, k)
where D;, Dy — is analytical functions of their arguments.

It can be shown that for the o € Ry, Dy # 0 this representation of the
solution is correct. At the same time, due to decreasing integrands when |a| —
o0, it is possible to calculate the integral (3) within finite limits, the choice the
parameter R allows controling accuracy.

R
(&1, &3) = L[ Dile H’gg)e_mglda
27 J_rp Do(a, k)

It should be noted that with the increase of parameter « solutions in trans-
formants tend to 0 according to the law 1/|c|. Consequently, it seems reasonable
to replace trasformants for large o values with approximation of the form G/|«],
where GG is complex constant determined separately for each of the transformants
at |a| > R. Experimentally found that in most cases values of R = 20 is enough
to build solutions with an accuracy more than 1073. This fact allows reducing
the number of the o parameter values, which are necessary to build a solution
in transformants, and significantly reduces the running time.

To find the original solutions we use "Filon" quadrature formulas from [6].

We have obtained numerical data for displacement field for different laws of
variation of the elastic moduli. Figure 1 represents results of calculating displace-
ment fields on the upper layer face for the load concentrated at & = 0 in the case
of various inhomogeneities 4; = 7; * f(&3). As shown in Figure 1 displacements
have a logarithmic singularity at & = 0. And with the growth of the coordinates
have the form of attenuating wave.

Finally, we note that numerical solutions were obtained of the problem for
various characteristics of the layer irregularities laws. Based on the analysis of
the solutions we have revealed the influence of these characteristics on the dis-
placement field at the upper layer face.

do, (3)
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Figure 1. Displacements Re(ug) for various inhomogeneities of v;, concentrated
load at & =0
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TWO NEW SPLITTINGS AND PRECONDITIONER
FOR ITERATIVELY SOLVING NON-HERMITIAN
POSITIVE DEFINITE SYSTEMS

Rui-Ping Wen

Higher Education Key Laboratory of Engineering and Scientific
Computing in Shanzi Province, Taiyuan Normal University,
Tawyuan, China

Consider a large sparse system of linear equations
Az =, (1)

where the coefficient matrix A = (a;;) € R™" is a non-Hermitian positive
definite matrix and b € R".
Based on the Hermitian/skew-Hermitian (HS) splitting

A=H+S, 2)

where

1 1
H= (A+A),  S=5(A-A)

with A* being the conjugate transpose of A, of the coefficient matrix A. In
articles [1-3] Bai et al. derived some alternative methods named HSS and PSS
iteration methods. It is proven that for a non-Hermitian positive definite lin-
ear systems, the HSS and PSS iteration methods both converge unconditionally
to the unique solution of the system (1). However, both HSS and PSS iter-
ation schemes are variants of an alterative iteration method. The Hermitian
or the skew-Hermitian system needs to be solved at each iteration step. The re-
search into a skew-Hermitian system of linear equations is also conducted in [4-6].

In this talk, a new iteration method for solving a linear system with coef-
ficient matrix being non-Hermitian positive definite is presented as follows; An
accelerated method is proposed, which will find the optimal solution in hyper-
plane generated by {zx, -, Tpim}-

Our new method is just presented in view of the splitting (2). Let
H=M-N,

P =M+ aS,
Q=N+ (a—1)S,
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where « is a parameter. Then

A=P-Q,
and the iteration matrix is given by

T =P tQ.

Method 1.

Step 0. Give an initial point xy and a tolerance ¢ > 0, for £ = 0,1,2, ...
until the iteration converges.

Step 1. Solve the system of linear equations for xy,

Prp = Qxp1+0

Step 2. If ||Axy — b|| < €, stop; Otherwise, k < k + 1 and go back to Step
1.

Method 2.
Step 0. Given an initial point (9 the precision € > 0, for k =0,1,2, -
until the process converges.
Step 1. For [ =0,1,2,---,m, computing
PZC(k’H_l) _ Qx(k’l) + b.
Step 2. Let

7n(k:,l) _ Ax(k’l) A

I

T = Z Odl(k)r(k’l>7
=1

minr* Hy 'r
«

s.t. Z ozl(k) = 1.
=1

Step 3.

2(E+10) _ Z Oél(k)x(k,l).
=1

Step 4. If ||r]|2 < €, stop; Otherwise, goto Step 1.
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Remark In fact, the method 2 is the acceleration of method 1. If m = 2, it
can be straightly shown in the following:

20 — (B3 1) (R h2),

We study the spectral radius and contraction properties of the iteration
matrices and then analyze the best possible choice of the parameters. With the re-
sults obtained, we show that the new methods are convergent for a non-Hermitian
positive definite linear system. Furthermore, a preconditioner generated by the
splitting is proposed, the condition number of preconditioned matrix is discussed.
The numerical examples show these methods are effective.
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TWO-STAGE ITERATION METHODS FOR SADDLE
POINT PROBLEMS

Guo-Feng Zhang, Mu-Zheng Zhu, Jing-Yu Zhao

School of Mathematics and Statistics, Lanzhou University,

Lanzhou, P.R.China

In this talk, we will focus on the solution of large sparse saddle point problems

_ A B |x| _|f| _
with Case 1 or Case 2.

Case 1: A € R™" is a symmetric positive definite (SPD) matrix, B € R™*" is
of full rank, z, f € R",y,g € R™ and m < n.

Case 2: A € C™" is a non-Hermitian matrix and its Hermitian part
H = (A + A*) is positive definite (Non-HPD), B € C™*" is of full rank,
z, f€C' y,geC” and m <n.

Linear systems of the form (0.1) arises in a variety of scientific computing
and engineering applications, including computational fluid dynamics|8, 11], con-
strained and weighted least squares optimization|8, 13], image reconstruction and
registration|14, 15|, mixed finite element approximations of elliptic PDEs and
Navier-Stokes problems|7, 12, 10] and so on; see |2, 7, 8] and reference therein.

In recent years, there has been a surge of interest in linear systems of the
form (1) and a large numerical solution methods for (0.1) have been proposed.
For examples, direct solves, stationary iteration methods [9, 4, 1, 3, 6], null space
methods and preconditioned Krylov subspace methods|8, 10, 5| and so on on.
[teration methods and preconditioned Krylov methods are interested because
of their preservation of sparsity and lower requirement for storage. We refer to
some comprehensive surveys [8, 7, 13| and the references therein for algebraic
properties and solving methods for saddle point problems.

We define a matrix P(«a) as
iy [l =B BB [L 0 ] _[L-B(BB)'B aB
(@) =10 L, B —aBB*|~ B ~aBB*|’

where « is a positive constant. By preconditioning the saddle point problem (1)
from the left with P(«), we can get the following preconditioned linear system:

P(a)o = P(a) E } —

BA — o(BB*)B BB*| |y Bf — aBB*g

= [ b= 17)

[(I—B*(BB*)lB)A—kaB*B 0 } m _ [f—B*(BB*)le—kozB*g}
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with
Ay := (I - B*(BB*)"'B)A+aB*B, Ay:= BB*,A3:= BA—a(BB")B, (2)

by = f — B*(BB*) 'Bf + aB*g, b, = Bf —aBB*yg.

We can get the solution of the system (0.1) by solving the coupled linear
systems of the form

Az = ((I — BY(BB*) 'B)A+aB*B)x = by,
Ay = (BB™)y = by — Asx.

Thus it can be solved by first computing x from
Ajx = by (3)
and then computing y from
Aoy = by — Asx. (4)

Theorem 1 Let A defined in (0.1) be nonsingular and B be of full rank. Then
the matriz Ay defined in (0.2) is nonsingular for any iteration parameter o # 0.

Since the system (0.4) is SPD, any solver for SPD systems can be applied.
This could be a Cholesky factorization, or a preconditioned conjugate gradient
(PCG) method, or some specialized solvers.

Generally, the coefficient matrix A; in (0.3) is large and dense, so direct
computations are very costly and impractical in actual implementations. Then
we will solve the linear system (0.3) iteratively by splitting technology.

Algorithm 1: (A € R"*" being a SPD matrix)
Stage 1: solve the linear system (0.3) iteratively by PCG or Cholesky factoriza-
tion:

My(a)z®D = Nyz®) 4 by (5)

with Mi(a) := A+ aB*B and Ny := B*(BB*)"'BA.
Stage 2: solve the system (0.4) by using Cholesky factorization, or PCG method.

Theorem 2 Let A € R™*"™ be SPD, and B € R"™*" be of full column rank.
Then, the iteration (0.5) is convergent when o > o, where o = MA?“i;X
Furthermore, we have lim, o p(T(a)) = 0. Here, T(a) = MY a)N is the
iteration matriz. Afnax and Apin are the maximum and minimum eigenvalues of
T(), fimin 5 the minimum eigenvalue of BT B.

Algorithm 2: (A being large and non-Hermitian matrix)

Stage 1: solve the linear system (0.3) iteratively by PCG or Cholesky factoriza-
tion:

My(a)z® D) = Noz®) + by (6)
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with My := H + aB*B and N, := B*(BB*)"'BA — S, where H = %(A + A*)
and S = %(A — A*).

Stage 2: solve the system (0.4) by using Cholesky factorization, or PCG
method|5, 7].

Theorem 3 Let A € C"" be a non-Hermitian matrix and its Hermitian part
H = %(A + A*) is positive definite (Non-HPD) and B € C™™ be of full rank.

Then the iterative method (0.6) is convergent if the following condition is satis-

fied:
04>max{\/771 +(B—m) 7, O}.
T
Here,
, v*B*(BB*)"'BAx . r*Sx r*Hzx ©v*B*Bx
M+ 12 = * ) 16: % 0 Y= . =T
xr*x x*x xr*x x*x

and x is an eigenvector of the iterative matriz M~'N in stage I. Furthermore,
we have p(My*No) monotonically decreases and tends to 0 as o — +00.
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GROUP ANALYSIS OF INTEGRO-DIFFERENTIAL
EQUATIONS DESCRIBING STRESS RELAXATION
BEHAVIOR OF ONE-DIMENSIONAL VISCOELASTIC
MATERIALS

Longgiao Zhou'?, Sergey V. Meleshko'

L School of Mathematics, Institute of Science, Suranaree
Uniwversity of Technology, Nakhon Ratchasima, Thailand

2 School of Mathematics and Statistics, Guizhou University of
Finance and Economics, Guiyang, China

Many important physical processes in nature are governed by differential
equations. Nonlinearity and the presence of a large number of variables in the
initial equations are sources of significant mathematical difficulties in the analysis
of the solutions of these equations. Frequently, it is virtually impossible to give
explicit solutions, and while a multitude of numerical methods has been devel-
oped to obtain approximate solutions, there remains intense interest in finding
exact solutions. Each solution has value, first, as the exact description of the
real process in the framework of a given model; secondly, as a model to compare
various numerical methods; thirdly, as a basis to improve the models used. One
of methods for constructing exact solutions is group analysis.

The group analysis method, besides constructing exact solutions, provides a
regular procedure for mathematical modeling by classifying differential equations
with respect to arbitrary elements. We mention here that modeling a given system
of differential equations with the use of difference equations and meshes can also
be based on symmetries [1].

The classical Lie group theory provides a universal tool for calculating ad-
mitted Lie group for a system of differential equations. However, applications
of the group analysis method to integro-differential equations presents some dif-
ficulties. The main difficulty comes from their nonlocal terms (integral terms).
Since the definition of an admitted Lie group given of partial differential equa-
tions cannot be applied to integro-differential equations, this concept requires
further investigation. A regular method for calculating an admitted Lie group
of integro-differential equations was recently introduced in [2, 3, 4]. A Lie group
admitted by integro-differential equations is also defined as a Lie group satis-
fying determining equations. The way of obtaining determining equations for
integro- differential equations is similar (and not more difficult) to the way
used for differential equations. The main difficulty in obtaining an admitted
Lie group of integro-differential equations consists of solving the determining
equations. Notice that the determining equations of integro-differential equa-
tions are integro-differential.

In the present work we focus on the application of the group analysis method
to the one-dimensional equations describing behaviour of viscoelastic materials
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v =0y, e =10 plo)=ce —l—/o H(t,7)e(r)dr, ¢' (o) #0. (1)

Here time ¢t and distance x are independent variables, the stress o, the
velocity v, and the strain e are dependent variables, H(t,7) is the kernel of
relaxation, ¢(o) is a smooth function of the stress. If ¢(o) is a linear function,
then system (1) describes linear behavior of a viscoelastic material. Notice that
system (1) is a system of integro-differential equations. The admitted Lie group
of (1) is found. Invariant solutions of this system of equations are also discussed
in this study.
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MULTIGRID METHOD WITH SPECIAL
APPROXIMATION FOR THE NAVIER-STOKES
EQUATIONS IN A VISCOUS INCOMPRESSIBLE
FLUID!'

Andreeva E.M., Muratova G.V.

Southern Federal University, Rostov-on-Don, Russia

I Introduction

We propose some approach for solving the two-dimensional Navier-Stokes
equations for a viscous incompressible fluid. In this paper we construct special
FEM basis functions for these equations. They are of the usual form at the time
level where an approximate solution is sought, and they have useful properties
for the approximation of transport derivatives between time levels. As a result, at
each time level a stationary problem of a simpler form with a self-adjoint operator
is obtained. To solve this problem, we apply the conforming finite element method
with the bilinear elements for velocities and piecewise-constant elements for the
pressure on rectangles [1], [2].

II Problem formulation

Consider classical formulation of the Navier-Stokes equations in domain 2 =
(0,1) x (0,1) with boundary 02

oV 1
o TVVIVE
divV = 0, (2)

where Re is Reynolds’s number, and 'V = (u(x,y,t),v(z,y,t)) is the velocity,
p 18 the pressure.
To provide uniqueness of the pressure, we use the condition

AV +Vp =F, (1)

/p,dQ:O, vt € [0,7). (3)

The initial conditions are as follows:

u(0,z,y) = ug(x,y),
v(0,2,y) = vo(z,y), (x,y)€ (4)

! This work was supported by RFBR, N15-51-53066
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The boundaries conditions are as follows:

u(t7$7y) - ug(t7:c7y)7 (5>
v(t,z,y) = vy(t,z,y), (t,x,y) € (0,T) x 052

To approximate the time derivative and inertial first space derivatives a
method of characteristics is used. The method of characteristics was suggest-
ed by the he French and American scientists for approximating the equations of
viscous incompressible liquid with the first order of approximation. It has spe-
cial theoretical and practical development in Pirrono’s work for mass transfer
equation [4].

Space discretization is carried out by finite element method. It’s used a mixed
formulation in the finite element method, when a combination of simple finite el-
ements — bilinear for velocities and constant elements for pressure is applied. This
combination provides stability of pressure calculation with additional application
of a numerical filtration.

Consider the following basis functions for the velocity components (i =
O, ceey nl,j = 0, ...,712)2

0, otherwise.

I-|e—zi| | (1-ly—y;l . . . _ |
Spi,j(ﬂ'f,y) = { ( hy > ( ha ) ’ Zf($’y) = [xl—bxl—i-l] X [yj—17y]+1]7

The basis functions for the pressure are of a more simple form (i = 0, ..., ny —
1,j = 0,...,712 — 1)

)L if(ry) € [ wi) X [y, y541),
¢i+%(x,y) N { 0, otherwise. (7)

An approximate solution at level ¢t = t;. has the following form:

ul(z,y) = > i, jpi (T, y), (8)

0<i<ng,1<j<n,—1

Uh($, y) = Z ﬁi,jgpi,j (ZC, y)? (9>

0<i<ng,1<j<ny—1
p'(z,y) = Z %’J%%,jﬁ@v y)- (10)
0<i<ni—1,0<j<nz—1

As a result of the approximation we get the block system of algebraic equa-
tions at level ¢.:

A O Ajgg u J1
Au = O A22 A23 v = fg = f (11)
Aly A3 O p [
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which is solved by multigrid method. Here, O denotes a zero matrix of the
corresponding dimension. Note that matrices A;; and Aoy are self-adjoint and
positive definite.

IIT Multigrid method

The multigrid method (MGM) is one of the effective and enough univer-
sal iterative methods for solving the systems of the linear algebraic equations.
The multigrid method belongs to a class of quickly converging iterative meth-
ods [3], [5]-

The multigrid idea is based on two principles: error smoothing and coarse
grid correction. Some iterative methods have a smoothing effect on the error
of approximation. This property is fundamental for the multigrid idea and is
connected with fast damping high-frequency Fourier components of an initial
error in decomposition on the basis from eigenvectors.

The multigrid algorithm allows to increase considerably efficiency of the main
iterative method, combining usual iterative process with the coarse-grid cor-
rection. One of the MGM components is basic iterative method or smoothing
procedure. This is the most sensitive part of the method of the problem under
consideration.

There are some classical iterative methods for saddle point problems which
can be used as the smoothers in MGM:

e The generalized minimal residual (GMRES) method, which, in exact arith-
metic, converges within m iterations for any non-singular matrix K &

Rmxm

e The Uzawa method. The rate of convergence of iterative methods depends
on the type Uzawa resampling on time and with a decrease in the value of
this step falls. Therefore, iterative methods such as preconditioners Uzawa
are used for multigrid methods.

e The semi-implicit method for pressure-linked equations (SIMPLE) method.
SIMPLE is based on finite-volume discretization of the Navier-Stokes equa-
tions. One of the important properties of finite volume method is the exact
preservation of the integral quantities such as mass, momentum and energy
for any group of control volumes and, consequently, the entire computa-
tional domain.

e Braess-Sarazin smoother. In contrast to the exact Uzawa and the SIMPLE
methods, the Braess-Sarazin smoother computes the iterates u!*! and p'*!
from the old velocity iterate u'.

e Vanka Smoothers were first introduced within the context of a multigrid
method for staggered mesh discretizations of the Navier-Stokes equations.
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This smoother can be constructed without knowledge of the geometry
or the discretization of the underlying PDE. The additive version of this
smoother can be interpreted as an inexact Uzawa relaxation scheme.

On the first stage of our investigation we use simple iteration method as
the smoother because after discretization we obtain a linear algebraic equation
system with a symmetric matrix which has a spectrum with alternating signs.

UZJrl ’LLZ — TA%;(A;LUZ — fh)

The second component of a multigrid method is the coarse grid correction
determined by restriction operator R%h and prolongation operator Pth, which
are realized for velocity components by templates:

1 211" 1 211"
RRP=L242) andPh=1|242
121, 121,

The operators of restriction R%h and prolongation P o, are realized for pres-
sure components by other templates:

2h h
11 11
2h _ ho_
i [11]h andp%_llllzh
The results of some numerical experiments allow to conclude the efficiency of
the suggested approach for solving the Navier-Stokes equations.

IV  Numerical results

We consider the equation (1)-(2) with initial and boundary conditions (3)-(5)
and the exact solution:

u(z,y,t)=xx(1—x)xy*x (1 —y)*(t+2)
v(:c,y,):s ()*(1—x)>|<y>|<(1—y)>|<(t+1) (12)

Table 1 presents a comparison of the numbers iterations and times calculation
of the multigrid method with a different numbers of levels MGM and simple
iteration method. Peclet numbers is 1000, number of smoothing iteration is 5.

Table 2 presents a comparison of the multigrid method for solving the problem

with a different number of smoothing iterations. Peclet numbers is 1000, mesh
size 18 65 X 65.

V Conclusion

For the the Navier-Stokes equations it has been shown that by mixing the
method of characteristics and the finite element method we are able to derive
first and second order accurate conservative schemes of the upwinding type.
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Mesh grid Sample MGM MGM MGM MGM MGM
iteration 1=2 1=3 1=4 1=5 1=6

33 x 33 76306 4362 5452 4384

12sec 11sec 11sec 11sec

65 x 65 787942 98376 72425 55989 43307
dmin 8min 4min 4min 3min

129 x 129 5857643 868407 639641 464102 325721 226555
87min 108min 105min 78min 58min 30min

Table 1. Multigrid method with a different number of levels

Smoothing MGM MGM MGM
iterations 1=5H 1=4 1=3

5) 43307 55989 72425
3min 4min 4min

10 31131 37341 44069
3min 3min 3min

15 24347 28054 31715
2min  3min 3min

Table 2. Multigrid method with a different number of smoothing iterations

Application of a combination of the method of characteristics and the finite
element method allows building the effective numerical algorithm. These schemes
are numerically better than the usual upwinding schemes because they require
numerical solution of symmetric systems only. After discretization we obtain a
linear algebraic equation system with a symmetric matrix which has a spectrum
with alternating signs. We use multigrid method with simple iteration method
as the smoother for solving this system.

The results of some numerical experiments allow to conclude the efficiency of
the suggested approach for solving the Navier-Stokes equations.

Bibliography

1. Andreeva E., Vyatkin A., Shaidurov V., The semi-Lagrangian approxima-
tion in the finite element method for Navier-Stokes equations for a viscous
incompressible fluid, AIP Conference Proceedings, 1611, 3 (2014)

2. Chen H., Lin Q., Shaidurov V.V., Zhou J., Error estimates for triangular
and tetrahedral finite elements in combination with a trajectory approxi-
mation of the first derivatives for advection-diffusion equations, Numerical
Analysis and Applications, 4, 4. 345-362 (2011)

3. Muratova G.V., Andreeva E.M., Multigrid method for fluid dynamic prob-
lems, Journal of Computational Mathematics, 32, 3, 233-247 (2014)



Andreeva E.M.... MULTIGRID METHOD. . . 83

4. Pironneau, O., On the Transport-Diffusion Algorithm and Its Applica-
tions to the NavierStokes Equations, Numerische Mathematik, 38, 309-332

(1982)

5. Trottenberg U., Oosterlee C.W., Schuller A., Multigrid. Academic Press,
New York, (2001)



84 "Numerical Algebra with Applications"

SIMULATIONS OF RADIOACTIVE CONTAMINATION
WITHIN AN INDUSTRIAL SITE

Blagodatskykh D.V.*, Dzama D.V.*, Sorokovikova O.S.**
* The Nuclear Safety Institute of the Russian Academy of
Sciences, Moscow, Russia

** National Research Nuclear University MEPhI, Moscow, Russia

This paper concerns some practical aspects of the application of a 3D hydro-
dynamic code [1] to modelling of radioactive contamination within an industrial
site. The 3D code is intended to simulate the propagation of contamination tak-
ing into account the actual geometry of obstacles and to calculate doses from
various external sources and via different paths of exposure (clouds of arbitrary
shape, inhomogeneous surface deposition, inhalation). The CED model allows for
calculating doses received by the personnel for the whole territory of a facility in
the case of a non-uniform wind field and non-isotropic turbulence.

An essential feature of Gaussian models still widely used in safety assess-
ment analysis is their poor adaptation to real urban conditions. A comparison
of concentrations calculated via a Gaussian model and obtained by experiment
for the same weather conditions demonstrates that Gaussian models fail even in
quantitative estimation of the distribution of concentrations. They are not able
to reproduce the complexity of flows around an obstacle of realistic geometry.
This gives a reason for using a CFD code which could in principle to predict the
actual distribution of velocities.

The main goal of our research is to make estimations of doses in a more
realistic and accurate fashion. Known analytical solutions such as the point or
linear source approximation are not sufficiently accurate for our purposes. To
attain this objective we take into account the radiation emitted by all points of
a radioactive cloud

duot (s /// (7, 70) - poot (7) - 0 (Fym)

or a contaminated surface

dours (7, / / 7, 70) - Paur (7) - 0 (71) -
a5

where o (7, n) is the dose rate [Sv/ (s - Bq)] from the point source of radiation
of the nuclide n on the distance r, I (7,7) is the visibility (can be only 0
or 1) of the point with radius-vector 7 from the point with radius-vector 77,
puol (T) , psurys () - volume and surface concentration, ool (7o, n) ,dsm.f (To,n) -
volume and surface dose rate at the point with radius-vector 7. Thus, the whole
source is divided into a set of point sources. The dose of radiation received by
the exposed object from a point source is determined by whether or not there
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is any obstacle in the straight line connecting the source and the recipient. If
there is, we leave out the amount of radiation delivered by the source. Such an
integral method calls for a huge amount of calculations to be performed. A way
to accelerate calculations is the application of a parallel algorithm.

In this paper we present a description of a 3D CFD code capable of making
estimations of doses in a more realistic and accurate fashion for the needs of
emergency analysis. As a result, a robust CFD model is implemented on the
base of the Navie-Stokes equations. The conversation laws of mass

dp .
a1 + div(pt) =0

impulse
ou =\ L - - -\, 00 -
,OE + p(uV)u = —VoP + V(pVTv>’LL + pg 9 +f
an equation for potential temperature to better account for pressure drop with
height due to a significant vertical scale

do 00 > -/ o

= o V0 = V(xV0)

a o " X
and equations for dispersion of around 20 radionuclides taking into account their
decay rates

oC, > > >
o + (u 4+ w,)VC, = V(DTVCn> + Qc,

are applied. Due to the fact that an essentially subsonic flow is considered, the
surrounding medium approximates to an incompressible one. Since the little dif-
ference between actual and dry-adiabatic temperature is assumed, perturbations

of potential temperature are supposed to be small. Moreover, for the given range
of hydrodynamic parameters the Boussinesque approximation is justifiable, hence

p(0)=p(@) + 55| (0-a)

The effect of turbulence is modelled via a RANS approach. A modified ver-
sion of k — ¢ model is applied to avoid mesh refinement near solid surfaces,
thereby significantly decreasing computational costs. To avoid small dimensions
of boundary cells, adapted boundary conditions on solid surfaces for k and € are
utilized on the base of Monin-Obukhov theory. An assumption is made that a
velocity profile in a boundary cell is given by the formula

w@) =" () + o)

derived in Monin-Obukhov theory. Then we substitute the friction velocity in

formulas
9 3

u*
E =
cp’ 7AN

k:
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thereby achieving for the turbulent coefficient a formula identical to that in
Prandtl theory for the case of neutral stratification, as far as other types of
stratifications are concerned the modified coefficient is used. A positive feature is
that we do not have to refine mesh significantly near solid surfaces, but the size
of the boundary cells should be from 10 to 15 times larger than the roughness
length.

There is a conventional practice [2| to reproduce the conditions of a field
experiment in a wind-tunnel to augment the amount of data obtained in the
field test. We tested our code with a field data of the experiment carried out in
Oklahoma-city [3]. A comparison of measured and calculated concentrations are
shown in fig. 1 only for surface points, where squares represent calculated values
and triangles denote measured values.

10°

107 =

concentration, ppb
=]
1

10° =

| I I N N O I |
1011121314151617181920212223
f a point of measurement

o o

Figure 1. A comparison of measured and calculated concentrations

As can be seen, our prediction of the maximum value of surface concentration
is close to the measured value with an accuracy of 5%.Taking into account that
it is a crucial point for our code to predict maximum concentrations fairly well
due to the fact that it concerns safety analysis issue, we can consider the result
as a good one.Nevertheless, our code sufficiently underestimates the value of
concentration measured at the point 13. It can be explained by an existence of
steep gradients of concentration in the vicinity of the point.

Actually, a thorough examination of the site of station 13 disposition distinct-
ly reveals a presence of several trees down the street, which could be a significant
obstacle for the flow and may dramatically change the character of concentration
iso-lines. Since it is difficult to embed in geometry such complex objects as trees,
the simulated and experimentally measured flow may differ considerably. There-
fore, to make reasonable judgements about simulated results one should carry
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out a sensitivity analysis of the results obtained. As can be seen from fig. 2,
which demonstrates a sharp growth of concentration along the street, the results
strongly depends on the selection of the measurement point.

10° g

[
o

)
I |

maximum concentration, ppb
= =
< A
H| |
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0 5 10 15 20 25 30 35

distance from the measurement point

Figure 2. A sensitivity analysis of concentration distribution

Despite of the, so-called engineering problems, the issues considered in our

report can not be solved rigorously. It is required,in a sense, a simplistic approach
to be applied to all the aspects of such a problem, including the geometry of
objects, initial and boundary conditions. All in all, our approach provides a

sufficient degree of accuracy in comparison with more sophisticated models such
as FEM3MP (USA,LLNL) [4].
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ABOUT REGULARIZATION METHOD FOR THE
INTENSITY IDENTIFICATION PROBLEM OF
ATMOSPHERIC POLLUTION SOURCE
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Introduction
For the description of processes of impurity distribution in the atmosphere
(domain ) it is used three-dimensional linear turbulent diffusion equation [1]

dq

a—l—ﬁ-gradq:div(l?-gradq)—|—f(M) - g(1), (1)
at following conditions q‘ = qo, q‘ =0, % =0, q =0,
t=0 dDx[0,H] “lz=0 2=H

where ¢ = q(M,t) — concentration of an pollution impurity, M = (z,y,z) —
spatial coordinates of a point, v = (v, vy, v,) — vector of speeds of a wind, K=
(K4, K, K,) — vector of coefficients of turbulent diffusion, f(M) — function
describing spatial arrangement of a pollution source, g(¢) — action intensity of
source.

In present study a special case of the identification problem for intensity
of the source is studied in application to the modelling of the transport of air
pollution [2]. The considered approach uses as input parameters the set of known
sensitivity coefficients and corresponding pollution measured in given locations
Mj = (x,y5, %)

Cji, jIl,...,J, izl,...,N,

where ¢j; — concentration measured by j* sensor at the moment of time ¢;, J
is the number of sensors, IV is the number of time steps.
Measurements are taken in time intervals At.

Let’s consider, that an error of concentration measurements is additive

cji = q(Mj,t;) +0 -,

where 0 — root-mean-square error of sensor measurements, v — standardized
Gaussian random variable (Average(y) = 0, Variance(y) = 1).

The identification problem for a source is characterized by solution insta-
bility to errors of concentration measurements also demands special methods
of the solution [3, 4, 5]. To solve the problem were used methods step-by-step
regularization and sequential function specification.
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Sequential function specification method

Linearity of the problem (1) allows to use the superposition principle and
numerical analogue of Duhamel’s theorem

qji = qo + Z gn - BPj(in), (2)
n=1

where qj;i = q(Mj, t;), Adji—n) = Pjli—n+1) — Pji-n), Pji = LM, t;), Q(M,t) —
=0.

The value ¢;; is called step sensitivity coefficient, and the value A¢j; — pulse
sensitivity coefficient.

solution of the direct problem (1) at g(t) =

We shall estimate g;, considering g1, 9o, . . ., gi_1 are known values, calculated
on the previous steps. For giving stability to the solution of the inverse problem
we shall consider ¢(t) on several (r) time intervals at once. At r = 1 the
method step-by-step regularization turns out. r is discrete parameter of regular-
ization. Let’s consider, that ¢;, gi11, ..., girr—1 are connected by some functional
dependence.

Using (2) for the moments of time t;,¢;11,...,ti1—1 let’s write down the
matrix equation

®-g=Q—q — Qlgo, (3)
where ® € Rr.JXT; g < Rru Q7 Q|g=0 € R%J, ®k7 Qk? Qk|g=0 € RJ?
P 0 - 0 o QO;gO
d Dy - 0 Q1 Q1lg=0
P = . . . . 7Q: . 7Q’g:0: :g )
Dy Prp o0 Do @r—1 Qr-1lg=0
gi A¢1(i+k:) d1(i+k) q1(i+k) ggO
it+1 Adairk qa(i+k Q2(i+k) | g=0
g = . aq)k: :( : an: (: ) an’gZOZ ( :>g )
Gitr—1 A¢J (i+k) dJ(i+k) QJ(i+k)|g=0

i(i+k)|g=0 = Z In - Adj(ipk-—n)- The @ is the low triangular block matrix of

Toephtz type

The equation (3) can be solved exactly only for the case r = 1 and J =1
(Stolz solution) [5]. In this case the solution of the inverse problem frequently
instably. In case using of several time steps (7 > 1) or several sensors (J > 1)
the equation can be solved only approximately by means of the least-squares
method.

We minimize the sum of squares of differences between measured C and
calculated Q values of concentration

=(C-Q)" - (C—Q) — min, (4)
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Co C1(i+k)
where C = Cl. I .C?(.H’f)
Cr1 CI(i+k)

It is possible to approach the solution of the equation (??) in two ways:
e to solve equations set with » unknown values g;, gi+1, .- -, Gitr—1;

e to reduce number of unknown values considering,
that g;11,givo, ..., girr—1 18 expressed by mean of some functional depen-
dence from g¢; and from the previous values g;—1, gi—2, ..., Gi—p.

In the first case values ¢;, gi11,...,girr—1 can turn out unrelated values them-
selves, though in practice of values of intensity ¢(t) cannot vary at arbitrarily.
In the second case the chosen functional dependence provides improvement of
smoothness and stability of solution. The functional dependence is a regulariza-
tion factor.

Then the sequential estimation algorithm will look like

1. for the chosen functional dependence g¢;i1,¢giio,...,girr—1 from g; and
gi—1 we shall estimate the unique unknown value g; ;

2. we shall pass to a following step, temporarily assuming dependence
9ii+1)+1 9(i+1)+25 - - -5 9(i+1)+r—1 from 9(i+1) and 9(i+1)—1-

Let this functional dependence looks like
g=A-gi+B- g,
where A, B € R".

We consider the elementary case of functional dependence — the assumption
of a constancy ¢(t) during r the sequential intervals of time

9i = Gi+1 = = Gitr-1,
and also a case of linear dependence between ¢;, giv1, ..., Gitr_1
gk =60 +k-(9i—¢9i1)=(k+1)-gs—k-gi1, k=0,1,...,r—1
We shall find the estimation of intensity g;

(@A) (C—q—Qlyoo—®-B-gii1 (5
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Results of computing experiments

Using number of methodical problems numerous calculation experiments
are lead. Stability numerical approximation to desired value intensity are
constructed, including at presence of measurement errors in measurements
(0 =0-+0,03" ¢naz)- Sensors are settled down outside of an operative range
of a source (f(M)=0) and in an operative range of a source (f(M) #0).
The root-mean-square error was used for the account of accuracy of intensity
estimation g(t)

1 N

0y = |7 2 (9((n—1/2)- A1) = )"

n=1

For each sensor there is the critical step Atypy, such, that as each step of
the solution of the inverse problem At > At the solution is stability, i.e. the
step-by-step regularization effect takes place.

The desire to increase the accuracy of intensity estimation, reducing a step on
time, leads to instability of the solution of inverse problem. Using several sensors
(J > 1) the sensor with smaller Aty has prevailing influence. In this case it
is possible to use function specification method with several (r > 1) sequential
steps on time.

The analysis of results of numerical experiments allows to draw a conclusion,
that for pair numbers (At/Atgp;,6), At/Atgyp € [0,151], 0 € [0;0,03 - @aa] it
is possible to pick up r and in this case errors of estimation g(¢) will be minimal.

The information of concentration measurements from sensors is understand-
ing sequentially in the considered method, that allows to organize the on-line
monitoring over emissions of pollution in the atmosphere.
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A VERIFICATION OF THE BLOCKS FOR 3D
AEROTHERMODYNAMICS MODELLING AND
DOSES CALCULATION FROM A CLOUD OF
ARBITRARY GEOMETRY AS PARTS OF A
SOFTWARE PACKAGE FOR ESTIMATION OF THE
RADIATION SITUATION WITHIN AN INDUSTRIAL
SITE AT RADIATION RISK!

Dzama D.V.*, Sorokovikova O.S.*, Blagodatskykh D.V.*
* The Nuclear Safety Institute of the Russian Academy of
Sciences, Moscow, Russia

** National Research Nuclear University MEPhI, Moscow, Russia

Due to the drastic growth of computer performance in the last decades, urban
emission simulations can provide a sufficient resolution of flows around buildings
and other obstacles. Despite of the promising prospects a cross-verification of
different numerical models applied to the same problem clearly demonstrated
a substantial discrepancy of the results. Taking into account that such models
are intended for dealing with many crucial problems (e.g. a safety analysis of
nuclear objects, the estimation of terroristic threats, urban planning), a thorough
experimental validation of obtained results is needed.

To fill the gap between calculated results and experimental data an initia-
tive [1], called COST 732, in the frame of COST (European Cooperation in
Science and Technology) activity was proposed. The main goals of the initiative
were to establish a commonly accepted quality assurance procedure for the mod-
els in question and provide researchers with data sets that are quality checked
and commonly accepted as a standard for model validation purposes .

To attain these objectives the researchers from 22 European countries car-
ried out a set of numerical simulations using 12 CFD models and compared
the calculated results with two field experiments selected as sufficiently complex
test cases: the Mock Urban Setting Test (MUST) and the Joint Urban 2003
Oklahoma City (OKC) Atmospheric Dispersion Study.This work is dedicated to
cross-verification of a programm block for aerothermodynamics modelling in case
of a real 3D object comprising numerous obstacles(the MUST experiment) and
a block for calculation of the radiation situation in the vicinity of an object of
complex geometry.

MUST presents a regular array of 120 containers situated in a flat desert
in the state of Utah. The field data was supplemented with data measured in
a wind-tunnel experiment [2]. The data are collected in form of Excel sheets
free-available from Internet.

!The work of this author is supported by GK NeH.4x.44.95.14.1037
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The CFD models involved in verification include general purpose codes (e.g.
CFX, FLUENT, STAR_ CD) as well as specially developed codes for urban emis-
sion simulations (M2UE, MISKAM, VADIS). Table 1 presents the some results of
the statistics processing of the measured and calculated values of two wind com-
ponents based on conventional criteria for a quantitative analysis of aerothermo-
dynamics modelling in case of industrial and urban buildings.The total amount
of the measurement points is 566.

MISCAM Length Width Height U, W, | U, W,
(Number | (Number | (Number | hit | hit | FAC2| FAC2
of grid |of grid |of grid | rate |rate | % %
points points points % %
per per per
obstacle) | obstacle) | obstacle)

Standard k—e | 24 6 5 73 16 93 14

Standard k—e | 12 3 5t 77 21 92 27

Standard k—e | 12 3 5) 75 21 90 29

Modified k —¢e | 12 3 5) 81 15 89 12

Modified k —€ | 15 3 5! 79 14 91 12

Modified k —€ | 24 5) 5) 75 20 90 31

CFX

Standard k—e | = 13 ~ D ~ 4 82 18 94 23

Standard k—e | 13 5 4 76 15 86 16

Shear  Stress | 13 5 4 1 11 1 11

Transport

(SST) k —w

SSG  Reynold | 13 5) 4 60 20 73 27

Stress turbu-

lence model

Our model 24 5t 5t 71 20 86 27

Table 1. Models cross-verification

The first criterion, called hit rate ¢, specifies the fraction of model results that
differ within an allowed range D or W from the comparison data. D accounts
for the relative uncertainty of the comparison data. W describes the repeatability
of the comparison data.

P—0;

7

SDOI”’PZ—OZISW

N 1 — 1 for
= —=— N; with N; =

where P, and O; are modelled and experimental results respectively. The second
criterion is the factor of two observations (FAC2) defined in a similar fashion.
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N 1 forO5<P‘<2

FACQ:g:—ZN with N; = { 1 for]P|<Wor]O|<W
=1 0

The results of our model is compared against the results obtained by two mod-
els(specialized MISCAM and general purpose CFX) on grids of approximately
the same resolution as ours.The researchers conducted series of calculations vary-
ing the type of wall functions and grid resolution of the obstacles. Parameters
W and D are taken to be equal to 0.034 and 0.25 respectively.

Our model achieves comparable results without using wall-functions and for
practically the same grid resolution

To calculate doses in case of complex geometry of the object and an arbitrary
shape of the cloud one should define the visibility function for all the points of
the air space and then integrate exposure incomes from all visible elementary vol-
umes. Due to a large amount of calculations to be performed a parallel algorithm
1s proposed.

To verify the proposed algorithm a program is written for calculation of dose
rates from the cloud in the vicinity of a cube or hemisphere, as well as dose rates
from the surface in the vicinity of a hemisphere taking into account the surface
of the hemisphere itself. The visibility function of arbitrary points is derived from
the analytical equation of the surface of the object. The scattering and absorbtion
effects are also taken into account.

The tests were carried out in a domain with dimensions : x =
[—500; 500],y = [—500;500], z = [0;500], and the size of cells equal to 10 m.
This size is confirmed as a relevant one on the base of calculations on finer
meshes. As test objects a hemisphere and a cube were taken with radius and
edge equal to 200 m. Volume and surface concentration was considered to be 1
Bg/m? in all the space and 1 Bq/m? on all surfaces respectively. The figures
below demonstrate the dependency of dose rate relative error along a straight
line on the distance from an arbitrary point of this line. Fig.1 presents the rel-
ative error change along a straight line lying at a height of 245 m and parallel
to the horizontal plane. The configuration of the segment of the line is shown in
fig. 2.
In fig. 3 and 4 the case with a cube is presented

An example of more realistic distribution of concentration is shown in fig. 5
and 6. The dimensions of the domain were 100 m in each direction.The compu-
tational grid was homogeneous and the mesh size was equal to 1 m.There were
two pairs of parallelepipeds with dimensions 16 x 16 x 70 and 21 x 21 x 50. The
geometric centers of the first pair were in the points with coordinates (37,5; 37.5;
35) and (62,5; 62,5; 35), of the second - in (70; 30; 25) and (30; 70; 25). A source
with intensity 0.2 GBgq/s and duration of 500 ¢ was situated in point(39; 20; 7).
The velocity of dry deposition no horizontal and vertical surfaces was taken as
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Figure 1. Relative error

Figure 2. The configuration of the segment
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Figure 3. Relative error

Figure 4. The configuration of the segment

0.02 m/s. it is worth mentioning that in fig. 5 and 6 the distributions of dose
rates from the cloud and the surface are demonstrated on the moment the release
is finished.Moreover all values are normalized in reference to the maximum value
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of dose rates from the cloud and the surface respectively.

100

100

Figure 6. Isolines of dose rate from the contaminated surfaces (buildings and
ground)
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COMPARISON ANALYSIS AND PARALLEL
IMPLEMENTATIONS OF TWO SEMI-LAGRANGIAN
TECHNOLOGIES FOR AN ADVECTION PROBLEM!

Efremov A.A., Karepova E.D., Vyatkin A.V.
Institute of Computational Modeling SB RAS, Krasnoyarsk, Russia

Nowadays there is a lot of algorithms of the family of semi-Lagrangian meth-
ods. This approach provides unconditional stability and allows one to use large
time steps.

The method presented in [1] is based on a square grid only, it takes into ac-
count the boundary conditions, and it has theoretical justification of convergence
with the first order of accuracy. Moreover, a discrete analogue of the balance equa-
tion holds when going from an actual time layer to the next one. However, this
algorithm is both compute-intensive and resource-intensive, therefore its parallel
implementation is an urgent and preferable task. Notwithstanding the algorithm
is well-parallelizable (it is explicit with respect to time and data independence
in the general space loop) our first attempts to use CUDA technology [1] faced
severe restrictions of general-purpose GPU architecture.

We have scrutinized the bottleneck of our sequential algorithm and its parallel
versions and the primary causes of poor CUDA performance have been detected.
In our algorithm the biggest part of computation is occupied by integration
stage. The procedure of determining the mutual arrangement of a curvilinear
quadrangle and a grid on a previous time level is especially resource-intensive.
This code has many flow control instructions (“if” statements, mainly) and a
deep nesting level of functions.

We have revised the integration stage at the previous time level in order to
improve an efficiency of the parallel implementation of our algorithm. In this
regard, in [2| another algorithm of integration over a curvilinear quadrangle at
the previous temporal level was proposed. The algorithm is based on an inte-
gral transformation and its Jacobian approximation. We have developed this
approach in such a way that now it allows to escape deep nesting level of func-
tions and to solve effectively the problem under the fine grids. However, we
sacrificed a conservatism of the discrete analogue and a theoretical justification
of convergence.

Numerical experiments corroborate a good CUDA performance of the new
version of the algorithm.

IThe work was supported by Russian Foundation of Fundamental Researches (grant 14-01-00296-a)
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ON NUMERICAL CALCULATION OF SHAPES OF
CYLINDRICAL INCLUSIONS MIGRATING
THROUGH A CRYSTAL FOR PARTICULAR CASE OF
INTERFACIAL ENERGY ANISOTROPY

Garmashov S.I., Prikhodko Y.V.

Southern Federal University, Rostov-on-Don, Russia

The migration of liquid inclusions through a non-uniformly heated crystal
[1-3] occurs because of the thermodynamic disequilibrium originating along the
solid-liquid interface under the action of temperature gradient. The tendency of
the system to restore the equilibrium state leads to the dissolution of the crystal
substance at the hotter parts of the solid-liquid interface, the crystallization at
the colder parts of the interface, and mass transfer in the liquid inclusion. As a
result of this mass transfer, the liquid inclusion moves through the crystal. Ex-
perimental data on the inclusion migration in crystals under different conditions
and, in particular, on the non-equilibrium inclusion shape, contain information
on kinetics of the crystallization and dissolution processes, the interfacial energy
and its anisotropy, and other parameters. In order to extract this information
from the experimental data it is necessary to have a mathematical model of the
inclusion shape.

One of such models (for the case of cylindrical inclusions) has been proposed
in [4]. The advantage of this model is in opportunity of calculating the inclusion
shape and velocity for arbitrary anisotropy of both the interfacial energy and the
interface kinetics, and for arbitrary orientation of the temperature gradient. It is
possible due to an approximation (proposed in [2]) of the solid-liquid interface by
a set of flat facets, each of which is characterized by both the prescribed mech-
anism of growth (dissolution) and the value of specific interfacial energy ~; in
accordance with a fixed dependence v(¢;), where ; is the angle determining the
orientation of the ith facet. The calculation of the inclusion shape and velocity
in accordance with model [4] is based on numerical solving a system nonlinear
algebraic equations for the facet sizes. But because the computational time in-
creases considerably with increasing the number of facets, it makes sense to use
the model [4] in the case if the anisotropies of interface kinetics and interfacial
energy are described by rather complicated functions.

In the present paper we consider a particular case of the interfacial energy
anisotropy described by the function () in the form:

Y(®) = Ymin + (Ymaz — Ymin)| si0()], (1)

where Yoin, Vmar are the minimal and maximal values of the interfacial energy.
The dependence (1) (see Fig. 1(a)) corresponds to the case when the inclusion
is confined by two atomically-flat (singular) parts of the solid-liquid interface
with the interfacial energy .., (at ¢ = 0,7) and by two atomically-rough
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curvilinear (non-singular) parts with the interfacial energy vmin < v < Vimaz-
The equilibrium cross-sectional shape of a cylindrical inclusion for () in the
form [1] is plotted in Fig. 1(b).

y(m)
20 -
I II
10
07 W.SU
- 1 0 ]
_20 _
-30 ; \ ' I ' ' ' !
0 10 20 30 40 1
x(pem)
(@) (b)

Figure 1. The dependence v(¢) in the form (1) (a) and the corresponding cross-
sectional shape of cylindrical inclusion in equilibrium (b) ( the inclusion boundary
parts I are the singular interfaces with the width of wyy and the inclusion bound-
ary parts II are the non-singular interfaces)

A similar problem have been considered in [3] with an assumption that the
interfacial energy anisotropy is described by the function

mans - 077T
V() = { Jmina

Yoo 9 # 0,0 £ 2

However, the function () in the form (1) is more adequate to the real situ-
ation and, therefore, the construction of the inclusion shape model is of interest
for this case. In the present work, similar to the model [3], we consider the case
when the temperature gradient is directed normally to the singular parts of the
inclusion boundary.

The complexity of calculating the inclusion cross-sectional shape for v(p) in
the form (1) (in contrast to the problem considered in [3]) is caused by that the
function y(z) describing the inclusion shape is the improper integral as follows:

_wc v —a?/2 —bE+ 1
y() " 0 /11— (—a&2/2 — b+ 1)?

=dg, (3)
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where a, b are the coefficients calculated from the migration process parameters;
w, is the width of the colder singular part of the interface (at x = 0). The z-
values change from 0 to ¢, where ¢ is the thickness of the cylindrical inclusion;
the value 2y(¢) corresponds to the width (wy) of the hotter singular part of the
interface (at © = /).

The integrand from (3) and the numerically calculated function y(x) are
plotted in Fig. 2. As follows from Fig. 2(a), the integrand is an unbounded
function at * = 0 and & = ¢. These singularities of the integrand restrict the
application of Simpson’s rule [5] for calculating the function y(x) because the
calculation error of this method for the considered case becomes rather high near
the bounds of integration.

y(um) T y(x)
401 401
20 20
& 0- 0 —G—-
dx w, w,
20+ 201
-40- _404
0 10 20 30 40/ 0 10 20 30 40 /
x(um) x(pm)
(a) (b)

Figure 2. A plot of the integrand (a) and the corresponding calculated cross-
sectional shape of the cylindrical inclusion (b), migrating in the direction of the
temperature gradient G

Fig. 3 shows the rather slow convergence of Simpson’s rule (the dush-dotted
curve). Aitken’s process [5] allows to decrease the calculation error of Simpson’s
rule, but the convergence remains slow (see the dushed curve in Fig. 3).

To solve the problem we used a technique described in [5], the essence of
that is in separating out the singularities and using special quadrature formulas
taking into account the character of these singularities. Besides, Aitken’s process
[5] was used to rise the accuracy of the numerical integration with using the
deduced quadrature formulas. As follows from both Fig. 3 and the inset in it
(see the solid curve), the proposed technique for calculating the inclusion shapes
possesses the high convergence and, therefore, provides the small computational
time.
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Figure 3. The convergence of numerical integration in the case of using Simpson’s
rule (dush-dotted curve), Aitken’s process for Simpson’s rule (dushed curve), and
the method of separating singularities (with Aitken’s process) (solid curve) (n
is the number of nodes)
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Figure 4. The computer program developed for calculating the velocity and cross-
sectional shape of the migrating inclusion in the case of the interfacial energy
anisotropy described by the function (1)
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On the base of this technique, the computer program for calculating the cross-
section shape and velocity of cylindrical inclusions migrating through a crystal
has been developed. The program interface is presented in Fig.4.

The inclusion shape and velocity are calculated with assumptions that: (i) the
interfacial energy anisotropy is described by the function (1); (ii) the temperature
gradient is normal to the singular (flat) parts of the solid-liquid interface with the
orientation angles ¢ = 0, ¢ = 7. The program allows calculating and plotting the
dependences of the inclusion velocity and geometric parameters of the inclusion
shapes on various parameters of the migration process, such as the cross-sectional
area, the temperature gradient, the ratio Y,az/Ymin, and so on.
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IMPULSION IN MODELS OF CONCORDANCE OF
PUBLIC AND PRIVATE INTERESTS

Gorbaneva O.I.

Southern Federal University, Rostov-on-Don, Russia

The present work is devoted to the system compatibility with feedback (im-
pulsion mechanism) in models of concordance of public and private interests
(CPPI-models) and, in particular, to investigation of economic and administra-
tive corruption if the corruption functions are given. These functions describe
the influence of bribe on economic and administrative control.

A two-level system consisting of the supervisor and several agents subordinated
to him is considered [1]-[2]. The models of concordance of public and private
interests have the form

gi(u) = pi(ri — uw;) + sic(u) = max, 0 < u; < r;i € N; (1)
1, Jv:s, >0,
NOES WITUETIUENESS DI b

jel jel

where r; is a resource of the i-th agent; w; is a share of the resource assigned
by him for the public purposes; ¢(u) is the public payoff function; s; is the i-th
agent’s share of public payoff; p;(r; — u;) is a private payoff function of the i-th
agent, g;(u) is the agent’s total payoff, go(u) is the supervisor’s payoff, N is
the set of agents. Functions are continuously differentiable and concave on all
variables.

In the case of economic impulsion, s; = s;(u;) or s; = s;(u). Using the first order
condition we obtain that the system compatibility inside the area of admissible
controls is possible only if

0s;(u)
(‘9ui

Oc(u)
(‘9ui ’

c(u) = [1 = si(u)] 1€ N; (3)

For farther analysis it is possible to use two approaches: empirical and theo-
retical ones [3]. Within empirical approach the widespread practical methods of
public payoff allocation are investigated. For example, proportional allocation

mechanism
Lo Im : u,, >0
si(u) = { 2jen Us’ mew

0, otherwise,

In this case (3) has the form

Zu][aggj) Zuj —c¢(u)] = 0,7 € N.

j#i jeN




Gorbaneva O.I. IMPULSIONS IN CPPI-MODELS 105

The expression in square brackets is equal to zero only if ¢(u) is linear, hence
the proportional allocation mechanism is system compatible in CPPI-models in
which the public payoff function is linear.

Theoretical approach is based on the Germeyer theorem.

In the case of administrative impulsion, the most natural interpretation of feed-
back is corruption, and an additional control level level is appeared.

As far as corruption in CPPI-models is concerned it is reasonable to distinguish
administrative and economic corruption according to the authors’ approach. The
principal effects on the set of admissible strategies or on purpose functions of the
agents and performs administrative and/or economic control of agents’ activi-
ty respectively. The principal is assumed to be non-corruptive, but real control
functions on behalf of him are performed by a supervisor who can weak adminis-
trative or economic demands in exchange for a bribe. Respectively, administrative
and /or economic corruption, i.e. feedback on bribes of these controls occurs.
We assume that if there is no corruption the public payoff in model (1) - (2) is
allocated among principal, supervisor and agents in ratio p°, r%, Z?ZI 32, where
p? + 70 "'2?2139' =1.

This scheme can be described by the relation

p=p"=Y 6 r=r"4+> bid; s =50+ (1—b)d,i€N. (4)

J=1 J=1

where the new shares (4) also satisfy p+r -+ " s; = 1. Here 0; is increase of
the i-th agent’s share of public payoff in exchange for a "kickback", b; is a share
of the 7-th agent "kickback" to the supervisor. Taking into account economic
corruption the CPPI-model (1) - (2) takes the form

gs(b,8,u) = [r" + Zbﬂﬂc(u) — max, 0 < ¢; <1, (5)
j=1

9i(bi 65, u) = pi(ri—wi)+[s]+(1=b;)dilc(u) — max, 0 < b; < 1,0 < w; <740 € N,
(6)
where gg, g; are payoft functions of supervisor and the i-th agent correspond-
ingly. The summand 7%c(u) in function (5) describes official supervisor payoff,
and the summand c(u) Y7 b;d; describes his corruption payoff.
The model (5) - (6) can be investigated by two methods: descriptive and nor-
mative ones. In the case of descriptive approach the corruption function 0;(b;)
is assumed to be known. Then for agents the game in normal form occurs in
which agent strategies are the pair (b;, u;). In the case of normative approach
function 9;(b;) is defined as an optimal guaranteeing supervisor strategy (control
mechanism).
So, in this work the impulsion mechanism in models of concordance of public
and private interests is investigated, in particular, mechanisms of administrative
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and economic corruption. To investigate impulsion mechanism theoretical and
empirical methods are applied. Within empirical methods proportional and uni-
form allocations are considered. To describe corruption two methods: descriptive
and normative, are applied.

Bibliography

1.  Gorbaneva O., Ougolnitsky G.A. Purpose and non-purpose resource use
models in two-level control systems// Advances in Systems Science and
Applications. 2013. 13, Is. 14. P. 379-391.

2. Gorbaneva O.1., Ougolnitsky G.A. A problem of purpose resource use in
two-level control systems // Contributions to game theory and manage-
ment. 2014. P. 81-92.

3. Nowikov D.A. Mechanism Design and Management: Mathematical Methods
for Smart Organizations Couple-stresses in the theory of elasticity // N.Y.:
Nova Science Publishers, 2013.



Govorukhin V.N. ALGORITHM FOR VORTICES DYNAMICS ANALYSIS 107

MESHLESS ALGORITHM FOR VORTICES
DYNAMICS ANALYSIS!

Govorukhin V.N.

Southern Federal University, Rostov-on-Don, Russia

In this talk the algorithm based on variant of vortex-in-cells method is de-
veloped. The governing equations are the geophysical models of the atmosphere
formulated in terms of stream function and potential vorticity. It is a system of
two PDE equations:

Dw
D = Wy + Yy, — Ypwy =0, (1)
1
w=—At)+ A4 — 577"2. (2)

where w is a vorticity, 1 is a stream function and D/Dt denotes the material
derivative. Here v, = 0¢/0x, v, = ¢ /y, Uy = 0*)/02?, etc. v = const,
r = /a2 +y? is the polar radius, A*> = f&/gh = const, g is the acceleration
due to gravity, and A is the thickness of the fluid layer. The velocity of the fluid
v = (v1,v9) is expressed via the stream function 1 as

U] = ¢ya Vg = —%, (3>

The developed algorithm includes calculating the dynamics of vortex config-
uration using a variant of the vortices-in-cells method, the calculation heuristic
characteristics of vortex structure and construction of the field of local Lyapunov
exponents in each moment.

The variant of the vortices-in-cells method was presented in [1, 2, 3|. The
method is based on vorticity field approximation by its values at a set of N fluid
particles and the stream function computation using the Galerkin method. The
flow domain is divided into rectangular cells. Vorticity in every cell is interpolated
by a third order polynomial. The resultant piecewise continuous polynomial ap-
proximation of vorticity is employed to derive analytically Galerkin’s coefficients
of stream function expansion. Computed velocity field is used for fluid particles
trajectories calculation as a solution of ODE system of hight dimension

b= Gy (o y), = (T p) = s, i = LN 4)

Analysis of heuristic characteristics of structures is based on calculation of
coordinates of centers of vorticity of patches

1 1
_ (k) *) = (k)
0 /S(k)w (z,9)dS, ¥ = 55 /S(k)yw (z,y)dS. ()

'Supported by REFBR Grant N 14-01-00470




108 "Numerical Algebra with Applications"
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N DO N
| IR N N N T |

N Do N
| T TN (T ST NN T

2 0 2
Figure 1. Vorticity field (top line), mixing map (second line), streamline and

centers of vorticity (third line) and FTLE field (bottom line) for different time
moments.

were in summation uses particles wich was included in vortice with number k&
in initial state. The topology of vortex structures can be studied using (5) and
two heuristic characteristics: the distances d; ; between patches and orientation
of triangles

1
00 = | 2V yU) 1 (6)
( 1

The evolution of particles through the flow is tracked using a flow map, whose
spatial gradients are subsequently used to setup a Cauchy Green deformation ten-
sor for quantifying the amount by which the neighboring particles have diverged
over the length of the integration. The maximum eigenvalue of the tensor is used
to construct a Finite Time Lyapunov Exponent (FTLE) field. The FTLE struc-
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tures divide flow into regions of qualitatively different dynamics and are used to
locate boundaries of the flow segments. Any change in the number of flow seg-
ments over time is regarded as an instability, which is detected by establishing
correspondences between flow segments over time.

The effectiveness of the algorithm was studied in a number of test cases the
interaction known vortex configurations. We considered the vortex configuration
at the initial time of two or three vortex patches with the following distribution
of vorticity

o N

(7)

Wi(Ze, Ye) = { " 6_5((30_300)2“?]_%)2)’ \/($ — )’ + (Y — ¥e)
| 0,v/(x — 2+ (y — v0)

AYARVAN
Slegfe

were K ~ 1.6195...
The figure shows the calculation results for the initial configuration

o= (1~ 80) e (1 20) .

Calculations fully reproduce the results of physical experiments presented in
citeGovb.
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COMPACT DIFFERENCE SCHEMES FOR ROD
LATERAL VIBRATIONS EQUATION

Vladimir A.Gordin *, Evgeniy A.Tsymbalov™**

* Higher School of Economics, Hydrometeorological Center of
Russia, Moscow, Russia

** Higher School of Economics, Moscow, Russia

Introduction

We consider finite-difference approximations for the rod lateral vibrations
equation

JCATIC T B 0
gu_ 9 ER2ZY] = 1
"oz " oa [R P am#] T o [ i a:c2] / 1)

where p is rod’s density, R - radius, — Young module; = € [0, L], f = f(t,x)
— forcing. The equation in partial derivatives is not resolved with respect to
higher temporal derivative, i. e. it has not Cauchy-Kovalevsky type, but Poincare-
Sobolev one. However, it is not an obstacle for its high-order approximation.

We have investigated here the both cases: R = const, and R = R(x).
We compare high-order difference compact and Crank-Nicolson-type schemes.
We compare the following properties: order of approximation, stability, ener-
gy conservation law (for homogeneous case f = 0). The case of the variable
coefficients of the differential equation is much more difficult for a good approx-
imation. High-order compact approximation for a set of boundary conditions is
also discussed.

Compact difference scheme

We use the following 3-5-3-point stencil, see Fig.1, for a compact difference
scheme, which can be expressed as a linear algebraic equations for the values of
the grid functions u and f in stencil’s knots:

a* (uf ™+ ul ) agep (W A U A g (ul T a4 buf -
ety + Crigneuy, + diepiu” o + drignitiny, =
= Pouest(f 3+ [lon i) + Poright(F3n ] + fon 1)+ (2)
Fqoaese (705 + 05 + Qorigne (FE T+ F ) + oo + fi5 D+
+D1teftS on j + Prrightfop j + ql,leftfﬁh,j + ql,mghtch' +71f0;

Here n is a temporal step number, and the lower index shows spatial position
of stencil points over the stencil’s center. These seventeen constants are calculated
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for every spatial grid point x; by substituting the following test monomials
ur(t,z) (see Fig. 1) and the corresponding right-hand sides, were calculated
according to (1), see for details (Gordin, Tsymbalov, 2014):

82uk 9 (94uk ’ 5)3uk 1 /282uk
am Oy 0%y,
+E Rjp ' S5 A AB R(Ry)p~' o + 28R S (R)).

/ /" OR(x) 0%R(x) . .
Here Rj, R;, R; are values of R(z), =5, =5z~ at x;. The derivatives may
be evaluated either analytically or numerically (the high-order compact relations
for the first and second derivatives, see (Patterson, 1983)).

LEFT t RIGHT LEFT RIGHT m.2K
o a 5 2| Po Qo do  Po 2k X t
- () ()7;,1: 'S O ) (),,th a 1 | |
d c b ¢ d - P14 (e[} P1 o iy Qc,}
-O0—0O— -O—CO-»t -O—O— t 2 o0
] 1
~-O0—O 0 m

o= |00

a a Po o fo Jo Po

u f

Figure 1. Stencil and Newton’s diagram of test monomials uy(¢, z) for compact
difference scheme (2).

Crank-Nicolson-type scheme

The Crank-Nicolson-type scheme can be written as:

a"(ug ™+ ugT) g (W ut) F avigne(up T+ up )+
et (W' 4w on) + Cright (U 4 ubi )+ bug + Cepru”y, + Crigniu) =
= potese(f2on; + foon ;) + Posigne(fan; + fang )+ (3)
Fqoaese (S0 5+ 05 + Qorigne (Fh T+ Fi ) +ro(fo + fi D+
+P1ieft S on; + PLright fon; + Quiest S n j + Quright [ j + 710

We need to inverse on every temporal step of CN-scheme a five-diagonal
matrix (see Fig.2) against three-diagonal one for the compact scheme (2).

Stability

Our numerical experiments demonstrated:
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e a a* 5 e n+2 Po  Go fo' Qo Po 2k X t
+G—O— O—0O0—>' O0—0— SRS .

c b ¢ 5 P: 1 n o Pr 2
9 B> —&— —SS—E g 0O L m
~o—6— O—C—»>yn |-O—60—O0—0O0—0>r, ° ' "
e a a* a e Po o  Jo Po

u f

Figure 2. Stencil and Newton’s diagram of test monomials wuy(t, x) for Crank-
Nicolson-type scheme (3).

e The conditional stability of the compact difference scheme (2) if v* <
i+ 1/12; here and after p* = (R*)°h 20" = (R*7)°Ep 'h™4 R* =
maz;R(x;).

e The absolute stability of Crank-Nicolson scheme (3).

We have also discovered stability issues for a small number of spatial grid
points N in case of low smoothness order of rod’s radius function R(z).
Numerical experiments

For schemes’ errors evaluation, we use mesh norms C' and Ly as well as the
mesh energy norm

R(z)? |(Orutanar — Sruaifr)® + E R(x)?p~ (Ostlanar — dxttairs)?|l,
| R(2)*(Osttana)* + E R(x)Zpil(amuanal)QHLg

(4)

Here wgnq is analytical solution, g is a difference one. Usage of norm (3)
allows us to account the kinetic part of solution, while standard C and Lo mesh
norms ignore it.

Table 1. Errors and orders of accuracy of the solution of (1) with compact difference scheme
(2) (left) and Crank-Niconsol-type scheme (3) (right). Orders of accuracy exceed fourth for
both schemes in energy norm, second order for norms C and Ly . Scheme (2) is more accurate
than (3). L = 4w, p = 7000, E = 2.1x10%, uyesy = sin(x)sin(t)+2, R(z) = 0.4+0.01cos*(z), T =
0.2,v* =0.05

Norm | N=12 | N=24 | N=48 | N =96 | RMS N=12| N=24 | N=48 | N=96 | RMS

C 1.99-3 6.72-4 1.75-4 4.42-5 | 1.84 C 3.70-2 9.30-3 2.24-3 5.56-4 | 2.02

Lo 1.62-3 | 4.75-4 1.24-4 | 3.13-5 | 1.90 L2 | 3.02-2 6.57-3 1.59-3 3.93-4 | 2.09

(4) | 3595 | 9.67-7 | 4.41-8 | 2529 | 462 || (4) | 3.91-2 | 1.80-3 | 1.044 | 6.386 | 4.20
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Conclusion

We confirmed high accuracy order for the compact scheme (2) and for the

Crank-Nicolson-type scheme (3). The CS is more exact and economical. CN is
absolutely stable and more effective when the right-hand side or coefficients of
the equation (1) are not sufficiently smooth.
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NUMERICAL AND ASYMPTOTICAL ANALYSIS OF
RAYLEIGH REACTION-DIFFUSION SYSTEM
Kazarnikov A.V."**, Revina S.V.*, Haario H.**

* Southern Federal University, Rostov-on-Don, Russia

** Lappeenranta University of Technology, Lappeenranta, Finland

At the present time, a significant attention is given to the analysis of nonlin-
ear parabolic systems, called reaction-diffusion systems. These partial differential
equations have found a wide range of of practical applications in theoretical biol-
ogy, chemistry, physiology, etc. In this paper we consider well-known FitzhHugh-
Nagumo model, a two-component reaction-diffusion system with cubic nonlinear
reaction term, which was initially developed as nerve impulse propagation model
and has become a classical example of exitable media:

v =1Av+e(w — av — ) (1)
wy = Aw — v + pw — w?

Here v = v(z,t), w =w(x,t), € D, t>0, D=1[0,1] or D =10,1] x [0, 1],
1 € R is a varying control parameter, o > 0, 5 > 0, >0, v; > 0, 15 > 0 are
fixed model parameters. By setting @« = 0, = 0, e = 1 in (1) and assuming
diffusion coefficient equal to each other (v; = v, = v), we arrive at Rayleigh
reaction-diffusion system:

vy = VAU 4+ w 2)
wy = vAwW — v + pw — w?

When no spatial dependence is assumed, i.e. by setting y1(t) = v(t), y2(t) =
w(t), we arrive at classical Rayleigh ODE system:

Yi = Yo Yo = —Y1 + My — Yo (3)

This system could be transformed to Van-der-Pol system by variable change.
Both are well-known models, describing nonlinear relaxation oscillations.

The main purpose of the present work is to construct an asymptotic approx-
imation of secondary time-periodic solutions of system (2), which branch from
zero stationary solution as control parameter p varies. It is a well-known fact
that diffusion does not affect the behaviour of auto-oscillations when zero-flux
(Neumann) boundary conditions are set on the boundary of domain D, so here
we consider homogeneous Dirichlet and Neumann boundary conditions, taking
into account the mixed case. For more details, see [5]. Coefficients of asymptotic
series are computed by using standard numerical algebra packages. We also study
numerically the bifurcations, taking place in the system, and the destruction of
periodic regime, which occurs as control parameter p varies.
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We employ Lyapunov-Schmidt method in the form, developed by V.I. Yu-
dovich [1] for constructing asymptotic expansions. The method is applicable to

ODEs and PDEs, including Navier-Stokes equation |2, 3, 4].
We could rewrite system (2) as ODE in functional space H :

uw=A(pu— K(u,u,u); uéecH. (4)

Here H = Ly(D) x Lo(D), w = (v, w). Linear operator A(u) : H — H acts
on vector function u = (v, w), v,w € W(D) by the following rule:

A(p)u = vAu + Bu + pCu.

-1 0 01
ditions of the system are taken into account by choosing the domain of opera-
tor A. Hereinafter we assume that homogeneous Dirichlet boundary conditions
(ulop = 0) or mixed boundary conditions (u|s, = 0; 3%|s, = 0; S; U Sy = D)
are set on the boundary of D. Trilinear operator K(a,b,c) : H®> — H? is
defined by:

where A is Laplace operator, B = < 01 ) , C = < 00 ) . Boundary con-

K(a,b,c) = (0,abycs) .

Let us find critical value of control parameter p (i.e. such value p,. that
some eigenvalues of linear operator A(u..) are located on the imaginary axis
and other eigenvalues are located on the left-hand half plane).

1 _ 1 . 1
Mer = V—/\1 +vA if v> )\—1; fer = 2UA1 if v < )\—1
1 . . : :
If v > — then monotonous instability takes place in the system, otherwise

1

1

oscillatory instability is observed. Hereinafter we assume that v < IV restricting
1

our attention to the case of oscillatory instability.

7T
To find — -periodic in time solution of (2), where w-unknown cyclic fre-
w

quency of oscillations, we set 7 = wt and & = p — p in (4) and arrive
at:
wit — A(per)u = e*Cu — K(u, u,u), (5)

where differentiation by 7 is denoted by dot symbol. We seek nontrivial 27 -
periodic by 7 solution of (5) and unknown cyclic frequency w in the form of

series:
(0.9 o0
u = E e'u,, w= E £'w; (6)
i=1 i=0

Inserting these series into (5) and equating the coefficients of like powers of ¢
in both parts of the equation, we arrive at the sequence of equations for the
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unknown 27-periodic functions w; and numbers w;. By solving these equations
one after the other, we find first terms of the series (6). We showed that soft
loss of stability occurs in Rayleigh reaction-diffusion system (2). When ¢ << 1
a stable limit cycle exists in the system. First three terms of the series for cyclic
frequency w are equal to zero: w; = wy = w3 = 0, wy # 0. The expressions for
first terms of the series for 27-periodic by 7 solution of (2) are given by:

u = cay(e“p + e W) + e3(az(e™p + e “lp*) + ub(wt)) + O(e?)

w=+/1—12\ + clw, + O(&°) (7)

Expressions for a;, u}, as, wy are found explicitly.

We found out that in case where x € [0,1] derived formulas have a much
simpler form. It was shown that for Dirichlet boundary conditions or Neumann
boundary conditions with additional requirement of zero average, expressions for
n-th term of series for 27-periodic solution contains only finite linear combina-
tions of basis functions vy, where £ = 2xn + 1, n € N, k < n. For mixed

boundary conditions, expressions for n-th term of series also contains linear
n+1

combinations of basis functions 1., but k=2*xn+1, neN, k£ <
For Dirichlet boundary conditions we have:
9,2 _ 12 _ 1 -
Lher = 2UT", wo =V 1-— 127 p = 2o \ v + iy sin(7x)

uh = wiz(2)e’” + waz(x)e’ + c.c.

Z\f

wi3(1) = ——(vr* + iwy) Py sin(37z)

wss(x) = —'—(mr + iwp)®[ Py sin(rx) — éP;; sin(37x)]

o

il fff# e

T

rmfffff#{?f
.f

1 g s P i <
(A) ' (B) t

X

Figure 1. Asymptotical (A) and numerical (B) solution of system (2) in the case
of Dirichlet boundary conditions (first component). System parameters are set
t0: v = 0.1, it = pter + 0.01
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System (2) was also studied numerically in cases where x € [0, 1]. Diffusion
coefficient v was set to v = 0.1 and values for control parameter p were taken
such that g >> p.,. Several numerical methods were used for numerical integra-
tion of the system: grid method, method of lines, Galerkin method. The results
of all numerical experiments were fully consistent with each other.

For the case of Dirichlet boundary conditions, the destruction of self-
oscillating mode was studied numerically. Critical value .., corresponding to
diffusion coefficent v = 0.1 was equal to p. = 1.9739 in this case. For values
of control parameter, less than .. 4+ 0.01, self-oscillating mode was observed in
the system. Self-oscillations were replaced by dual-frequency quasi-periodic os-
cillations as values of control parameter were increasing. When p > p.- + 0.05,
an inhomogeneous stationary solution was observed in the simulations.

005 (i ,.::\ . . | ] ,%% %;m‘ o

‘ A
e
I

Fil i)
0 i llflﬁl
e : i ‘
Al

i

il

Ml

0154

Figure 2. Numerical solution of system (2) (first component) for three values of
control parameter p: g = pier +0.03 (A), = pier +0.06 (B), g = per +0.1(C).
Diffusion coefficient v is set to: v = 0.1

For the case of Neumann boundary conditions, numerical simulations revealed
a set, of spatially inhomogeneous stationary solutions. Simulations for functions
uo(x) = vo(x) = cos(mnz),n € N as initial conditions converged to stationary
solutions, while simulations for all other initial conditions converged to spatially
homogeneous periodic oscillations.
We also studied numerically a generalized version of Rayleigh reaction-
diffusion system:
v = AV + e(w — ou)
_ 3 (8)
wy = VyAw — v + pw — w

where x € [0,1] x [0,1]. We used Odeint C++ library together with NVidia
CUDA v. 7.0 to improve performance of the simulations. Numerical integration
of the system was carried out by the method of lines. We considered the case of
mixed boundary conditions and set the following values of system parameters:
vy = 0.05, 5 = 0.00028, u = 1,6 = 10. Parameter a was varied. Noisy initial
conditions were considered. We observed for a < 0.01 a stable periodic mode in
the system. Starting from a = 0.04, periodic oscillations are replaced by spot
patterns during the evolution of the system. When o > 0.4, oscillations are
no longer observed in the system and it demonstrates the fast convergence to
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spot patterns. We noted that the final configuration of spots strongly depends
on initial conditions of the system.

S v L o 2N ow

Figure 3. Numerical solution of system (8) for different values of parameter a
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NUMERICAL MODELING OF THE SHALLOW AND
LONGITUDIAL TURBULENT STREAM BASED ON
THE 3D REDUCED MODEL

Nadolin K.A.!, Zhilyaev I.V.!?2

U Southern Federal University, Rostov-on-Don, Russia

2 Southern Scientific Center of Russian Academy of Sciences,
Rostov-on-Don, Russia

Summary: The results of analytical and numerical study of the reduced 3D
mathematical models of free water flows in non-deformable beds are present-
ed. Full hydrodynamic models were simulated in finite-element software package
Comsol Multiphysics to verify the reduced model. These results suggest that
the proposed 3D reduced model of the longitudial slightly sinuous channel flow
adequately describes its hydrodynamics.

Keywords: shallow stream, viscous fluid, free surface, mathematical mod-
elling, numerical study.

Introduction. Different types of mathematical models are used to simulate
hydrological characteristics of the water streams. The most accurate of them are
based on the full 3D hydrodynamic equations of turbulent flows. However, the
data of the real hydrological measurements don’t have the required precision of
the values of the hydrophysical parameters to obtain accurate solution in practice,
as well as exact formulation of the initial and boundary conditions for the three-
dimensional partial differential equations. This work is devoted to analytical and
numerical study of one of the proposed in [1| reduced mathematical models of
an longitudial shallow stream. The model is verified by comparing the data of
direct numerical simulation based on the original equations for a viscous fluid
and the results obtained on the basis of the reduced model.

Reduced model equations. Let’s consider slow water flow in a non-
deformable channel. We introduce rectangular Cartesian coordinates, where the
plane zy lies on the flow surface and the axis z points to riverbed. Assume that
the axis x denote the direction of the flow and the axis y goes from the left bank
to the right one. The origin of the coordinate system is located at the middle
of the inlet section (see Fig. 1). Let’s assume that free surface of the stream is
weakly deformable and is defined as z = £(z,y,t), where (z,y,t) — unknown
function. The form of channel is known and described as z = h(x,y). Riverbanks
can be identified by functions y = l(x,t) and y = r(x,t) implicitly through the

equation
h(x7y) _€(x7y7t) =0 (1>

The technique of deriving the reduced 3D mathematical models of the flow is
based on small parameter technique, which has been applied to Reynolds equa-
tions (coupled with the Boussinesq turbulence hypothesis [2]) written in the
special dimensionless form. This technique was presented in details in [1].

119
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Z

Figure 1. Flow layout and coordinate system and flow cross-section

Reduced equations in dimensionless form for shallow and longitudial stream

are
p=G(-¢§)
U = RGGI(JQ — le) + Fx(h — Z)
v = ReGg—j(Jg — &) + Ey(h —2)
w = ReG (I%(Jg; - fJ3) + agy ((J4 - fjg)g—j)) +
oh Oh
0 0 0 0*
% — Rec (I (Zti-ea) - (= W) + (- e ot
a¢ 0 3%
+6_y6_y(J4 —&J3) — (J2— &) (8_y> >-|—
oh 0 oh 0
o (3-8)on(3-5)
where . .
Jl - d77—7 J2 — %7

z z

h h
J3 :/ Jl(x7y77-)d7—7 J4 :/ JQ(x7y77-)dT

Here u, v, w — longitudinal, transverse and vertical components of the flow ve-
locity, respectively; p — pressure; h — riverbed function; £ — free surface function;
Re — Reynolds number; G' — gravity parameter; I — slope parameter; F, and F,
— parameters, that denote values and direction of the external forces; v — dimen-
sionless function parameter, that determines viscosity of the stream turbulence.
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Reduced model analysys. The hypothesis of Boussinesq can be success-
fully used to take into account the turbulence in longitudial channel flow with
the reduced hydrodynamic models. In this case, it is assuming that the viscosity
of the liquid at a given point of the flow does not depend on the flow velocity,
but it depends of the coordinates that determine the distance to the bottom of
the rigid bed.

To select correctly the functional dependence of v(x,y, z), it should be iden-
tified as O(1) at the stream’s free surface (z = €) because of the choice of the
Reynolds number [1]. On the other hand, in the boundary layer (z = h) viscos-
ity is defined by the molecular properties of the liquid, so values of the viscosity
function parameter should be very small.

Let’s consider the simplest case of describing the viscosity function v(z,y, z)
as the linear dependence of z-axis

y=ht—(h—)= (%)

where parameter v, is defined as

S\’
Vh = I 5_0

Here p is determined by molecular viscosity of the liquid; Sy and S, — areas of
the stream cross-sections at © = 0 and at the current point z; a — adjustment
parameter that defines the sensitivity of the model to the riverbed deformations.

Formula (%) has been tested numerically and provides good correlation with
the solutions of the full equations of hydrodynamics.

Computational experiments. To verify the reduced model we compare
results of the simulation with the data, obtained by solution of the full Navier-
Stokes equations in laminar flow and the Reynolds equations for the turbulent
stream (k — e turbulence model). For that numerical simulation the CFD module
of the finite-element package Comsol Multiphysics was used [3].

For the comparison of the models the form of riverbed was taken as
h(y) = /1 —(0.2y)?, I = 0.0001 and aspect ratio of the flow is 1:10:100
(depth:width:lenght). The longitudinal velocity of the flow is depicted on the
Fig.2.

The form of the channel h(z,y) = (1 +0.1sin0.1z)(1 — (0.2y)?) was chosen
to compare models in the case of curvilinear riverbed (see Fig.3).
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Figure 2. The longitudinal velocity of the flow: (a) — due to the depth on the
fairway’s line; (b) — due to the width on the surface;/ — laminar flow; I — the
k— e model turbulent flow (1 — coarse mesh, 2 — fine mesh); III - the 3D reduced
model
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Figure 3. The longitudinal velocity of turbulent flow in the curvilinear channel:
(a) — due to the depth on the fairway’s line; (b) — due to the width on the
free surface; I — 3D reduced model; II — k — e turbulence model; 1 — at the
cross-section of minimum depth; 2 — at the cross-section of maximum depth
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On Fig.4 the results of the simulation of permanent tail and adverse wind are
presented.
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Figure 4. The longitudinal velocity of the turbulent flow under external force F,:
(a) — due to the depth on the fairway; (b) — due to the width on the free surface;
I — 3D reduced model; IT — k — e turbulence model; 1 — F, =0; 2 - F, =0.5;
3 - F,=-05;4—-F,=-15

Conclusion. To test proposed mathematical models numerical simulations
were made. The results show that reduced 3D models adequately describe the hy-
drodynamics of the natural shallow and longitudial streams. The proposed model
are quite simple and allows us to analyse the influence of the shape of the channel
bed and the effect of some external forces (e.g. wind) to the characteristics of the
flow.

Bibliography

1. Nadolin K.A. On the approach to modelling the mass transfer in river-bed
stream // Matematicheskoe Modelirovanie N 2. 2009. P. 14-28 (in Russian)

2. Loitsyanski L.G. Mechanics of liquids and gases. Oxford Pergamon Press,
1966. 481 p.

3. Zhilyaev 1.V. Numerical Simulation of the Model of the Hydrodynamics
of the Shallow Longitudial Flow // Vestnik Yuzhnogo Nauchnogo Tsentra,
N 1. 2013. P. 3-7 (in Russian)



124 "Numerical Algebra with Applications"

MODIFICATION OF FINITE-VOLUME METHOD FOR
APPROXIMATION DIFFERENTIAL EQUATIONS IN
COMPLEX DOMAIN ON RECTANGULAR GRIDS!
Shishenya A.V., Chistyakov A.E.

Southern Federal University, Taganrog, Russia

Motivation

When solving modern problems for partial differential equations with nu-
merical methods, typically there is a number of requirements for the solution
algorithm, such as the following:

1. Sufficient accuracy of the solution of the problems including those in com-
plex domains must be provided;

2. The algorithm of the numerical solution must allow efficient implementa-
tion for multiprocessor systems;

One of the most popular methods of numerical solution of differential equa-
tions is the method of grids. The solving of the differential equations on un-
structured grids allows describing the geometry of the domain more accurately,
however, these grids have a number of disadvantages:

1. Derivation of a grid equation from the differential one requires more effort
on unstructured grids compared with structured;

2. A grid generator is required for creating unstructured grid each time the
computational domain changes;

3. The working with unstructured grids requires more operations with RAM;

4. Parallel implementation of numerical algorithms on unstructured grids
with domain decomposition method requires splitting the nodes of the
computational grids by processors.

The algorithms of solving differential equations on structured grids don’t
have the former drawbacks, but they have another significant disadvantage — low
precision of the approximation of the computational domain boundary. Besides,
the discrete boundary of the domain doesn’t converge to the continuous one as
the spatial step tends to zero; moreover, the limit of the discrete boundary is
nowhere smooth function. Therefore, the discrete problem doesn’t converge to
the continuous one and instead it tends to an ill-posed problem.

Modification of the finite-volume method with partial "fullness"

The proposed finite volume method with partial "fullness" allows creating
grid equation on uniform rectangular grid such that the obtained discrete problem

'Supported by RFBR 15-07-08408
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converges to the continuous one with first order on the boundary and with second
order in the inner nodes. We assume that the computational domain €2 is defined
with the indicator function q that we also call continuous fullness function. The
grid fullness function is defined according to the following formula:

1 1
st = o ] 4= [
gi1d pi

where D! }}f is a cell of the computational grid and Qljlkl = Dj’jl}flﬂﬂ is a control

volume. We assume that the grid fullness function is set in the centers of the cells
and the rest grid functions are set in the nodes. Formulas for approximation the
first and the second derivatives with the proposed method are derived in [1, 2.
Here we give only final formulas:

Pit1,5,k—Pi gk
fff agpmdw — ql+1,j+2,k—‘réal+2,]k 2 h h +

1,1,1
QZ] k (1)
Yit+1,5,k—Pijk
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The formulas (1) and (2) coincide with the classical ones if the grid fullness
function take only values zero and one.

Comparison of the approximation order of the classical and pro-
posed method

When estimating order of the grid equation approximation the errors of the
boundary approximation are usually not taken into account. The finite volume
method is based on approximation of integrals of differential operators, so esti-
mating the errors of approximation of integrals will take into account errors of
the domain approximation. The finite volume method utilizes two formulas for
approximating integrals: Newton-Leibniz formula and mean value theorem. The
former is precise formula and the latter is approximate, so error that it introduces
is an error of approximation. The error of averaging is defined as follows:

= Thoh. h 7 (fffw = it j+3 k43 WANEECS ) (3)

1,1,1 111
ngk zgk

In the work we have showed that error (3) has the second order by spatial
steps in the inner nodes and the first order in the boundary nodes for propose
modified finite-volume method with partial "fullness". In case of using classical
finite-volume method, the error of approximation in inner nodes is the second as
well, but in boundary nodes the approximation error is constant and the discrete
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problem doesn’t approximate the continuous one. Comparison of the proposed
modification of the finite-volume method with partial fullness and the classical
method is performed for the model of viscid flow in the sloped reservoir. In case
of using classical finite-volume method, the flow near the sloped boundary is
significantly reduced due to the stair-stepping of the boundary compared to the
proposed method. Besides, pressure field values are different even in the inner
nodes.

Conclusion

Modification of the finite volume method with partial "fullness" for approxi-
mation differential equations on structured rectangular grids is proposed. Inves-
tigation of the order approximation with respect to the errors of the boundary
approximation has shown that the proposed method has the first order of approx-
imation in the boundary nodes while the classical one introduce constant error.
Although both methods have second order of approximation in the inner nodes,
in case of the usage of the classical finite-volume method, the errors in bound-
ary nodes noticeably change the entire solution that is confirmed by numerical
experiments.
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SIMULATION OF OIL POLLUTION IN THE KERCH
STRAIT!

Shabas I.N.*, Chikina L.G.*, Muratova G.V.*,

Chikin A.L.*™

* Southern Federal University, Rostov-on-Don, Russia

** Southern Scientific Center of Russian Academy of Sciences

(SSC RAS), Rostov-on-Don, Russia

Oil pollution is the imminent danger arising during the oil transport by water
from the place of its extraction to places of processing. That’s one example. On
the 11-th of November in 2007 during a severe storm in the Kerch Strait four
ships sank, six ships stranded, two tankers were damaged. About 2 million tons
of fuel oil spilled into the sea because of tanker "Volgoneft-139" faults.

Oil entering the water basin has a negative influence on all physical, chemical
and biological processes. Therefore, it is necessary to predict the behavior of the
oil trapped in the water area for rapid decision-making in case of liquidation of
negative consequences. Mathematical modeling the oil pollution spread on the
water surface, as well as its thickness and on its borders, is one of the important
ways of this prediction.

The object of the research is the behavior of oil spills in the Kerch Strait. The
spread of oil in the water basin is a complex process. It’s necessary to consider
a wide variety of factors in the simulation. Physical and chemical properties of
oil (boiling point fractions, density, viscosity) have an impact on the behavior of
pollutionis and external environmental conditions (wind field, the air tempera-
ture, the water temperature, the presence of oil-oxidizing bacteria in the water,
salinity, solar radiation etc). Processes of spreading oil spill dominate on the first
stage of the oil spread.

The inevitable degradation of the oil comes under the influence of external
environmental factors in parallel with these processes. Besides that, the move-
ment of the oil slick occurs under the influence of winds and currents in the water.
Three modes of [1, 2]: inertial, gravitational, and viscous regime of surface tension
exist at the stage of oil spreading on the the water basin surface.

For spills of less than 2000 m? the most important phase of proliferation
is the phase under the action of surface tension forces. In the works of [2]-[4]
semi-empirical formula simulation ellipse describing asymmetric shape oil slick
stretched along the direction of the wind is proposed. According to these formula,
the spot diameter in a direction perpendicular to the direction of the wind is
calculated as follows:

A
i = 53.76( =2) /3y 1341/,

/'l
Poil o
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and the spot diameter in the direction of the wind:

lma:c = lmin + 0-95Uj,ézdt3/4a
ybx Ap = puw — Poil, Pw T poii — density of water and oil, respectively, V,; —
the amount of the original oil spill, U,;,q — wind speed, t — after the spill.
It is obvious that the area of the ellipse will be Ay = frac pidlpeplmim(m?).
Drift spots under the influence of currents and wind is described by the
convection-diffusion equation [4]:

ho o
a_t + V(hv) — V(DVh) = Ry,

0
_ T T,
v:<u$+0—f,uy+cif), (1)

where h — the thickness of the oil, dv — drift velocity of the film, % — shear

stress due to wind, D — function of the diffusion spread Spot crude oil, Cy
~ coefficient, of friction between the oil film and surface water (0.02kg / m*c),

R}, — the sources (Stock) function, g —acceleration of gravity, V = (9/0z,d/dy).

Initial thickness of spots is calculated as follows: h = %

The boundary and initial conditions [5] are added to the equation (1) . It
is assumed that the velocity field is known at every time step. The resulting
system of equations is solved by finite difference method using implicit schemes.
The computational domain is constructed as rectangular uniform in all directions
of the grid. To approximate equations upwind scheme for the convective terms
is used. As a result of the finite-difference approximation we obtain a system of
linear algebraic equations with five-diagonal matrix.

The mathematical model was implemented as a set of programs. The solution
is carried out on high-performance computing systems with distributed memory
parallel programming environment MPI. The Parallel Library program Aztec is
used for solving the linear algebraic equation system with sparse matrix. Aztec in-
cludes procedures that realizing iterative methods from Krylov’s subspace — con-
jugate gradient method (CG), generalized method of minimal residual (GMRES),
quadratic conjugate gradient method (CGS), a method quasiminimal residuals
(TFQMR), biconjugate gradient method (BiCGSTAB) with stabilization. All
methods are used with various preconditioners (polynomial method and domain
decomposition using both the direct method LU, and incomplete LU decom-
position in subdomains). According to research results [6] biconjugate gradient
(BiICGSTAB) method was chosen for solving this system.

The numerical experiments to simulate an emergency situation in the Kerch
Strait in November 2007 were made using constructed computer system |7].
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GROUP-LATTICE APPROACH TO COMPUTATION
OF SOCIAL CONSTANTS IN THE MODELLING OF
EVOLUTION PATHS OF THE ARCHAIC SOCIETY!
Shvedovsky Vyacheslav, Standrik Anton

Lomonosov Moscow State University, Faculty of Sociology, Faculty
of Computational Mathematics and Cybernetics, Moscow, Russia

Since ancient times cultural codes of different countries, ethnic groups and
nation were formed during the evolution depending on the evolution paths that
were traversed and the problem of find- ing formation paths and laws of these
codes is posed. It is hypothesized that the macrodescription of evolution routes is
effective if a set of the most highly aggregated categories to describe way of life of
various communities of the society is used: the assignment, work, exchange, dis-
tribution and consumption. As a subject of consideration of the author chose the
primitive clan community epoch of mesolite, located in the neighbors * relations
we-they with the same community. As models of these relations, he applies the
group of permutations, reflecting possible the reproductive cycles of the graphs
with 4, 6 and 8 vertices.

Each graph puts the macro-level system of social reproduction, in which a
set of n — vertices is the set of reproduction kernels, covered by the range of
reproductive cycles — RC. In this case the evolution of an archaic society is
modeled sequence of nested subgroups — H,, for which removed law of changes,
which defines the complexity of the society at the mastering of the mass of its
representatives of discoveries and inventions:

..CH,CH,CH,C..,.n<m<p

First members of this sequence are guaranteed by select of subgroups with
necessary devisors for group Ss. Next members of this sequence are subgroups
of octahedrons symmetries Sg, and group of tetrahedron S, is subgroup of Sg
group.

Discoveries and inventions are displayed on graphs by addition of new orient-
ed edges, permitting a new reproduction cycles, or new vertices (reproduction
kernels) — evidence of the emergence of new social institutions that are ordered
by the complexity level.

At formation of the criterion for the selection of the evolutionary trajecto-
ries of society on the group lattices there arises need to clarify the calculated
entropy estimates of the complexity of each trajectory. It is obtained an initial
macroestimate of compound H(n) for compounding spectrum RC:

(n—1)xInn—Inin(n—1) —n < H(n) <InL+ (n—1)xlnn—Inin(n—1) —n,

IThis work was supported by RFH(Russian Foundation for Humanities) 15-03-00435
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where n degree of group S,, for system of social reproduction, and L — const. [2]

Based on the evaluation of the complexity of the spectrum of reproductive
cycles of the collective economy of the archaic society, the autor calculated the
number of social constants L for the phase transition from the Mesolithic to
Neolithic age. The author used the idea that fundamental changes in society
occur throught new inventions and discoveries that end up in the development of
new effective technologies (Behterev’s Law of Changes) that significantly change
the lifestyle of society and complicate relations in it.

Received constants will allow us to specify a road map of the evolution of
the most ancient slav society and some other societies in order to justify the
formation of a social heredity of its different groups, manifesting the cultural
code of conduct on different subsequent historical periods.

The problem of finding all subgroups in a group was proved to be NP-
complete problem by mapping groups on the Cayley graph therefore there is
no efficient algorith of solving it. Computation algoritm is based on Lagrange’s
theorem and shows satisfactory computational time in theory and in practice
in relation to finding subgroups in permutation group of order eight which is
equivalent to 8-vertex ordered graph. Estimated time of the algorithm is:

k

T(k) = O(K?) * 5, ~ O(2mk(=)™) * 5,

n—1
Sn=>"CiSni.
1=1

Subgroups complexity was evaluated with Uemov criterium of oriented graph
complexity which is based on the number of hierarchical relationships of different

types.|1] )
NN .
Uim.r) =~ 330 i

j=1 i=1

m — set of vertices and r is a set of all possible types of relationships between
these vertices. This approach allows us to use median probability criterium:

0.5—c¢ S P(&’j) S 05+6

&ij — discontinuous variate on the set of complexities of transitions from level i to
level j and to make suggestions about preferable(optimal) evolution routes. Due
to constant overall complexity for each route, too complex or too simple routes
were dropped from evolution tree. Finally the evolution lattice or evolution tree
was introduced. Example of counted nested groups:

To=1{1,2,3,4,5,6,7,8}

T, ={2,1,3,4,5,6,7,8}

T, ={1,3,2,4,5,6,7,8}
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Hy = {Tp, 1"}

His = {To,Tv,Tia, Ths, Too, Ton, Thra, Ths, Tiso, Tist, Tises Thsr, 366, T367, Th72,
Ts73, T378, Ta79 }

Hsg = {10, 11, Tha, Tis, To0, To1, Tsa, Ts, Too, To1, To6, To7, Ti20, Ti21, T34, Thss, Thao,
1141, Tu7s, Ta7s, Tigo, Tis1, Tises T1s7, 1366, 1367, T372, T373, T378, T379, T390, T391, 1396,
Ts97, Tao, Taoz}

|Hiqq| = 144
|Hy76| = 576
|Hy150] — 1152

| Hy0320] = 40320

Hy C Hig C Hss C Hisa C Hsze C Hirsa C Haosz2o
Complexities:
Usy1is = 4.591761,Us36 = 2.983394, Usg_144 = 37.935890, U1445576 =
195.189507, Us76_1152 = 627.671115, Uq159_40320 = 37863.326155

Every nation in the beginning of it’s evolution in this can be specified with a
set of restrictions that affects it’s development and formation of it’s cultural code.
For example poor soil fertility in China forced ancient tribes to cooperate in order
to survive. Agriculture strategy in China was based on manpower surplus and
was aimed on increasing the fertility by chemical fertilizers while the European
strategy was based on high soil fertility and lack of manpower therefore aimed
on the invention of effective agricultural tools. These conditions can be reflected
in two kernel graphs that initiate the evolution process.

(a) W : West (b) € :East

In the terms of computation technology we can say that there are two types
of initial graphs: the Eastern and the Western graph. Relationships between
upper and lower kernels can be considered ad hierarchical. Relationships between
kernels on the same level can be considered as exchange or cooperate relations.
Considering full groups on these graphs that appear in the end of evolution routes
and counting the relative values of hierarchy and exchange relations in both
groups we can see that there are 1.8 times more hierarchical and 2 time more
cooperation relations in the Eastern groups. This explains the emergence and
the development of traditionalist cultural values in the East and indivisualistic
values in the West.[3]

As a result:
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1. Social constants that describe complexity level of society at each stage of
it’s development level were recieved.

2. The process of cultural values priority formation in East and West societes
was described by means of group-lattice approach.
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SPECTRAL DECOMPOSITION AND GEOMETRICAL
ANALYSIS OF SPATIAL DATA AND IMAGES
Simonov K.V., Kurako M.A., Cadena L.

* Siberian Federal University, Krasnoyarsk, Russia

Abstract

Computer technologies allow the production, transfer and storage of huge
amounts of different types of data. We need effective methods for processing and
analyzing these data for extracting new information and new knowledge. It is
important not only to ensure the adequacy of methods for processing different
types of data, but also the opportunity to analyze the accuracy of methods to
better understanding the internal structure of the data.

Thus, the first task is to decompose the source data (images) into chunks,
process each chunk separately and then analyze the results. Let’s introduce class
| C L*(R%),d > 1 and appropriately chosen set of functions (p;)ie; € L*(R?),
called "analyzing functions", that each f € [ satisfies the equation:

J= ZCz’(f)%-

A countable set of coefficients ¢;(f),7 € I represents a signal decomposition
based on analyzing functions (¢;);c;. On the other hand, this equation describes
the process of restoring the source signal using coefficients ¢;(f).

A separate issue is the finding fragments of images with anisotropic char-
acteristics or breaks (lines or curves, object’s edges), because traditional image
processing techniques are not sensitive to this kind of characteristics.

There are various image-processing methods for finding anisotropic objects in
the image, such as directional wavelets, complex wavelets, contourlets, curvelets,
etc. offered over the past 20 years. A new approach to the analysis of anisotropic
characteristics of images, called shearlet transform, proposed in 2006. Unlike
wavelets or curvelets, shearlets built in the class of affine systems and have the
ability to determine the direction through additional shear parameter [1-7].

Shearlets have a number of properties, which distinguish them from oth-
er image processing methods: a finite number of generating functions; optimal
representation of anisotropic characteristics of analyzed data; fast algorithmic
implementation; a unified approach to processing continuous and discrete data.

The main usages of the discrete shearlet transform (DST) are image de-
noising, edge detection, morphological analysis (splitting images to objects of
different types, such as points, lines and curves), and improving the quality of
images [1-10]. Existing approaches to the analysis of the images allow extension
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into a space of more than two dimensions (video) and applicable to problems in
medicine and geomonitoring [14].

The goals of the work are comparison of DST algorithms and development
a DST-based computer technology for image processing of catastrophic natu-
ral events. The main problems are image separation (morphological analysis),
denoising and edge detection.

I Computing technology

Based on the theoretical and methodological review, let us consider a modifi-
cation of the method of geometrical analysis of visual data, which allows solving
a wide class of problems in image processing of complex images of environmental
monitoring. We outline three types of problems: image separation (to points and
curves), edge detection and data visualization using 4 distinct DST algorithms
[8-13]. Algorithms defined as follows: A — FFST (Fast Finite Transform Algo-
rithm) algorithm [12, 13]; B — Shearlet Toolbox algorithm [1-8]; C — ShearLab
algorithm [3-10]; D — TGVSHCS algorithm [10, 11].

We propose the computing technology and computing system for solving
specified problems. In a preliminary phase, the original image is broken down
to the computational chunks and computing system planning the sequence of
procedures for the optimal solution of the problem. In a configuration phase,
computing system chooses concrete algorithms depending on the problem and
the brightness and contrast of images. In the next phase the system loading
and processing images depending on the set of conditions. The final phase is an
analysis and contrasting of the processed images.

For comparison, computations made on the images of different sizes. The
quantitative indicator of the effectiveness of algorithms is algorithm’s mean work-
ing time. The results of comparison are the following: algorithm C is faster than
algorithm A on images of large sizes, while algorithm A has a slight advantage on
small images. Algorithm D is the slowest. Images larger than 512 on 512 pixels
analyzed by chunks.

Analyzed images belong to a number of related areas: wildfire propagation
snapshots, medical imaging, geoecology and geodynamics. All images processed
with various brightness and contrast values. Gaussian noise used for solving de-
noising problem and for comparison of denoising algorithms [14].

IT Solution of geomonitoring problems

Geometric separataion of visual data. In accordance with the study of DST
algorithms proposed to use algorithm C for solving the first task for geomet-
ric separation of visual data of geoenvironmental monitoring. Estimation of the
image separation improving is 5-12% compared to curvelets.
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Edge detection. The second task is detection of edges in the image. Study of
algorithm A shows that the edges of objects can be obtained as the sum of the
shearlet transform coefficients at the last (maximum) scale. It’s proposed to use
this approach for edge detection:

ki my
Feont = > shy(f(5* k,m)),

k=0 m=0

where shy is a mapping from L*(R?) to space of shearlet transform coefficients,
J* — the last scale, k; — number of directions and m; — number of translations.
Modified FFST algorithm (algorithm A) tested on various types of geomon-
itoring images and compared with classical Sobel and Prewitt filters. Modified
algorithm is comparable in accuracy to the Sobel and Prewitt algorithms.

IIT Comparison of denoising algorithms

The comparative analysis of DST-based image denoising algorithms and algo-
rithms for filtering (enhancing) visual data performed. Also we studied algorithm
A as method of extracting information about linear singularities of visual data
of ecological monitoring.

Research of algorithms for solving image denoising problem performed for
algorithms B, C and D for images from various subject areas (wildfire propagation
snapshots, medical imaging, geoecology and geodynamics). Algorithms tested for
images with various brightness and contrast, with and without gaussian noise.

Algorithms B and C analyzed with PSNR metrics and estimation of visual
quality perception for different images. Estimation of visual quality perception
performed by three expert groups, five experts in each group. Grading scale
has 10 grades. Algorithms B and C analyzed with PSNR metrics in the image
denoising problem.

Conclusion

The results of this study show that:

e [mage separation problem can be solved using algorithm C (ShearLab). Es-
timation of the image separation improving is 5-12% compared to curvelets;

e Edge detection problem can be solved with modified algorithm A (FFST).
Modified algorithm is comparable in accuracy to the Sobel and Prewitt
algorithms;

e Image denoising problem can be solved using algorithms B, C, D. Algorithm
D is the slowest (compared to algorithms B and C). Algorithm B (Shearlet
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Toolbox) is more effective than algorithm C for all types of tested images
(with different brightness and contrast) by quantitative indicator (22-26%)
and by visual quality perception. But algorithm C is 1.7-2.6 times faster
than algorithm B depending on the image size. We recommend to use
algorithm B for solving image denoising problem.
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RESEARCH OF INITIAL BOUNDARY VALUE
PROBLEMS WITH MOVING BOUNDARIES
Stolyar A.M.

Southern Federal University, Rostov-on-Don, Russia

Studies of initial boundary value problems with moving and variable bound-
ary have been carried out in different fields. The corresponding models de-
scribe the phenomena of melting and solidification, oscillating and diffusion, etc.
A brief overview of those problems and methods of their solution is given in
monograph [1]. Methods of asymptotic and numerical integration of hyperbolic,
parabolic and elliptical equations for Dirichlet, Poisson and Roben problems are
developed in [1] as well. The mentioned methods are applied to the problems of
longitudinal and transverse oscillations of the rope of variable length |1, 2]. In this
paper the methods of numerical and asymptotic integration are applied to the
problems which describe the oscillations of visco-elastic rope with a rigid body
(see Fig. 1). The modified finite-difference, Runge-Kutta and small parameter
methods are used here. The corresponding problem may be written as follows

0Pu  d*¢ 0%u u
pE (aT - %) = Bt rEE G g — rE. (1)
CE_ppdt
T oz |,_, "
§(t) = () + ull(),1), ule,t)],_ =0, ulz,t)], =0,
ou(x,t
(I‘ t)‘t:(): Spl(x)7 gt ) - 902(1‘)7
=0

t
dl ou(l,t
0t)|,_y= Lo, [1 + (6,1)

& Bl ] = ev(d).

Here wu(z,t) is a rope section x displacement at time moment ¢; p, F', E
are the parameters of density, sectional area and a Young’s modulus for the rope
respectively; ¢ is acceleration of gravity; m is mass of a rigid body; £(t) is a
length of rope at time moment ¢ in the undeformed state; £(¢) is an actual
distance between the run-off point of a rope from the reel and a rigid body. We
assume that the rate of unwinding (or winding) of the rope is small relatively to
the speed of propagation of the wave in the rope (the actual speed of propagation
of the wave can be 4000-5000 m/s). Parameter ¢ is equal to this relation. The
given problem (1) may be reduced to the following one

2w 9\ *w
W—FFl(t)gi‘FFQ(t)gi = a* <1+M1§) 92 (2)
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O0*w ow
- Fi(t Fy(t)ed = po——
o | 1(t)ex + Fa(t)ey = pao =
ow
wl,_y=®i(x), S . PBy(w),  w|,_y,=0.

Here w(x,t) is a new unknown function Fy, Fy, ®;, &3 — are the known
functions. Asymptotic solution of the problem (2) has been built as the series

o

w(z,t) = Z wy(z,t)ek.

k=0

The solution of the given problem on the changeable domain [0, /(¢)] has
been reduced to the solution of initial boundary value problems on the constant
domain [0, £y].

For the sake of numerical integration we need to use the moving grid in order
to apply the finite-difference and Runge-Kutta methods (See Fig. 2). This grid
was firstly proposed by Dr. I. M. Bermous in [3].

Ax

¥\
e

@ [
|

X+u(x.i)

Jr

Figure 1. The model of a rope with rigid body

One may see the comparison of results of numerical and asymptotic integra-
tion on the Fig. 3 in the case of elastic rope’s winding. The given curves describe
the deformation of the highest section of the rope in dependence of time.

The problem of finite-difference algorithm convergence has been considered
in the paper in the case of the constant boundary.
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by grant No.14.A18.21.0356 of Russian federal scientific program.



Stolyar A.M. RESEARCH ... PROBLEMS WITH MOVING BOUNDARIES 141

' I(tj+1)

y I(t;)

Dl(tj—l) XJi'+1_|_hj1

AN S | X_ii+1

' ><g+l_hj'

b

hi-1  |h hjs1

j-1 j j+1 t

Figure 2. The moving grid of finite-difference method

u(l(t).t) (V)

Ay
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GPGPU TECHNOLOGIES FOR GENETIC
ALGORITHMS
Agibalov O.I.

Southern Federal University, Rostov-on-Don, Russia

Genetic algorithms today is the perspective type of methods for mathematical
optimization. Based on the Darwin’s theory of evolution, they perform operations
on dozens of so-called "chromosomes", each encoding appropriate solution of the
problem as a set of "genes" — parameters of the purpose function [1]. Convenient
genetic algorithm may operate hundreds and thousands of chromosomes, that
are indepenedent from each other and thus may be computed concurently. The
most efficient way for accelerating programs is using parallel technologies, such
as GPGPU (General-Purpose graphics processing units). It means that the hard-
ware which traditionally were applied for rendering computer graphics, today are
suitable for non-graphical computations. Apparent advantage of GPUs is their
massive parallel architecture. GPUs contain up to several thousand cores that
work independently concurently. This is why GPGPU is the perfect technology
for computing independent chromosomes [2].

The first model of parallel GA was proposed many years ago and was called
"Island Model". All the chromosomes were splitted into several "islands" that
evolved and exchanged their best individuals with other islands. Another parallel
model of GA is suggested in this research. Using GPGPU we are able to operate
each chromosome in independent thread. But before doing this, we have decided
to redevelop our previous GA and make it faster. First af all we have changed
coding system - decimal values were used instead of binaries. In couple with
other cosmetic changes we have reached eleven times speeding up even without
parallelization. Furthermore, alterings in coding system have allowed us to reduce
the ammount of data transferred between CPU and GPU |[3].

Working with GAs on GPGPU our goal was to study possibilities and re-
straints of new hardware. Acceleration of GPU-algorithm in comparrison with
CPU-algorithm is about 30 percents — 165 ms against 211.

Figure 1 shows us comparison of total performing time for CPU ang GPU
algorithms and the time of initialization. Thus we can see that GPU-environment
requires 96 ms of 165 to be initialized. For CPU-algorithm this time will only be
5 ms of 211. Considering that 96 ms we have discovered that 93 percent of them
is behind the initialization of GPU libraries. It means that we cannot optimize
this time interval.

Using these and other results we may show when the use of GPU for accel-
erating GA is reasonable.

Thus it is possible to say that for little sets of chromosomes the use of GPGPU
is unefficient. But as the chromosome number increases as GPU becomes more
and more preferable. Only the huge number of individuals allows GPU-algorithm
to overcome initialization delay and and ahead fast, but serial CPU.
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Figure 2. The performance of GPU-algorithm and CPU-algorithm in solving the
test problem
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PROPAGATION OF LONG PULSE WAVES IN AORTA
Batishchev V.A., Getman V.A., Safronenko O.I.
Southern Federal University, Rostov-on-Don, Russia

Long waves in a fluid which fills a cylindrical tube with elastic border have
been studied by many authors since the end of the nineteenth century [1, 2]. An
important contribution to the study of the theoretical aspect was made by the
Russian physicist 1.S. Gromeka [2|. Literature review on this subject is provid-
ed in a well - known monograph by T. Pedley "Hydrodynamics of large blood
vessels" (1983) [1]. The calculated phase velocity of the waves in a liquid in an
elastic tube is well proved experimentally. Prof. Ustinov Yu.A. was the first to
investigate long helical waves in a blood vessel with the anisotropy of walls |3,
4]. Great difficulties arise when calculating short spiral waves in elastic tubes [5].
When doing the asymptotic research of these short waves, one needs to calculate
the oscillating boundary layers which are formed on the vessels walls. Note that
the researchers named above did not use the method of a boundary layer. The
results of asymptotic and numerical calculations of long longitudinal and spiral
waves with the use of boundary layer are provided. Compared to the prominent
investigations, the experimental case is considered when the pressure in an input
cross-section of a vessel is given, taking into account the time parameter in a
non-symmetrical way:.

Long longitudinal and spiral waves were calculated on the basis of the Navier-
Stokes’s system and the dynamic equations of a thin elastic isotropic membrane,
taking into consideration infinitesimality of a viscosity coefficient. The aorta is
modelled as a cylinder that is limited by a thin membrane. Some small parameters
arise upon transition to dimensionless variables. The parameter connected with
viscosity is proportional to the thickness of the boundary layer arising by the
wall. The second small parameter is inversely proportional to the phase speed
of the Mouensa-Kortevega wave. A well-known method to calculate long waves
with the use of a slow axial coordinate is applied. Asymptotic expansions are
presented in the form of a series based on the degrees of the second-order small
parameter. In the main approach there is a linear problem which serves the basis
to calculate the long waves propagating in the steady flow. The velocity vector of
this flow has only one nonzero component (Poiseuille’s parabola), directed along
the cylinder axis. The solution of the problem consists of the sum of functions
of two types. The first type of the functions in the main approach describes an
ideal flow. The second type of the functions describes boundary layers on vessel
walls. Note that boundary layers in large blood vessels are observed by surgeons
when performing operations on heart and vessels.

It is shown that in a flow core (out of the boundary layer) longitudinal com-
ponent of velocity of long waves is constant in its cross-section. This phenomenon
is experimentally observed. In the case of ideal fluid the phase velocity of waves is
determined. Two waves - the wave of pressure and the quasilongitudinal wave are
obtained. It is shown that only the pressure wave is of paramount significance in
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the out of the boundary layer case. The amplitudes of both waves, however, have
an identical order inside the boundary layer. Damping decrement is obtained
while calculating the functions of a boundary layer. To define the amplitude of
long waves the pressure at the entrance of a vessel taken as a time function is
determined. This function doesn’t possess the property of symmetry on time.
Numerical calculations of a wave form and pressure depending on time, both in
a systole and axial coordinate, have been carried out.

It is shown that amplitude longitudinal velocity component at the beginning
of a systole grows in time, reaches a maximum, and further on, in the second
half of a systole, decreases to zero. At the end of a systole there is a inverse flow
zone, this zone being localized in a boundary layer. The speed of a countercurrent
tends to zero when it leaves the boundary layer, and approaches a vascular wall.
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NUMERICAL METHODS OF MULTI-CRITERIA
REGULATION ALTERNATIVES TO SELECT
FINANCIAL INSTRUMENTS

Bodrova Y.S., Mermelshtein G.G.

Institute for Mathematics, Mechanics, and Computer Science in
the name of I.1. Vorovich, SFEDU, Rostov-on-Don.

The problem under consideration: The goal is to select the bank for deposit.
The problem has three criteria fi, fo and f3. Where, f, — criterion that deter-
mines the increase of equity capital of the bank for the year. The second criterion
is fo — criterion that determines interest rates on deposits. The last criterion is f3
— criterion determining the rating of the bank. There are three choices: SberBank,
Center-Invest Bank, Stella Bank respectively z1, x9 and z3

f; f; f3

x! [ 13,200 | 6,400 | 67 006,000
xZ [ 12,200 | 8,250 | 92 060,000
x5 | 10,400 | 8,500 | 84 311,000

The method assumes the following steps:

1. the creation of a hierarchical structure of the original problem with multiple
levels;

2. setting priorities (coefficients of the importance or the weight) criteria for
the choice of the set goal;

3. evaluation (based on these estimates) values priority for the lower level
criteria regarding the purpose of the upper level;

4. evaluation of priorities of alternatives for each of the lower level criteria
with the help of quantitative paired comparisons;

5. aggregation of all of the estimates obtained in the integral priorities —
evaluate alternatives regarding the purpose;

6. selecting the alternative having the highest priority, as the best, or the
ranking the alternatives by the preference according to the calculated pri-

orities;

7. analysis sustainability of the solution obtained.
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The method used to select the financial instruments: to the determination of
the bank for the deposit, to the forming of a package of shares, to the buying a
package of bonds.

The first step is the construction of the hierarchical structure of the original
problem with a few levels. The using of the hierarchical structure is very pro-
ductive because it allows presenting the original problem with a large number
of criteria, which as a single whole is too complex to analyze, as a system of in-
terconnected significantly simpler "subtasks" with a small number of criteria [3].
The most often used structure has the next form: the upper level — the purpose,
the intermediate levels — the criteria, the lower level — the options [1].

The next step is to determine the weights for criteria and alternatives. The
matrix of pairwise comparisons is compiled for to determine of the weights of
criteria and alternatives by using numerical methods. Two criteria or two alter-
natives are compared and the degree of excellence in the "power" (importance
or preference) of one of the criteria or alternatives over the other is evaluat-
ed for each paired comparison [4]. The filled matrices are inversely symmetrical
with positive elements. Various numerical comparison methods are used, and the
results obtained are analyzed.

The next step is the calculation of the vector s of the local priorities by
using method of principal characteristic vector from equation As = A\, * S,
and ||s|| = 1, where A, — greatest characteristic value [1]. The values of the
characteristic vector are evaluated by using numerical method. This method is
allows to determine the approximate assessments by using the geometric mean
of the matrix elements of the rows. Then, the values obtained are normalized for
the convenience of further calculations. The eigenvalue A, is calculated by the
same numerical method.

To find the approximate value \,,,, necessary:

1. Find the sum of each of the columns of the matrix of pairwise
comparisons » ., a;;.

2. Multiply the values obtained Y ", a;; on the values of the normalized
characteristic vector: the first sum is multiplied by the first value, the second —
the second, etc.

3. Sum the results obtained. The result of the calculation will be the approx-
imate maximum eigenvalue A, of the matrix of pairwise comparisons.

An indicator of the consistency of the estimates is a super-transitive ma-
trix of the pairwise comparisons A. An indicator of the consistency of obtained
estimates is a highly-transitive of the matrix of the pairwise comparisons A.
Therefore, if the matrix of the pairwise comparisons is not super-transitive, then
is required to assess the degree of the consistency of the matrix elements, or
the consistency of the matrix A. The method for the evaluating the degree of
consistency is given in [3] [5]. If the consistency is high, then you can proceed
to the calculation of the priorities. Otherwise, you must to correct the results of
palrwise comparisons.
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Integral priorities (regarding the purpose) v(x) of alternatives x are calcu-
lated by using an additive function of the value: v (z) = > " w; % v;(x), where
m — number of criteria, w; — priorities (weight) of these criteria, v; (z) — priori-
ties of the alternative to these criteria [2|. The best alternative is the alternative
with the highest integral priority.

Checked the execution of the axioms of regularizing by the addition and
removal of wittingly worst alternative. Is carried out numerically experiments
and sensitivity analysis, with the help of minor changes to the values of criteria
weights to trace the impact of these changes on the result of regularizing. If the
ranking of the alternatives is saved, the results can be considered stable.

We apply the described method on the our task.

e the creation of a hierarchical structure of the original problem with multiple
levels;

e setting priorities (coefficients of the importance or the weight) criteria for
the choice of the set goal;

Bank f1 f2 f3
ft 11,000/ 1,000 | 1,000 | 0,333
2 11,000/ 1,000 | 1,000 | 0,333
2 11,000/ 1,000 | 1,000 | 0,333

e evaluation of priorities of alternatives for each of the lower level criteria
with the help of quantitative paired comparisons;

£, ot x? 3 £, | ot x? 3 fs | =z x T

T11,000 | 4,000 [ 9,000 | [27 [ 1,000 0,125 [ 0,111 | [« | 1,000 | 0,11 | 0,143

8

8

210,250 | 1,000 | 6,000 | [ 228,000 | 1,000 | 0,500 | | 22 [ 9,000 | 1,000 | 3,000

230,111 0,167 | 1,000 | | 59,000 | 2,000 | 1,000 | | 23| 7,000 | 0,333 | 1,000
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e aggregation of all of the estimates obtained in the integral priorities - eval-
uate alternatives regarding the purpose;

\Y f, f, f,
Criteria | 0,333 | 0,333 | 0,333
x! 0,540 | 0,143 | 0,143 | 0,275
x? 0,297 10,429 | 0,429 | 0,385
x> 0,163 | 0,429 | 0,429 | 0,340

e selecting the alternative having the highest priority, as the best, or the
ranking the alternatives by the preference according to the calculated pri-
orities;

1.] 22 - Center-Invest Bank | 0.385
2.| 3 - Stella, Bank 0.340
3.| 2! - SberBank 0.275

e sustainability analysis of the solution obtained.

Adding knowingly worst alternative x*:

f1 | £ f3
x* [ 10% [ 6% | 60 000

T Ji Jo f3
Criteria | 0,333 | 0.333 | 0.333

x! 0,588 10,067 | 0,073 | 0,243
x> 0,297 | 0,437 | 0,594 | 0,443
7> 0,069 | 0,452 | 0,286 | 0,269
zt 0,046 | 0,043 | 0,046 | 0,045

1.] 2% - Center-Invest Bank | 0.443
2.| 23 - Stella Bank 0.269
3. 2! - SberBank 0.243
4. 2% 0.045

Adding the worst alternative 2* on two criteria:

fi | £ f3
x? [ 11% | 6% | 60 000

T f, £, | f
Criteria | 0,333 | 0,333 | 0,333
xI 0,634 0,067 | 0,073 | 0,258
xZ 0,241 | 0,437 | 0,594 | 0,424
2 | 0,048]0,452 0,286 | 0,262
- 0,077 0,043 10,046 | 0,056
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Adding the worst alternative x

1.] 22 - Center-Invest Bank | 0.424

2.| 22 - Stella Bank 0.262

3.| 2! - SberBank 0.258

4. x* 0.056
4

on one criterion:

T fi £, | f
Criteria | 0,333 | 0,333 | 0,333
xI 0,634 0,041 0,073 0,25
x| 0,241 | 0,349 | 0,594 | 0,395
2 |0,048]0,528 0,286 | 0,287
& 0,077 0,082 | 0,046 | 0,068

1.| 22 - Center-Invest Bank | 0.395
2.| 23 - Stella, Bank 0.287
3.| 2 - SberBank 0.25

4. 24 0.068

The numerical experiment shows the opportunity to use this method to select

financial instruments. It satisfies the axiom of the choice and streamlining of
the objects under consideration. The values of the criteria that characterize the
objects selected from the developed databases that are updated with the help of
Internet resources.
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OSCILLATORY CONVECTION IN A HORIZONTAL
LAYER OF A BINARY MIXTURE

Denisenko V.V., Morshneva I.V.

Southern Federal University, Rostov-on-Don, Russia

The present work investigates the onset of convection in an infinite horizontal
layer of a binary fluid mixture consisting of two non-reacting components. We
suppose that the boundaries are rigid, isothermal and impermeable, with slip
allowed. A constant temperature and concentration distribution is specified on
the boundaries. In the model under consideration the effects of thermal diffusion
and diffusive heat conductivity are neglected. Let in addition assume that the
layer, as a whole, undergoes no displacement in the horizontal plane. The con-
vective flow of the binary mixture is governed by the Navier-Stokes equations
under Oberbeck-Boussinesq approximation ([1]):

oT

g VT = Pr AT

8{; + v V T ) (1)
oS

E +v-VS = PI‘d_lAS,

divev = 0.

The corresponding boundary conditions are:

81}1 8@2
0xs3|zs=1  Ox3|zs=1 Ts=1
|333:1 - 0-17 S|$3:0 - 0-07

where v = v(x1, z9, x3, t) is the velocity field, T' = T'(z1, x9, x3, t) is the tem-
perature field, S = S(z1, w9, x3, t) is the concentration field of the heavier com-
ponent of the mixture, p = p(xy, 9, w3, t) is the pressure field, k = (0, 0, —1)T
is the down-directed vertical vector,

v
The problem (1) contains four dimensionless parameters: Pr = — is the
X

Prandtl number, Prq = % is the diffusion Prandtl number (the Schmidt num-
o 9Bh'Q o _ 9Bh°S

ber), Gr 5 1s the Grashof number, Gry = 5
v v

for mass transfer, where v is the kinematic viscosity coefficient, y is the ther-
mal diffusivity, D is the mass diffusivity, ¢ is acceleration due to gravity, [ is

is the Grashof number
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the thermal expansion coefficient, (s is the concentration expansion coefficient,
s is the thermal conductivity coefficient, ) is the heat flux, S is the mean
concentration of the heavier component of the mixture.

The problem (1) with boundary conditions (2) has the following stationary
solution corresponding to the state of rest, which we would call in the following
the basic solution

Vo = O,

Ty(w3) = a1r3 + ay,

So(w3) = bizs + by, (3)
1 ~ . N .

po(xs3) = §(Gra1 — Gryby )23 4 (Grag — Grghg)as + const,

where ay = 171 — 7o, apg = 79, b1:O'1—O'(), b():O'().

This research is devoted to the study of branching and stability of time-
periodic flow modes arising from oscillatory stability loss of the basic regime rel-
atively to spatial perturbations. These perturbations are assumed to be 27/ —
periodic in 1 and 27 /as—periodic in 5. We seek another solution of the prob-

lem (1) with boundary conditions (2) in the form
v=wv+v, T=Ty—aT, S=S5—-bT, p=po+p, (4)

v
Inserting (4) into (1)—(2), we obtain the following system for the perturbations
v, T, S, p:

0
8—1;+v-Vv — _Vp+Av+t (CrT — Cr, S)k,
oT 4
E—Ug—FU‘VT—PI’ AT, (5>
%—f —v3+v-VS= Prd_lAS,
divv = 0,
where Gr = —a (}vr, Gry = —by E}\r/s, with corresponding boundary conditions
81}1 8@2
il —— = =T =S = 0. 6
Ouslrs=y  Omsles=t syl Tlng o)

The parameter Gr can be written in the form Gr = Gr, + 0, where Gr,
denotes the critical value of the Grashof number, when for Gr = Gr, the stability
spectrum contains a pair of purely imaginary eigenvalues +iwy (wg # 0). Thus
the problem (5) with boundary conditions (6) may be rewritten in the following
equivalent form

%Mu 4 Aw = 0Bu + K(u, u), (7)
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where

u= (v, T, S)" €H, (8)

H is the closure of a set of smooth solenoidal vectors, vanishing at the layer
boundary, in the metric

(ur - ua)y = [ wug e )

QO

27 27
Q:{(:cl,xz,xg)eR:0<x1<—,0<$2<—,0<$3<1}, (10)

a1 %)

A, B, M — linear operators, K — bilinear operator.

The onset of auto-oscillations at transition of the Grashof number through
its critical value is investigated. The auto-oscillations is analyzed by the use of
the Liapunov-Schmidt method suggested by V. I. Yudovich [2], [3].

Substituting 7 = wt in (5), where w is unknown cyclic frequency, we obtain

wdiMu + Au = 0Bu + K(u, u), (11)
T

We seek a solution of (11) in the form of series in powers of the parameter

e = sy/|Gr — Gr,/, (s = signd)
U =cu +eus +us+..., w=wy+ew +eciws+ ... (12)

Inserting these series into (11) and equating the coefficients of like powers of
e in both parts of the equation, we arrive at the sequence of equations for the
unknown 27 —periodic functions w, and numbers wy.. Solving these equations
one after other, we will obtain

u; = (e 4+ e ), w =0, (13)

where ¢ is the eigenfunction of the following problem

(A + iwoM)p = 0; (14)

Uy = 72((,06” + (P*e—iT) + 712('(,062” + ,(p*e—QiT 4 9)7 (15>

where 70 and @ are the solutions of the following problems

(A + 2ioM)tp = K(, ). (16)
AB = K°(¢,0"). (17)
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The condition of solvability of the equation, which can be found by equating
the coefficients of € in both parts of the equation (11), yields 73 and wsy

Re(Byp - @)
Re((Ko(cp, 0) + Ko(¢p*, w)) : <I>>

T

sIm(Bep - @) + V%Im<(Ko(cp, 0) + K°(¢p*, 1,b)> : <I>>
My - ®

where K°(uy,us) = K(ug, u2) + K(ug, uy), and ® is the eigenfunction of the
conjugate problem

: (19)

Wy =

(A* — iwyM)® = 0. (20)

The type of bifurcation is depends on the sign of I'y: in the case for I'y > 0
there is a supercritical bifurcation, in the case for I'y < 0 there is a subcritical
bifurcation. The results, obtained numerically at differen values of parameters,
show that both types of bifurcation are realized.

The condition of solvability of the equation, which can be found by equating
the coefficients of e* in both parts of the equation (11), yields 75 = w3 = 0.

Hereby, first two terms of series (12) are found, and the solution can be
written in following form

u = 71((,06” + go*e*”)g + fyf(tpe% +p*e 2T 4 0)52 + 0(53), (21)
w=wy +we? +0(e*), e—0. (22)
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EVALUATION PROBLEM FOR GENERAL HIDDEN
SEMI-MARKOV ERROR SOURCE MODEL

Deundyak V.M.*, Zhdanova M.A.**

* Southern Federal University, Rostov-on-Don, Russia
** Southern Federal University, FSSO "SRI "Spetsvuzavtomatika”,
Rostov-on-Don, Russia

1. Introduction. Mathematical modeling of error sources is one of the main
problems appearing when simulating digital communication channels. Channel
simulation provides a way to analyze error-correcting capability of codes against
different types of errors. The main aim of such an analysis is to select the appro-
priate error-correcting codec for particular channel. To carry out the simulation
experiments one needs to find an adequate representation of jamming environ-
ment in the channel by means of mathematical error source model, i.e. to solve
the inverse problem. The class of hidden semi-Markov models (HSMMs) seems
convenient for describing error sources [1]. These models are able to simulate
different types of jamming environment and inverse problems can be solved for
them.

Let us consider a nonbinary digital data transmission channel C' that is
supposed to be symmetric, stationary and perfectly synchronized. Channel C' can
stay in one of N physical states during some period of time and then changes the
state. The probability distribution of possible durations is specified a’priori for
each state particularly and is never changed. Each channel state emits additive
error sequences according to its own probability distribution.

In the paper we consider a general hidden semi-Markov error source model
for the channel described above. For this model we provide a solution of classical
evaluation problem in case of error sequences long enough. The problem we refer
to as "evaluation problem" is to calculate the probability of the fact that the
observed error sequence is generated by the given general semi-Markov error
source model. The suggested solution is based on forward algorithm proposed by
Yu [2].

2. General hidden semi-Markov model. According to |2] general hidden
semi-Markov model (GHSMM) is the set

A={S,D,AILYV,B},

where § = {1,.., N} — the set of states; D = {1,.., D} — the set of possible
durations; A = {ag a4} .d),6.a)esxp — the transition matrix for generalized
states from S x D and ag g0y = 0; I = {7 a}iajesxp — the set of initial
probabilities of generalized states; V = {vy,..,vp} — the output alphabet; B =
{6:,4(01, -, 04) } i, d)es <D, (61,...00)cve — the set of emission probabilities.
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Note that the model from [2] assumes zero self-transition probabilities
agayiay = 0. However, this requirement is not important for solving evalua-
tion problem. Thus, we consider the extended model allowing self-transitions.
Moreover, we suppose that m; 4 are marginal probabilities of transition matrix.

GSMM generalizes such well-known models as explicit duration hidden
Markov model [1], variable duration hidden Markov model [3]|, segment hid-
den Markov models [4].

3. Evaluation problem. Let A be a GSMM and O;.7 be a sequence over
the alphabet V. In this section we consider evaluation problem for GSMM, i.e.
the problem to calculate the probability if the fact that Oq.p is generated by .

In [2| Yu proposes the solution of this problem under the following assump-
tions:

1) the first observed state starts at t = 1 or before it,

2) the last observed state ends exactly at ¢t =T,

Notice that 1) means that we observe only the part of symbols emitted by
the first state. In this case Yu suggests replacing the probability b; 4(O;—g11:)
(t—d+1<1,t>1) by the marginal probability b; 4(O1.).

We denote by Py, [O1.7] the probability of O1.1 being generated by A under
assumptions 1)-2).

However, for some applications the evaluation problem should be considered
without any additional assumptions, i.e. the first state can start before or at
t = 1 and the last state can end at or after t = T'. In this case we obtain the
following solution of the evaluation problem.

Theorem. The probability that the observed sequence O;.p is generated by
general hidden semi-Markov model A can be calculated as follows:

d

g

PlOy.7] = Z #d Z Pyu[O1.7-4,]bj.0(O7—a,+1.7);
(j,d)ESXD d1:1

where Py,[O1.7_g4,] is calculated as in [2], p. 225.

Using this theorem the evaluation problems for hidden semi-Markov Ferguson
model and hidden semi-Markov QP-model can be solved [5], [6], [7]. The obtained
theoretical results can be used to choose the appropriate error source model for
the given digital transmission channel.
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COMPUTER MODEL OF PLANE WITH
FORWARD-SWEPT WING IN UNUSUAL
CONDITIONS

Kazakov E.A.

Faculty of Physics, Southern Federal University, Rostov-on-Don,
Russia

The report presents some specific ways of development of aircraft. At the
dawn of aviation all types of airplanes had simple linear form of wing. With
the development of the jet engine flicht speed increased significantly and planes
became like arrows. This constructive scheme was actual till birth the 5th gen-
eration jet fighter (nowadays). But there is another concept of aircraft’s design:
when wings situated backwards. The absurd scheme proved a very perspective
one. Especially in combination with other nonstandard solution — "canard" a
configuration in which a small horizontal surface, also named the canard or fore-
plane, is positioned forward of the main wing in contrast to the conventional
position at the tail (because of this it is sometimes described as "tail-first").

Figure 1. The panel (A) shows a realistic model of Northrop Grumman X-29A
aircraft. The panel (B) shows the distribution of pressures in a plane perpendic-
ular to the direction of flow. The panel (C) shows streamlines of velosity of the
flow and demonstrates advantages of FSW flow’s slipping. The panel (D) shows
differences in pressure at subsonic and supersonic flight and demonstrates the
Mach cone

Swept wing has an impressive number of advantages and imposes higher
requirements for the development of the profile than the classical design of wing.
Using present in the database NASA drawings I create in ANSYS a full model of
the aircraft Grumman X-29A, which is the first prototype with the swept wing,
officially broke the sound barrier. Provided simulation of airplane moving through
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airflow as a whole allowed me to estimate the dependence of flight characteristics
on the configuration elements, stability and construction balance.

Figure 2. Comparative analysis of the emerging forces (lift and drag), depending
on the mode of flight and involved airplane’s parts

The report discusses the features of the wing swept behavior at extreme

temperatures, in a dust storm and the threat of dry ice at subsonic and supersonic
flight conditions.
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LONG-WAVE INSTABILITY NEAR SEMI-SELECTIVE
ION-EXCHANGE MEMBRANE'!

Khasmatulina N.Yu., Ganchenko G.S.

Kuban State University, Krasnodar, Russia

Introduction

Rapid developments in micro-, nano-, and bio-technology originate a lot of
interesting and comlicated problems of electrokinetics. Numerous modern appli-
cations of electrokinetics include micro-pumps, desalination devices, biological
cells, electro-polishing of mono- and poly-crystalline aluminium, and the growth
of aluminium oxide layers for creating micro- and nano-scale regular structures
such as quantum dots and wires.

There is not only practical interest in the problem, but also a fundamental
one. The study of the space charge in an electric double-ion layer in an electrolyte
solution between semi-selective ion-exchange membranes under a potential drop
is a fundamental problem of modern physics, first addressed by Helmholtz. Hy-
drodynamics was not involved in either of the underlimiting or limiting regimes,
and both regimes are fully described by one-dimensional solution.

It was first theoretically predicted by Rubinstein and Zaltzman [1], [2] that the
transition from limiting to overlimiting currents is connected with a novel type
of electro-hydrodynamic instability, which is known as electrokinetic instability.
This instability triggers a hydrodynamic flow and, in turn, intensifies the ion flux
which is responsible for the overlimiting currents. The first direct experimental
proof of the electroconvective instability that arises with an increasing potential
drop between ion-selective membranes was reported by Rubinstein et al. [3], who
managed to show the existence of small vortices near the membrane surface. A
unified theoretical description of the linear electrokinetic instability, valid for all
three regimes (underlimiting, limiting and overlimiting currents), was presented
by Zaltzman and Rubinstein [4], based on asymptotic analysis of the problem The
DNS for two-dimensional (2D) Nernst—Planck—Poisson-Stokes (NPPS) equations
were considered in [5, 6] and others. A full scale direct numerical simulation
(DNS) for the three-dimensional (3D) formulation is presented in Demekhin et
al. 7).

In all the aforementioned theoretical and numerical analyses, thermal effects
are neglected. Although, Zabolotsky and Nikonenko [8| have found experimen-
tally that a typical temperature difference between the electrolyte inside the
membrane system and the environment can be up to several degrees. Such a
temperature difference can not only have an influence on the electrokinetic in-
stability near a charge-selective surface, but can also be a driving force for a

!Supported, in part, by the Russian Foundation for Basic Research (Project Nos. 12-08-00924-a, 13-08-
96536-r _yug a, 14-08-31260 mol-a, and 14-08-00789-a
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new kind of instability based on the spatial nonuniformity of the electrical con-
ductivity. It can also be shown that Joule heating has a significant effect on the
voltage current (VC) characteristic. These phenomena are investigated in the
present paper.

Statement

A symmetric, binary electrolyte with a diffusivity of cations and anions D,
dynamic viscosity fi, and electric permittivity €, and bounded by ideal, semis-
elective ion-exchange membrane surfaces at y = 0 and y = h with a potential
difference AV between these surfaces, is considered. The Joule heating gener-
ated by the passage of a current through the electrolyte is taken into account.
Notations with tilde are used for the dimensional variables, as opposed to their
dimensionless counterparts without a tilde. {Z, ¢y} are the coordinates, where ¥
is directed along the membrane surface and 7 is normal to it.

What differs the present mathematical model of the phenomena from the
mathematical model in [9] is adding the energy equation

M avr=avr-LY? (1)
ot CpTo

and appearance of the additional term, corresponding to the buoyancy force in
Boussinesq approximation, in the Stockes equation:

VII = gV + FVe (6 — &t + grB(T — Tp)ey, (2)
0

where F' is Faraday’s constant, R is the universal gas constant, Tj is the tem-
perature of the environment, € is the electric permittivity, g is the acceleration
due to gravity, 7¢ is the density, 5 is the thermal expansion coefficient, ¢, is the
specific heat capacity, and a is the thermal diffusivity.

In the above equations, the two-dimensional case is treated; u = (f], f/) is
the fluid velocity vector; II is the pressure. the unit vector ey is directed along

the y-axis. The energy equation contains the source term associated with the
Joule heating of the electrolyte. Electric current

iz—iw(ﬁ+fﬂV@—FDV@+—ﬁ% (3)

is made up by two mechanisms: ion transport and diffusion. Note, that relation
for the full electric current contains also convective term, but this term isn’t
significant for analyze of Joule heatig’ influence.
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The boundary conditions are the same as in [9], excepting the boundary
conditions for temperature

o & - -
=0: —+=—(T—-1Tp) =0, 4
Yy By )\T( 0) (4)
- 9T a - -
y = . - + =— T — T = O, 5
Yy 7 /\T( 0) (5)
: : 3 Edy
where « is heat transfer coefficient, Ap = {/ =— 1is the Debye length.
Coo
In order to make the system dimensionless, let us use some characteristic
values, mentioned in [9], and the additional one T, = %ﬁ’pf}f (here ¢o —
acyroalpha

typical electrolyte concentration, ®, — characteristic thermal potential)
In dimensionless formulation the system of equations is as follows,

Oc*

5 Tw V& = £V - (c°V®) + V3™, (6)
V20 = —p, (7)
VIl = Viu— V& . p+ Ra-Tey, V-u=0, (8)
v
oT
Le(a%—u-VT):VQT—I—V(I), (9)
here,
I=-K-V®-Vp+u-p, K=c'+c, p=c" —c, (10)
with the boundary conditions,
) - T
y=0: c"=p, —c—a—+ai:0 =0, u=0, a——Bz’T:O;
dy Oy dy

P - T

y=1: c"=p, —c_a—+aL:O d=AV, u=0, a——i—Bz’T:O,
dy Oy dy

(12)

where, T = (T—TO)/TCh.

Using the standard stream function and making some conversions, one can
reduce equations (8) to one biharmonic equation, which is convenient for numer-
ical solving. Characteristic electric current in case of cation-exchacge membrane

is determined only by cation’s flow: j = ¢t aggj‘i + %CI) for y = 0.
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From the analysis of the above mentioned dimensional values, it follows that
the dimensionless parameters vary within the range: v = 107°—1072, 2 = 0.05—
0.5, Ra = 1075 — 100. It is assumed that the other dimensionless parameters
can be fixed as p = 5 (see [2, 4, 5]) and Le = 0.013 (for water). We assume
that Bi = 1072 is taken. The problem has three parameters: v, Ra, and .
This fact greatly complicates the numerical investigation of the problem. The
first small parameter, the Debye number, makes the problem singular and forms
a thin EDL near the boundaries of the investigated domain, y =0 and y = 1.

I Numerical solution

The numerical calculations of the linear stability of the 1D quiescent so-
lution with respect to sinusoidal perturbations with wave number k, f =
fo+f exp(At +ikx) for [ = {cF, ® V, T} were perfomed. The Galerkin
pseudo-spectral 7-method with Chebyshev polynomials taken as the basic func-
tions [10] is employed to discretize the eigenvalue problem. The generalized
matrix eigenvalue problem is solved by the QR algorithm [10]. The number of
Chebyshev functions in the expansion is up to 512.

The two competing mechanisms of instability are determined by the param-
eters » and Ra. The relation between these parameters determines which of
the instability mechanisms will be decisive for the destabilization of the system.
Fig. 1 presents the numerically obtained marginal stability curves for different
values of s and Ra. For the case without thermo-effects, Ra = 0, the numerics
are compared with the analytics of Zaltzman and Rubinstein [4]: our numeri-
cal approach is in good correspondence with the asymptotical results. The case
Ra = 0 separates the destabilizing and stabilizing effects of the Joule heating.

For Ra < 0, with decreasing s or increasing |Ra|, the heat effects prevail
over the electrokinetic effects and a drastic change of instability modes occurs: the
critical voltage AV, decreases dramatically. Moreover, the short-wave instability
changes to a long-wave instability. Universal character of the behavior of the
long-wave marginal stability curves near AV, can be seen from Figs. 1(a)-1(b).
For the case without thermo-effects, Ra = 0, the numerics are compared with

5 (b) 7
4
5
Lo INSTABILITY Pt 3 f
2 3
;
’

20 40 60 20 40 60

Figure 1. Marginal stability curves of the numerical solution, the wave number
k vs. the voltage AV for v =0.01, (a) » = 0.2, Ra: 1: -50, 2: -10, 3: 0, 4: 10,
5: 50 and (b) Ra = —10, »: 1: 0.5, 2: 0.2, 3: 0.1, 4: 0.05.

the analytics of Zaltzman and Rubinstein [4]: our numerical approach is in good
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correspondence with the asymptotical results. The case Ra = 0 separates the
destabilizing and stabilizing effects of the Joule heating.

Conclusion

A new long-wave kind of instability caused by Joule heating near charge se-
lective surfaces and its influence on the electrokinetic instability are investigated
numerically. The physical mechanism of the thermal instability is found to be
very different from that of Rayleigh—Bénard convection, and the instability is
caused by an induced nonuniformity of the electrical conductivity in the elec-
trolyte. In addition, the previous discrepancies between the experiments [3] and
the theory [6] have shown, in the present study, a trend of better agreement by
taking into account the Joule heating for the appropriate Rayleigh numbers.
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THE DISPERSION PROPERTIES OF
HETEROGENEOUS TRANSVERSELY ISOTROPIC
CYLINDRICAL WAVEGUIDE

Morgunova A.V.", Vatulyan A.O.*

* Don State Technical University, Rostov-on-Don, Russia

** Southern Federal University, Rostov-on-Don, Russia

The problem of propagation of waves in an infinite transversely isotropic
cylinder with a circular cross-section is considered a < r < b. The problem
is solved in cylindrical coordinates, the deformation is considered to be axially
symmetric. It is also considered that the physical characteristics are arbitrary
positive function of the r coordinate. The following notation for the components
of the displacement vector are introduced by U,.(r, z,t) — radial and U.(r, z,t)
axial. We assume that the components of the stress tensor and the strain tensor
components are related by Hooke’s law for transversely isotropic inhomogeneous
body with radial inhomogeneity:

oU, oU, oU.,
+ Cho + (3

o, =Cn

or r 0z
aUT aUT aUZ
op = Cha +Ch + (3
or r 0z
oU, 0U,
Ory — Cll < 82 + 67" )
anr anr aUZ
0, — 013 + —|— 033
or r 0z

where C}; — functions of the radial coordinate.
The equations of motion in cylindrical coordinates are

do, N o — 0y N do,. 0*U,

or r o2 " or
00, n l N % B 9*U,
or 7T o T o

We assume that the cylindrical surfaces of the cylinder subjected to the nor-
mal load, respectively. The boundary conditions are

i(kz—wt)

Opr ‘T:a: pe y Orp |r:a: 0

A boundary value problem of wave propagation in inhomogeneous cylinder
formulated. The solution of the boundary value problem is formulated as a guided
waves along the cylinder axis.
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We have obtained first order canonical system of differential equations

Y N
Cfi—r = A(r,k,w,Y)

with the following boundary conditions
X(a) =po, X(b) =0,Z |,—ap=10

the following notation options are: v = kb — dimensionless wave number,
k> = pw?b?/CY, — the dimensionless frequency, € = r/b, e € [gg, 1], 69 = a/b.

We have formulated the following homogeneous boundary value problem for
the operator with two spectral parameters v, x

Cll - C'13 =g 012 —g 044 —q 033 -
—~0 — YL~ — Y2, 0 — Y3y~ — Y4 A~ — Y5
Cly Cly Ciy Ciy Cly

Y]
Y/ = - zl — yasYs + azYs

Yy = Y1 + auYs

Yg':(%é—ﬁ))ﬁnw%%—as)%—vn (1)
Y/ =az %3/1 + (y’as — %)Yz + yasYs — %
where
S (S (5 [ SRS BRI /((3 Rt (19
7@ T a @ T e w©” a@)
O -6©O _ 9@@0E)-5@)  _ w6@n®-B©
° MG 1(€) T 91 (8)

So we have built a system of dimensionless differential equations with bound-
ary conditions. Only numerical investigation of the problem is possible. In some
combinations between the parameters, which forms the set of dispersion points,
the problem is insoluble. The problem of constructing the set of dispersion points
is very important in general theory of waveguides, however, for arbitrary hetero-
geneity functions requires the use of numerical methods. Solving boundary value
problem we have used the shooting method.

For each value of x and -y, set up in the cycle with some step, solves two
Cauchy problems for the system (1) with the following boundary conditions
for the first one
viV(&) = (50) = %o) = 0,Y"(&) = 0. solutions vector
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for the second Cauchy problem:
Y1(2)(§0) = 173/2(2)(50) = 0,5/},(2)(50) = O,YZL(Q)(&)) = (0, solutions vector
Y(2) — (}/'1(2) )/2(2) YEJ)(Q) YZL(Q))

linear combination of these vectors
oz1Y(1) + OzQY(2)

This combination should meet the remaining boundary conditions Y3(1) =
Y4(1) = 0. Obtained the linear system to determine the parameters oy, o

Odl)/g))(l) + @2)%(2) — O
Odln(l) + 052)/;1(2) — O

To determine the set of dispersion points it is necessary to find the relation
between v and k, for which system would have a nontrivial solution; then the
determinant of the system is zero.

Numerical experiments to determine the structure of the dispersion sets for
various heterogeneity functions displayed in the following figures. Figure 1. iden-
tify the components of the dispersion sets for the non-monotonic heterogeneity
functions f(£),g(§), in Figure 2 for a layered cylinder.

_

Figure 1. Non-monotonic heterogeneity

Figure 2. Layered cylinder
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ON THE OCCURRENCE OF SELF-OSCILLATIONS IN
A VERTICAL LAYER OF A BINARY MIXTURE

IN THE PRESENCE OF A THERMAL DIFFUSION
EFFECT

Petrova E.I., Morshneva 1.V.

Southern Federal University, Rostov-on-Don, Russia

The problem of convection in a binary mixture consisting of two non-reacting
components is considered. The binary mixture is placed between two vertical in-
finite isothermal plates. In the model under consideration thermal diffusion effect
is taken into account, diffusive thermal conductivity is neglected. The convec-
tive flow of the binary mixture is governed by the Navier-Stokes equations under
Oberbeck-Boussinesq approximation ([1]):

0
8—‘; + Gr(v, V)v=—=Vp+ Av + (T + O)k,
oT 1
— T=—AT
5 + GrvV 50T )
oC 1
— = —(AC — AT
Y + GrvV(C Prd( C —eAT),
divv = 0.
The corresponding boundary conditions are:
oC or
=+1:v=0, T=F1, — =c— 2
y v Y q: Y ay 8ay7 ( )

where v = (v, vy, v,) is the flow velocity, T is the temperature, C' is the light
component concentration, p is the pressure, k is the up-directed vertical vector.

Od?
The problem (1), (2) contains four dimensionless parameters: Gr = 9612
%
v

— the Grashof number; Pr = — — the Prandtl number; Pr; = % — the

X
diffusion Prandtl number (the Schmidt number); € = —aﬁ—@ — the thermodiffu-

sion coefficient; where v is the kinematic viscosity coefﬁcilent, X is the thermal
diffusivity, D is the diffusivity, (; is the coefficient of thermal expansion, S is
the density concentration coefficient, « is the thermodiffusion parameter.

The motion equations (1), (2) have a steady-state (basic) solution with a
cubic velocity profile, constant pressure, linear distribution of temperature and
concentration. Linear stability of the basic solution was studied by G. Gershuni,
E. Zhukhovitsky and L. Sorokin ([1]). They found that both monotonic and
oscillatory stability loss of the basic regime are possible.
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This research is devoted to the study of branching and stability of time-
periodic flow regimes arising from oscillatory stability loss of the basic regime
relatively plane perturbations 27/f-periodic on a vertical variable z, where
[ is wave number. The perturbation equations are invariant under the group
O(2) (invariant under inversion and vertical translation), and the Andronov-
Hopf bifurcation theory in the systems with such symmetry is suitable. This
theory has been developed by V. Yudovich and I. Morshneva (2], [3]). In our
research we employ the Lyapunov-Schmidt method. We propose that solution is
time periodic with 27 /w period, where w is unknown cyclic frequency. Thus the
solution is sought as follows:

v(7) = (apo + arpr)e’™ + (gl + ajei)e ™ +u(r), (3)

where g, 1 is eigenvectors of the linear problem, which are connected by
inversion symmetry and correspond to the eigenvalue —iwg; oy, o — complex
amplitudes; 7 = wt, w = wy + K.

The branching equations inherit the symmetry of the original problem and
are given as

(4)

g(ag, 1) = ap(—ip+ ad + blag)* + clay|* +...) =0,
. 0.

glay, ag) = ar(—ip + ad + blag|* + clag* +...)

The expressions for a, b, ¢ coefficients are provided in [2]|. These coefficients
represent functionals, which are expressed through eigenfunctions of the linear
and conjugate stability problem, and through the solutions of inhomogeneous
boundary-value problems with right sides that emplicity dependent on the same
eigenfunctions.

Investigation of the system (4) has reveal (|2]) that when the parameter Gr
pass through the critical value of the oscillatory stability loss Gr, three types of
self-oscillating modes are arising: the nonlinear mixture of couple simple waves,
two traveling simple waves moving in the opposite direction to each other. The
type of branching and stability of these regimes depends on the relations between
the coefficients a, b, ¢ of the branching equations.

The coefficients of the branching equations were found numerically for
the problem of binary mixture convection in the vertical layer in considera-
tion of thermal diffusion effect. Computations for a wide range of parameters
Pr, Prg, ¢, 8 showed that the following five branching types of periodic modes
are realized:

[. the traveling waves are stable and branched in supercritical region, the
nonlinear mixture of waves is unstable and branched in supercritical region;

[I. the traveling waves are unstable and branched in supercritical region, the
nonlinear mixture of waves is stable and branched in supercritical region;

[II. the traveling waves are branched in supercritical region, the nonlinear
mixture of waves is branched in subcritical region, all regimes are unstable;
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[V. the traveling waves are branched in subcritical region, the nonlinear mix-
ture of waves is branched in supercritical region, all regimes are unstable;

V. all regimes are unstable and branched in subcritical region.

A variety of neutral stability curves of the oscillatory stability loss have been
plotted for different values of Pr, Pry, €. Each of the five branching types of
periodic modes is denoted in different styles. For example, Fig. 1 represents the
neutral stability curves, corresponding to the oscillatory stability loss, for the
values of the Prandtl number Pr = 12, 14, 15.6, the Schmidt number Pry; = 4
and the thermodiffusion coefficient € = 1.214 in the parameter space (3, w, GT).
The nonlinear mixture of waves is stable at the cyclic frequency below the average
value, and the traveling waves are stable at the cyclic frequency near and above
the average value. On the remaining curve parts all the modes are unstable and
differ only by the branching type.

= [branching type
—a— 1T branching type

—e— III branching type
—— TV branching type

3000 V branching type

2500
2000
Gris00
1000

500

Figure 1. Branching types of self-oscillating modes on the neutral stability curves for
Pr = 12, 14, 15.6, Pry=4, ¢ = 1.214.
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MATHEMATICAL MODELS AND METHODS TO
DESCRIBE SELF-ASSEMBLY OF SPHERICAL
CRYSTALS AND TO STUDY THEIR DEFECTS!
Roshal D.S., Myasnikova A.E.

Faculty of Physics, Southern Federal University, Rostov-on-Don,
Russia

Rapid development of experimental methods to obtain spherical crystals and
to study them causes high scientists’ interest in theoretical modeling of colloidal
crystal self-assembly and defects in them. It is known, that this material is among
the first that were obtained by means of self-assembly. The most interesting
material from the practical point of view is colloidosome, which is a system
of densely packed particles at an interface between two liquids. Hexagonal order
dominates on its surface, but it also contains few topological defects. According to
Euler theorem a sum of defects’ topological charges is 12. Usually triangulation
method (drawing lines connecting each particle with its closest neighbors) is
useful to find defects areas. In this case particles related to hexagonal order have
zero topological charge, particles with five neighbors have charge +1, particles
with seven ones have charge -1, etc. Recently, we proposed a method [4] of rapid
determination of the extended defects’ topological charge using the contours
surrounding them. In this case the value of the topological charge is 6 minus the
number of the contour sides. So the pentagonal defect topological charge is +1,
and an area of square order |1] has the charge +2. Similar topological defects
may be called extended topological defects (ETDs) [2].

To explain the arrangement of particles on the colloidosome surface it is
reasonable to use Lennard-Jones potential. To simulate the colloidosome self-
assembly it is enough to place randomly the particles on the sphere surface and
then to minimize the system energy by the gradient descent method.

As simulation shows [1] at the number of particles on the sphere surface
slightly less than the maximum possible, the area with the square order may
be formed (Fig.1b), which was experimentally observed (Fig.1a). The area of
square order can be understood as the result of interaction of two pentagonal
defects, and its topological charge (+2) is the sum of topological charges of two
disclinations (+1) [1]. Packing density is much lower in such areas, which is
important for applications.

To study the ETD properties and interaction between different defects we
suggest a new method of surrounding the ETD with a contour. The most common
defects in the spherical crystals are dislocations and disclinations. However, in
colloidosomes and colloidal crystals with large maximum number of particles and
high-density packing they are combined into ETD with the topological charge
+1. The number of them on the sphere surface is 12, and they are located near the

LThis work was supported by Russian Foundation for Basic Research (Grant N13-02-12085 ofi_m)
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Figure 1. Experimental (a) and simulated colloidosomes with the number of
particles (b): slightly less than maximum and (c): larger and maximum. Panels
(d, e) show two possible ways to decompose green extended topological defect
(ETD) from (c) by the application of external forces.

vertices of icosahedron (Fig. 1¢). Let’s surround such defect by scalene pentagon.
[t seems that the dislocations enter the longer sides of the pentagonal defect area,
but it is not so. As it is shown in [2|, increasing the area occupied by the ETD,
we can make the surrounding contour equilateral. Thus, the order outside the
defect doesn’t display existence of dislocations in any way.

Also, the interaction between the topological defects can be studied with
mathematical modeling methods. Over the last decade experimental methods
for studying 2D colloidal crystals were substantially advanced. Using new ex-
perimental methods like the optical tweezers technique it is possible to move
individual colloidal particles or to shift coherently whole groups of such parti-
cles. After these enforced changes colloidal structures relax. This experimental
technique can be modeled by a virtual optical tweezers method [2]. It consists in
that after the change of particles coordinates on the sphere surface the system
relaxation is modeled by applying a gradient descent method. Thus, we apply
the system energy minimization with the specific initial conditions in the form
of modified coordinates of particles.

Let us use this method to consider the ETD in the center of the figure 1lc. It
is highlighted in the green pentagon. Only after triangulation it looks like a scar
- a chain of 5- and 7-fold disclinations. Panels (d, e) present two possible ways to
decompose this ETD by the application of external forces (virtual optical tweez-
ers). In both enforced reactions the elementary 5-fold disclination is detached
and it carries out all the topological charge of the ETD. The disclination region
is colored in red. Hexagons containing the dislocations are colored in blue. The
length of the Burgers vector of the dislocation (d) is 2, while the length of the to-
tal Burgers vector of two dislocations shown in panel (e) is 2sin(?/3). Considering
the reactions between ETDs and dislocations, we have found that the ETDs emit
and absorb the dislocations without preservation of their dislocational charge.

With the specific choice of initial conditions it is possible not only to model
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the virtual optical tweezers, but also to find new solutions of Thomson problem.
Self-organization of repelling particles retained on a spherical surface is under
discussion for more than a century and is called Thomson problem after J.J.
Thomson suggested his model of atom 110 years ago. Thomson problem is in-
cluded in various lists of the most important unsolved mathematical problems
of the 21st century. Now we know that Thomson problem arises on different
levels of the matter self-organization. Arrangements in multi-electron bubbles in
superfluid helium almost perfectly correspond to structures formed by charged
particles in the frame of the problem. Also the pores in the pollen grains (the
Tammes problem) and the various two-dimensional colloidal crystals including
colloidosomes [1, 2| are similar to Thomson problem solutions.

However, the classical spherical Thomson structures (TSs) corresponding to
the global energy minima are also very interesting. Search of them is a chal-
lenging work since the energies of structures corresponding to global and local
minima are very close. Moreover, the difference between the equilibrium energies
is strongly reduced and number of equilibrium structures grows exponentially
with the number N of particles in the structure. Usually the lowest minima cor-
responding to the TS structure are searched with numerical methods. The list
of spherical TSs with the lowest ever seen energy is constantly updated [3] by
Bowick group of physicists.

Some of the T'Ss are similar to spherical viral capsids, which were for the first
time described in terms of simple geometric model proposed by Caspar and Klug
(CK) half a century ago. Unfortunately, viral capsids are not Thomson problem
solution, and besides, such symmetric arrangements of particles are possible only
at the particular N values. However, it allows us to adapt and develop the initial
CK geometrical model to search for the lowest-energy T'Ss.

\Caspar&l{iug net
#‘ 1 i

&

.. assembly

- o

projection onto
a sphere and
optimization
.
Ao g \\‘ ol
Thomson structure A icosahedron with vacant vertices

Figure 2. The method to obtain new Thomson structures

In my work [4], a new method of obtaining trial structures for further opti-
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mization is suggested. It is based on a deformation of regular or slightly distorted
icosahedron smoothly covered with hexagonal lattice. The particles are located
in the nodes of this lattice. The trial structure is obtained by projecting the
particles from the icosahedron surface onto the sphere.

In this work [4] the spherical structures with the number of particles in the
interval of 600N <1000 were analyzed. Thus 40 spherical crystals having energies
lower than the previously known structures with the same number of particles N
were obtained. It is possible that the obtained structures are Thomson problem
solutions. Our results may be interesting for physicists working on theoretical and
experimental problems of self-assembly in various types of spherical nano- and
micro-structures. For example, the structures with the above considered simplest
distortions can be discovered in course of further experimental investigations of
misassembled viral capsids or fullerenes.

Thus, by means of developing new models and mathematical methods |1, 2,
4] we managed to explain the mechanism of unusual defects formation on the
colloidosome surface and to study the interaction between various defects. It
was proved that ETD can absorb or emit dislocations without preserving their
dislocation charge (the Burgers vector). Moreover, using initial conditions with
slightly broken symmetry in the frames of the gradient descent method we find
40 new Thomson problem solutions.
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ONE APPROACH TO CALCULATING THE
MOVEMENT AND INTERACTION OF INDIVIDUAL
ICE FLOES!

Tarelkin A.A.*, Chikina L.G.*, Shabas I.N.*, Chikin
A.L.*

* Southern Federal University, Rostov-on-Don, Russia

** Institute of Arid Zones, Southern Scientific Center, Russian
Academy of Sciences, Rostov-on-Don, Russia

I Introduction

Ice cover is important component of the hydrological mode of the seas. Drift-
ing ice significantly complicates shipping, coastal zone development, creates a
heavy load on the bridge supports. Simulation of ice floes movement is an im-
portant area of research in development in areas of ice formation.

In different models the ice is considered as the porous structure, in the case of
consideration of floes as individual objects, they’re described as a material point
[1, 5]. In this paper movement of floe takes into account its configuration, as well
as the effects of streams and wind loads.

II Statement of the Problem

As the object of study is considered the process of ice floes movement with
arbitrary shape of the floes in the pond filled with homogeneous ideal incom-
pressible fluid. The border of the pond is vertical, and depth of water bigger
than ice floes thickness.

The rectangular grid with information about flow velocity is obtained.

The object in question is a resilient plate of arbitrary shape, in some approx-
imation are ice floes. As initial conditions must be seted the density and shape
of the ice floe. With these parameters square, mass and center of mass could be
calculated. The initial time it is assumed that the floe is at rest, u/=% = =Y = 0.

Upon contact with the boundary of the reservoir, the movement of ice floes
will be considered as an elastic collision with a solid surface.

III Movement modeling

The model of ice floes moving is based on two-dimensional model of the drift
of the iceberg [6]. This model doesn’t take into account the interaction with the
soil, wind waves and tilt of pond. The equation can be described by :

'Supported by The Ministry of Education and Science of Russia (grant 1420)
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du dv
M—=F"V + 4 M =
dt na T o dt

where FV Féc, F%, Féj — projection of radial force components on the axis
x and y.

By replacing the time derivatives of the finite-difference analogues, we get:

Fy + FL (1)

Au  FV+FL Av  Fy+Fy
At M At M
where At — time step, Au and Av — components of the velocity gradients in
time (Au = u'™ —u!, Av =o' — o)
For the angular velocity we take tangential components of the forces:

Aw_FTW—I—FTA
At I

where I — moment of inertia of the ice floe, F'V', FA — the tangential components
of the forces acting on an ice floe.

After determining the speed of a drifting ice floe, we find the coordinates of
its provisions (z,y) at the next time step:

xtJrl — xt + ulerlAt7 yt+1 — yt + UlerlAt7 gleJrl — gOt + thrlAt

At first we shall partition the entire area floe with triangulation [4, 7| . We
assume that all of the mass of each member is concentrated in the center of mass
of the element, and the speed of the entire area of the element is equal to the
velocity of its center of mass. Thus the resultant force acting on an ice floe, is
the sum of the forces acting on each element of the partition:

n

Fres — Z (EW ‘|‘ FL'A)
1=0

FW _ prwSz (VW . ‘[iice)

(2

F = copaS; (VA = Vi)

7

where VW' — water flow velocity, V4 — wind flow velocity, Vi - rate of i floes
element, p,, p, — the density of water, air, ¢,, ¢, — the friction coefficient of
water, air, S; —Square of ¢ floes element in contact with the water.

The interaction between objects is reduced to the problem of collision detec-
tion and its solving [2, 9]. Stage collision detection is divided into two steps:

1. Determination of the candidates for the collision. For each ice floe deter-
mines the minimum radius of the circle centered at the center of mass and
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fully containing this ice floe. By comparing the distance between the cen-
ters of mass of the two floes and the amount received by the radius of the
circles we make a conclusion about the possibility of a collision. If the dis-
tance is greater than the sum of the radiuses, that means that floes don’t

collided, else a couple of ice floes are candidates for collision and go to step
2.

2. Search for common points ice floes. In the simplest case can be checked
that vertexs of the second floe are belong to the first ice floe.

If couple of objects has common points, than the value of the impulse should
be calculated. With this impulse objects interact with each other.

S S S

Figure 1. The moment of two ice floes collision.
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where j — impulse, € — coefficient of elasticity, v{'® — the difference between the
velocities of the bodies before collision, 7 — the normal vector of the point of col-
lision, M4, MB — mass of colliding objects, 14, I” — the moment of momentum
of the colliding objects.

IV Results

This model allows the calculation of:

1. Values of forces acting on an arbitrary area floes.
2. Values of the resultant force.
3. Collision forces.

4. Values of linear and angular speed and acceleration.
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As the pond to test model was chosen square shaped pond, filled with a

uniform ideal incompressible fluid with a steady flow. Presented in the form of a
grid of the velocity field, with known values at the nodes of the grid.

There was a numerical simulation of the interaction of different type objects

— two ice floes with a predetermined density in the range from 0.85 to 0.94 g /
cm 2 and static body.

.0gm] L . + L . : L ' L L
[00'[“3.00;\,.] [1.91m] [3-81m] [5.72m] [7.63m] [9.53m] [11.44m][13.35m][15.25M][17.16M][19.

Figure 2. The results of calculations movement of ice floes

Fig. 1 shows the path of the ice floes, calculated using this model.
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THE SPECIAL BROADCAST SECURITY SCHEME
BASED ON RM-CODES AND THE PROTECTION
FROM SOME LINEAR ALGEBRAIC ATTACKS
Yevpak S.A.

Southern Federal University, Rostov-on-Don, Russia

The special broadcast security scheme which is based on Reed-Muller codes
is considered in [1]. The scheme allows distributors to protect digital products
from unauthorized access. Each user gets from the distributor the id sequence
and the keys which give access to duplicated data.

However, there are possibilities to get access to the data with help special
linear algebraic attack [1, 2]. For this, legal users of the scheme unite in groups
or coalitions and modify own key data for getting new pirate keys which give
access to duplicated data. The coalition size is not more than ¢ users for the
concrete scheme. Besides, if the possible size of coalition members is more than
¢ then there are another attacks [3].

In this paper, it is introduced the parameters of Reed-Muller codes, which
help to protect the distributor data.

Let F [ X1, Xy, ..., X,,] be the ring of polynomials in m variables with coeffi-
cients in the finite field [, with ¢ elements. Let Py, P, ..., P, be an enumeration
of the points of F;", where n=¢™. The g-ary Reed-Muller code RM,(r,m) of
order r in m variables is defined as

RMo(r,m) ={(f ("), f(P),....[(Fa))ldeg(f) <r}.

Suppose ¢ is the maximum size of coalition, /N is the number of all users in the
scheme. Then,
m(€ N) : |[RM,(r,m)| = N
and
q>rcé® + 1.
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MATHEMATICAL MODELING OF LASER PULSE
INTERACTION WITH PLASMA'!
Zaytseva A.A.", Echkina E.Y."

* Moscow State University Department of Computational
Mathematics and Cybernetics, Moscow, Russia

Recent years are marked with great progress of laser physics. Laser pulse
power is constantly increasing and reached values of 10*1//cm?. This fact has
led to active theoretical and experimental researches of ion acceleration, and is
expected to use the high power lasers.

Plasma can be considered cold and collisional for the examined laser pulse.
Mechanisms of ion acceleration in the interaction of ultrashort and superstrong
laser pulses with collisional plasma based on the generation of large-scale col-
lective electric fields due to changes in the electron density under the action of
electromagnetic radiation.

A detailed research of this problem requires a full-scale computer simulations
based on the use of the so-called method of particles-in-cell or PIC — method.

This work is devoted to the description of computational experiment built
on a multiprocessor platform. The experiment was conducted in the framework
of 2D3V, when the desired ion distribution function depends on two spatial
values and three components of the pulse. Plasma is examined in the Vlasov
approximation, that is a medium consisting of electrons and ions in which there
i1s a self-consistent field. Therefor it is represented with the finite number of
electrons and ions (up to 107) disposed at discrete points of space. Particles
move under the influence of external and self-consistent fields. The interaction
of particles is divided into two stages: the calculation of fields, generated with
particles, and determination of the motion of particles under the influence of
forces, applied to them. Fields are calculated from Maxwell’s equations, in which
the currents and charges are searched out with the positions and velocities of all
particles. Motion of the particles is determined by the numerical solution of the
Newton-Lorentz equation with sufficient accuracy.

Computing cycle consists of alternate solutions to these two tasks. The vari-
able and spatial grid are put in, it satisfyies the necessary requirements of accu-
racy and stability.Particles are noted with index ¢, for example v; and x;. Field
values are computed only at the nodes of the spatial grid, marked with index 7,
for example E;. Cycle of the program work is showed on the picture.1.

The work presents a method for calculating a large number of system param-
eters based on multi-platfoma, namely parallelization is based on the "parameter
search". This parallelization gives a great time advantage, in the construction of
a computational experiment.

!Finance supported by RFFI grant 14-01-00337
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SOME STEADY-STATE NUMERICAL SOLUTIONS OF
EULER EQUATION!

Zhdanov I.A.*, Govorukhin V.N. *

* Southern Federal University, Rostov-on-Don, Russia

Consider a two-dimensional steady-state Euler’s equation in terms of vorticity
and stream-function, describing flow of incompressible inviscid fluid which was
described in [1] :

Oz Oy oy 0x (1)

Qb 0wV _
{ AY = —w

With boundary conditions: ¥|,—0 = ¢1(y); ¥]|e=a = 92(y); ¥|y=0 = const;
VYly=p = const; wl—0 = f1(¥); W|z=a = f2(y); w]y=0 = const; w|,—p = const;
where 1) = 9(x,y) — stream function, w = w(z,y) — vorticity function.

Using finite-difference method we got system of non-linear algebraic equa-
tions:

(Wit1,j = wim1,j) (Wi g1 — Vi) = (Yisr; — ic15) (Wi — wij—1) =0
s = Yip1,;—Vij+ti-1j + Vi1 =i j+i 1 (2>
(N h2 h3
. S _ _ ) __b
where ¢ = 2..N, —1; j=2.N,—1; h, = N:_la hy = N,—1

Unfortunately it is practically impossible to obtain analytical solution for
such systems. However numerical methods provide acceptable results. The best
of them were obtained using Newton’s method. The key problem here is how to
choose the correct initial data.

W w F=y(w)

o.sv 0.8\/ ,
N— Zi@ °°

02~ —7— 4 02~ T

0 0.5 1 0 0.5 1 0 1 2

Figure 1. K1 = 4.5; Ky = 0; Regime with linear functional dependency that is
identical to analytical solution from article |2]

We suggest the following algorithm:

'Supported by REFBR Grant N 14-01-00470
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e To find solution for the smallest possible number of cells (6 by 6) using
near-zero values as an initial data for Newton’s method

e To "stretch" result using interpolation methods to increase number of cells
and use the result of interpolation as an initial data for Newton’s method.

e If boundary conditions are close to some boundary conditions for which
solution has already been obtained, this solution is used as initial data for
Newton’s method.

The reliability of results was controlled by the verification of famous analyt-
ical facts and relations. Particularly, the fact that there should be a functional
dependency ¢ = F(w) for the solution of (1).Besides, the algorithm was test-
ed for cases where analytical solution is known [2]| The described algorithm was
successfully applied for analyzing problem (1).

We consider a square domain 1x 1 with boundary conditions: fi(y) = fao(y) =
Ky + Kosin(%?); g1(y) = g2(y) = y, where K; and Ky — some numerical
parameters.

U] w F=y(w)
1 1 6
0.8 v 0.8
4
> v - \\/ ’
0.2 g =
~N Iy
0 0 O*
0 0.5 10 05 1 0 1 2
X X U]

Figure 2. K; = 4.5; Ky = 1; Increasing K, makes functional dependency
non-linear but monotonic function

The main goal of the numerical experiments was to find a steady-state flows
with different functional dependency w = F'(). The linear dependency ( Ky =
0) was described in [2].

The results are presented graphically. The left picture illustrates stream-lines
of fluid particles, the central picture illustrates isolines of vorticity field and the
right graphics shows the dependency ¢ (w). Here, we used a solution with linear
dependency w = K1 to perform reliability tests.
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Figure 3. K; = 4.5; Ky = 3; Further increasing K, makes functional depen-
dency to become non-monotonic function

Figure 4. K; = 4.5; K9 = 0; The solution with the same parameters as on
Figure 1. This picture illustrates that there can be different solutions with the
same border conditions.
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