
Southern Federal University

I.I. Vorovih Institute of Mathematis, Mehanis,

and Computer Siene

Proeedings of

Fourth China-Russia Conferene

NUMERICAL ALGEBRA

WITH

APPLICATIONS

Editors: Zhong-Zhi Bai, Lev A. Krukier, Galina V. Muratova

26-29 June 2015

Rostov-on-Don, RUSSIA



UDC 519.6

Editors: Zhong-Zhi Bai, Lev A. Krukier, Galina V. Muratova

NUMERICAL ALGEBRA WITH APPLICATIONS

Proeedings of Fourth China-Russia Conferene. � Rostov-on-Don: Southern Fed-

eral University Publishing, 2015, 192 p.

ISBN

Fourth China-Russia Conferene on Numerial Algebra with Appliations (CRC-

NAA'15) is organized by I.I. Vorovih Institute of Mathematis, Mehanis, and

Computer Siene of Southern Federal University. Aims are bringing together re-

searhers, sientists, engineers and graduate students to exhange and stimulate

ideas from di�erent disiplines and disussing the pratial hallenges enoun-

tered. The solutions adopted and learning the reent developments on theory

and omputional methods for numerial simulation of linear algebra and sien-

ti� omputing will be onsidered. The topis of CRC-NAA'15 inlude, but are

not limited to: mathematial modeling; appliating of numerial methods and

algorithms to solve problems of mathematial modeling, linear and nonlinear

equations systems; preonditionining tehnique; parallel omputing.

The China-Russia Conferene is supported by RFBR

(grant � 15-31-10132)

ISBN

©Southern Federal University, 2015



CONTENTS 3

CONTENTS

Plenary Letures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

RIGOROUS CONVERGENCE ANALYSIS OF ALTERNATING VARI-

ABLE MINIMIZATION WITH MULTIPLIER METHODS FOR

QUADRATIC PROGRAMMING PROBLEMS WITH EQUALITY CON-

STRAINTS

Bai Zhong-Zhi, Tao Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

PARALLEL IMPLEMENTATION OF MODULUS-BASED MATRIX

SPLITTING ITERATION METHOD FOR LINEAR COMPLEMENTAR-

ITY PROBLEMS

Bai Zhong-Zhi, Zhang Li-Li. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CALLS FORECAST FOR THE MOSCOW AMBULANCE SERVICE. THE

IMPACT OF WEATHER FORECAST

Bykov F.L., Gordin, V.A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

THE SEMI-LAGRANGIAN FEM TO THE NAVIER-STOKES MODEL

FOR VISCOUS INCOMPRESSIBLE FLUID

Dementyeva E.V., Karepova E.D., Shaidurov V.V. . . . . . . . . . . . . . . . . . 21

FLEXIBLE GLOBAL GENERALIZED HESSENBERG METHODS FOR

LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES

Gu Chuanqing, Zhang Ke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

NUMERICAL METHODS FOR SYSTEMS WITH COMPLEX MATRICES

Guo Xue-Ping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ON THE COMPUTATION OF THE INVERSE STURM-LIOUVILLE

PROBLEM IN IMPEDANCE FORM

Huang Zhengda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

USING COMPUTER ALGEBRA SYSTEM FOR THE STABILITY ANAL-

YSIS OF NONLINEARLY ELASTIC CYLINDER WITH INTERNAL

STRESSES

Karyakin M.I., Shubhinskaya N. Y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

NUMERICAL SOLUTION OF STEADY CONVECTION-DIFFUSION

EQUATION IN COMPRESSIBLE MEDIUM

Krukier L. A., Krukier B. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ITERATIVE SOLUTION OF THE CONSTRAINED NONLINEAR

LEAST-SQUARES PROBLEMS

Martynova T.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

MATHEMATICAL MODELING OF NEURAL ACTIVITY

Muratova G.V., Andreeva E.M., Bavin V.V., Belous M.A. . . . . . . . . 56



4 "Numerial Algebra with Appliations"

DISCRETE ANALOG OF CONJUGATE-OPERATOR MODEL OF A

PROBLEM OF HEAT CONDUCTIVITY ON NON-MATCHING GRIDS

Sorokin S.B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

DYNAMIC BEHAVIOUR OF HETEROGENEOUS POROELASTIC

STRUCTURES

Vatulyan A.O., Gusakov D.V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

TWONEW SPLITTINGS AND PRECONDITIONER FOR ITERATIVELY

SOLVING NON-HERMITIAN POSITIVE DEFINITE SYSTEMS

Wen Rui-Ping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

TWO-STAGE ITERATION METHODS FOR SADDLE POINT PROB-

LEMS

Zhang Guo-Feng, Zhu Mu-Zheng, Zhao Jing-Yu . . . . . . . . . . . . . . . . . . . . 71

GROUP ANALYSIS OF INTEGRO-DIFFERENTIAL EQUATIONS DE-

SCRIBING STRESS RELAXATION BEHAVIOR OFONE-DIMENSIONAL

VISCOELASTIC MATERIALS

Zhou Longqiao, Meleshko S.V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Invited talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

MULTIGRID METHOD WITH SPECIAL APPROXIMATION FOR THE

NAVIER-STOKES EQUATIONS IN A VISCOUS INCOMPRESSIBLE

FLUID

Andreeva E.M., Muratova G.V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

SIMULATIONS OF RADIOACTIVE CONTAMINATION WITHIN AN IN-

DUSTRIAL SITE

Blagodatskykh D.V., Dzama D.V., Sorokovikova O.S. . . . . . . . . . . . . . . 84

ABOUT REGULARIZATION METHOD FOR THE INTENSITY IDENTI-

FICATION PROBLEM OF ATMOSPHERIC POLLUTION SOURCE

Chubatov A.A., Karmazin V.N.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A VERIFICATION OF THE BLOCKS FOR 3D AEROTHERMODYNAM-

ICS MODELLING AND DOSES CALCULATION FROM A CLOUD OF

ARBITRARY GEOMETRY AS PARTS OF A SOFTWARE PACKAGE

FOR ESTIMATION OF THE RADIATION SITUATION WITHIN AN IN-

DUSTRIAL SITE AT RADIATION RISK

Dzama D.V., Sorokovikova O.S., Blagodatskykh D.V. . . . . . . . . . . . . . . 92

COMPARISON ANALYSIS AND PARALLEL IMPLEMENTATIONS OF

TWO SEMI-LAGRANGIAN TECHNOLOGIES FOR AN ADVECTION

PROBLEM

Efremov A.A., Karepova E.D., Vyatkin A.V. . . . . . . . . . . . . . . . . . . . . . . . . 97

ON NUMERICAL CALCULATION OF SHAPES OF CYLINDRICAL IN-

CLUSIONS MIGRATING THROUGH A CRYSTAL FOR PARTICULAR

CASE OF INTERFACIAL ENERGY ANISOTROPY

Garmashov S.I., Prikhodko Y.V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



CONTENTS 5

IMPULSION IN MODELS OF CONCORDANCE OF PUBLIC AND PRI-

VATE INTERESTS

Gorbaneva O.I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

MESHLESS ALGORITHM FOR VORTICES DYNAMICS ANALYSIS

Govorukhin V.N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

COMPACT DIFFERENCE SCHEMES FOR ROD LATERAL VIBRA-

TIONS EQUATION

Gordin V.A., Tsymbalov E.A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

NUMERICAL AND ASYMPTOTICAL ANALYSIS OF RAYLEIGH

REACTION-DIFFUSION SYSTEM

Kazarnikov A.V., Revina S.V., Haario H. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

NUMERICAL MODELING OF THE SHALLOW AND LONGITUDIAL

TURBULENT STREAM BASED ON THE 3D REDUCED MODEL

Nadolin K.A., Zhilyaev I.V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

MODIFICATION OF FINITE-VOLUME METHOD FOR APPROXIMA-

TION DIFFERENTIAL EQUATIONS IN COMPLEX DOMAIN ON RECT-

ANGULAR GRIDS

Shishenya A.V., Chistyakov A.E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

SIMULATION OF OIL POLLUTION IN THE KERCH STRAIT

Shabas I.N., Chikina L.G., Muratova G.V., Chikin A.L. . . . . . . . . . . . 127

GROUP-LATTICE APPROACH TO COMPUTATION OF SOCIAL CON-

STANTS IN THE MODELLING OF EVOLUTION PATHS OF THE AR-

CHAIC SOCIETY

Shvedovsky V.A., Standrik A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

SPECTRAL DECOMPOSITION AND GEOMETRICAL ANALYSIS OF

SPATIAL DATA AND IMAGES

Simonov K.V., Kurako M.A., Cadena L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

RESEARCH OF INITIAL BOUNDARY VALUE PROBLEMSWITH MOV-

ING BOUNDARIES

Stolyar A.M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Posters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

GPGPU TECHNOLOGIES FOR GENETIC ALGORITHMS

Agibalov O.I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

PROPAGATION OF LONG PULSE WAVES IN AORTA

Batishhev V.A., Getman V.A., Safronenko O.I. . . . . . . . . . . . . . . . . . . . . 145

NUMERICAL METHODS OFMULTI-CRITERIA REGULATION ALTER-

NATIVES TO SELECT FINANCIAL INSTRUMENTS

Bodrova Y.S., Mermelshtein G.G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



6 "Numerial Algebra with Appliations"

OSCILLATORY CONVECTION IN A HORIZONTAL LAYER OF A BI-

NARY MIXTURE

Denisenko V.V., Morshneva I.V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

EVALUATION PROBLEM FOR GENERAL HIDDEN SEMI-MARKOV

ERROR SOURCE MODEL

Deundyak V.M., Zhdanova M.A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

COMPUTER MODEL OF PLANE WITH FORWARD-SWEPT WING IN

UNUSUAL CONDITIONS

Kazakov E.A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

LONG-WAVE INSTABILITY NEAR SEMI-SELECTIVE ION-EXCHANGE

MEMBRANE

Khasmatulina N.Yu., Ganhenko G.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

THE DISPERSION PROPERTIES OF HETEROGENEOUS TRANS-

VERSELY ISOTROPIC CYLINDRICAL WAVEGUIDE

Morgunova A.V., Vatulyan A.O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

ON THE OCCURRENCE OF SELF-OSCILLATIONS IN A VERTICAL

LAYER OF A BINARY MIXTURE

IN THE PRESENCE OF A THERMAL DIFFUSION EFFECT

Petrova E.I., Morshneva I.V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

MATHEMATICAL MODELS AND METHODS TO DESCRIBE SELF-

ASSEMBLY OF SPHERICAL CRYSTALS AND TO STUDY THEIR DE-

FECTS

Roshal D.S., Myasnikova A.E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

ONE APPROACH TO CALCULATING THE MOVEMENT AND INTER-

ACTION OF INDIVIDUAL ICE FLOES

Tarelkin A.A., Chikina L.G., Shabas I.N., Chikin A.L. . . . . . . . . . . . . . 178

THE SPECIAL BROADCAST SECURITY SCHEME BASED ON RM-

CODES AND THE PROTECTION FROM SOME LINEAR ALGEBRAIC

ATTACKS

Yevpak S.A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

MATHEMATICAL MODELING OF LASER PULSE INTERACTION

WITH PLASMA

Zaytseva A.A., Ehkina E.Y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

SOME STEADY-STATE NUMERICAL SOLUTIONS OF EULER EQUA-

TION

Zhdanov I.A., Govorukhin V.N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



7

Plenary Letures



8 "Numerial Algebra with Appliations"

RIGOROUS CONVERGENCE ANALYSIS OF

ALTERNATING VARIABLE MINIMIZATION WITH

MULTIPLIER METHODS FOR QUADRATIC

PROGRAMMING PROBLEMS WITH EQUALITY

CONSTRAINTS

1

Zhong-Zhi Bai

∗
, Min Tao

∗∗
∗
State Key Laboratory of Sienti�/Engineering Computing,

Institute of Computational Mathematis and Sienti�/Engineering

Computing, Aademy of Mathematis and Systems Siene,

Beijing, P.R. China,

∗∗
Department of Mathematis, Nanjing University, Nanjing,

China

Let R be the domain of all real numbers, Rn
be the n-dimensional real

linear spae equipped with the Eulidean inner produt, say, 〈·, ·〉 , and R
m×n

be

the m-by-n real matrix spae. Denote by (·)T and ‖ · ‖ the transpose and the

Eulidean norm of either a vetor or a matrix of suitable dimension, respetively.

We onsider numerial solutions of equality-onstraint quadrati programming

problems of the form

{
min φ(x) + ψ(y),
s.t. Ax+ By = b,

(1)

where A ∈ R
p×n

and B ∈ R
p×m

are two matries, b ∈ R
p
is a known vetor,

and φ : Rn → R and ψ : Rm → R are two quadrati funtions de�ned by

{
φ(x) = 1

2x
TFx+ xTf,

ψ(y) = 1
2y

TGy + yTg,
(2)

with F ∈ Rn×n
, G ∈ Rm×m

being symmetri positive semide�nite matries and

f ∈ R
n
, g ∈ R

m
being given vetors. We assume that some standard assumptions

are imposed on the matries F , G and A , B as well as on the vetors f ,
g and b suh that the solution set of the problem (1)-(2) is nonempty. This

lass of onstraint programming problems ours in many areas of omputational

siene and engineering appliations suh as eonomis [1℄, eletrial iruits and

networks [2, 29, 7℄, eletromagnetism [24, 4℄, �nane [21, 22℄, image reonstrution

[17℄, image registration [23, 15℄ and optimal ontrol [3℄. It also aptures a number

1 ∗
The work of this author is supported by The National Basi Researh Program (No. 2011CB309703),

The National Natural Siene Foundation (No. 91118001) and The National Natural Siene Foundation for

Creative Researh Groups (No. 11321061), P.R. China,

∗∗
The work of this author is supported by The National Natural Siene Foundation (No. 11301280) and The

Fundamental Researh Funds for the Central Universities (No. 020314330019), P.R. China
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of important appliations arising in various areas suh as the l1 -norm regularized

least-squares problems, the total variation image restoration and the standard

quadrati programming problems; see, e.g., [19, 18℄ for more details.

One of the most popular and e�etive iterative methods for solving the

equality-onstraint quadrati programming problem (1) is the so-alled alter-

nating diretion method with multipliers, or in short, the ADM method. At

eah iteration step, it �rst alternatively minimizes the augmented Lagrangian

funtion La(x, y, z) with respet to the variables x , y , and then update the La-

grange multiplier z aording to the steepest asent priniple so that violation

of the original onstraint Ax + By = b is penalized. More preisely, the ADM

method for solving the problem (1) an be algorithmially desribed as follows.

Method 0.1 (ADM Method for the Problem (1))

Given initial guesses y(0) ∈ Rm
and z(0) ∈ Rp

, for k = 0, 1, 2, . . .
until the iteration sequenes {x(k)}∞k=0 ⊂ R

n
, {y(k)}∞k=0 ⊂ R

m

and {z(k)}∞k=0 ⊂ Rp
are onvergent, ompute x(k+1)

, y(k+1)
and z(k+1)

aording to the following rule:





x(k+1) = argminx∈Rn

{
φ(x)− 〈Ax+By(k) − b, z(k)〉+ β

2
‖Ax+By(k) − b‖2

}
,

y(k+1) = argminy∈Rm

{
ψ(y)− 〈Ax(k+1) +By − b, z(k)〉+ β

2
‖Ax(k+1) +By − b‖2

}
,

z(k+1) = z(k) − β(Ax(k+1) +By(k+1) − b).
(3)

Intuitively, Method 0.1 is an alternating variable minimization with multiplier

(AVMM) method. The AVMM method is intended to blend the deomposabil-

ity of dual asent with the superior onvergene properties of the method of

multipliers [6℄. In [12℄ Gabay illustrated this iteration sheme as an appliation

of the Douglas-Rahford splitting method [20℄ to the dual of the problem (1),

and Ekstein and Bertsekas [9℄ showed in turn that Douglas-Rahford splitting

is a speial ase of the proximal point method. Hene AVMM is a speial ase

of the proximal point method; see Ekstein and Ferris [10℄ for more disussions

explaining this approah. On the other hand, it is also a natural generalization

of the lassial Uzawa method for solving the saddle-point problems; see [1, 5, 8℄.

Many papers have analyzed the AVMM method from the perspetive of max-

imal monotone operators [9, 25, 26, 27, 28℄. Its global onvergene was proved

under some mild onditions suh as the solution set of the problem (1) is nonemp-

ty; see [13, 11, 12℄. Also, it has been known that this method onverges linearly,

but an aurate estimate about the onvergene rate is still in its infany; see,

e.g., [20, 14, 19, 30, 18℄.

In this paper, based on a weighted inner produt and the orresponding

weighted norm, by adopting matrix preonditioning strategy and utilizing pa-

rameter aelerating tehnique, we establish a lass of preonditioned alternating

variable minimization with multiplier (PAVMM) methods for iteratively solv-

ing the equality-onstraint quadrati programming problem (1). This method

inludes the AVMM or the ADM method as speial ase. By making use of

blokwise matrix transformation, from null spae relationships of the involved
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sub-matries we disuss solvability of the equality-onstraint quadrati program-

ming problem (1)-(2) and give su�ient and neessary onditions for guaran-

teeing existene and uniqueness of its solution. By exploring an expliit formula

about eigenvalues of the iteration matrix, we demonstrate asymptoti onver-

gene property and analyze asymptoti onvergene rate of the PAVMM method.

By making use of matrix splitting, we also disuss an algebrai derivation of the

PAVMM method, whih shows that this method is atually a modi�ed blok

Gauss-Seidel iteration method for solving the augmented linear system resulting

from the weighted Lagrangian funtion with respet to the equality-onstraint

quadrati programming problem (1)-(2).
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Many problems in sienti� omputing and engineering appliations demand

to ompute solutions of linear omplementarity problems. Suh lass of problems

inludes, for example, the onvex quadrati programming, the bimatrix game, the

free boundary problems of �uid dynamis, the network equilibrium problems, the

ontat problems, and so on. For given matrix A ∈ R
n×n

and vetor q ∈ R
n
, the

linear omplementarity problem, abbreviated as LCP(q , A), onsists of �nding
a pair of vetors r, z ∈ R

n
suh that

r := Az + q ≥ 0, z ≥ 0 and zT (Az + q) = 0,

where zT denotes the transpose of the vetor z .
Bai proposed a lass of modulus-based splitting iteration methods in [1℄ for

solving the LCP(q , A). This lass of iteration methods is essentially based on

an equivalent transformation of the LCP(q , A) into a system of �xed-point

equations involving only absolute value of ertain vetor. It not only inludes

as speial ases the modulus-based relaxation methods suh as Jaobi, Gauss-

Seidel, SOR and AOR, but also provides a general framework for the existing

modulus iteration methods. Theoretial analyses and numerial implementations

have shown that the modulus-based relaxation methods are often superior to the

projeted relaxation methods.

This talk inludes two parts. The one is about the synhronous parallel oun-

terpart of the modulus-based splitting iteration method by making use of multiple

splittings of the system matrix A . The other is about the two-stage multisplit-
ting iteration method by employing the modulus-based matrix splitting iteration

and its relaxed variants as inner iterations.

First, in order to suit omputational requirements of the modern high-speed

multiproessor environments, we present the modulus-based synhronous multi-

splitting (MSM) iteration method by making use of multiple splittings of the

system matrix A . Let (Mk, Nk, Ek) (k = 1, 2, . . . , ℓ) be a multisplitting of the
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system matrix A , Ω a positive diagonal matrix and γ a positive onstant. Then,

the MSM iteration method an be desribed as follows:

1. Choose an initial vetor x(0) ∈ Rn
, and set m := 0 ;

2. For k = 1, 2, . . . , ℓ , we solve the linear subsystem

(Ω +Mk)x
(m+1,k) = Nkx

(m) + (Ω−A)|x(m)| − γq,

on the k -th proessor, and obtain the solution x(m+1,k)
;

3. By ombining the loal updates of ℓ proessors together, we get

x(m+1) =
ℓ∑

k=1

Ekx
(m+1,k)

and z(m+1) =
1

γ
(|x(m+1)|+ x(m+1));

4. If z(m+1)
satis�es a presribed stopping rule, then terminate. Otherwise,

set m := m+ 1 and return to 2.

This lass of modulus-based synhronous multisplitting iteration methods

only needs to solve sub-systems of linear equations rather than linear omple-

mentarity sub-problems. With speial hoies of the multiple splittings of the

system matrix, we an obtain a sequene of modulus-based synhronous mul-

tisplitting relaxation methods, inluding Jaobi, Gauss-Seidel, SOR and AOR,

respetively. When the system matrix A is an H+ -matrix, we prove the on-

vergene of the modulus-based synhronous multisplitting iteration methods as

well as their relaxed variants. Numerial results show that the modulus-based

synhronous multisplitting Jaobi, Gauss-Seidel and SOR methods an ahieve

high parallel omputing e�ieny in atual implementations.

Seond, in the matrix multisplitting iteration method disussed by Mahida,

Fukushima and Ibaraki in [2℄ and by Bai in [3℄, we have to spend a vast major-

ity of time in solving the linear omplementarity sub-problems exatly at eah

iteration step. For saving time, inner iteration an be introdued to solve them

approximately. Thus, we present the two-stage multisplitting iteration method

by employing the modulus-based matrix splitting iteration and its relaxed vari-

ants as inner iterations. Let (Mk : Fk, Gk;Nk;Ek) (1 ≤ k ≤ ℓ) be a two-stage

multisplitting of the matrix A . Then, the steps of the two-stage multisplitting
iteration method are listed as follows:

1. Choose an initial vetor x(0) and a positive onstant γ . Set m := 0 and

z(0) = 1
γ
(x(0) + |x(0)|) .

2. Given x(m)
and z(m)

. For eah k (1 ≤ k ≤ ℓ) , solve the LCP(q(m,k),Mk) ,
with q(m,k) := q−Nkz

(m)
, by employing the modulus-based matrix splitting
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iteration method:

(Ω + Fk)x
(m,k,j+1) = Gkx

(m,k,j) + (Ω−Mk)|x(m,k,j)| − γq(m,k),
j = 0, 1, . . . , l

(m)
k − 1,

(1)

with x(m,k,0) := x(m)
. Here, Ω is a positive diagonal matrix.

3. Set x(m+1) =
ℓ∑

k=1

Ekx
(m,k,l

(m)
k )

, and z(m+1) = 1
γ
(x(m+1) + |x(m+1)|) .

4. If z(m+1)
satis�es a presribed stopping rule, then terminate. Otherwise,

set m := m+ 1 and return to 2.

In order to solve (1) expliitly, we onsider the lassi aelerated overrelax-

ation (AOR) splitting Mk = Fk − Gk , i.e., the matries Fk and Gk in (1) are

of the forms





Fk =
1

α
(DMk

− βLMk
) ,

Gk =
1

α
[(1− α)DMk

+ (α− β)LMk
+ αUMk

] ,
0 < β ≤ α,

where DMk
, LMk

and UMk
are the diagonal, the stritly lower-triangular and the

stritly upper-triangular matries of the matrix Mk , respetively. In this ase,

the above two-stage iteration method gives the two-stage multisplitting MAOR

(TMMAOR) iteration method. Speially, if α = β , the TMMAOR iteration

method redues to the two-stage multisplitting MSOR (TMMSOR) iteration

method, and if α = β = 1 , it further redues to the two-stage multisplitting

MGS (TMMGS) iteration method. And, if α = 1 and β = 0 , it is the two-

stage multisplitting MJ (TMMJ) iteration method.

In the two-stage methods, the modulus-based matrix splitting iteration meth-

ods are used as inner iterations to solve the linear omplementarity sub-problems

inexatly. This makes the two-stage multisplitting iteration methods easier to be

programmed and more eonomial in memory storage. Moreover, these two-stage

multisplitting iteration methods are onvergent for any number of inner itera-

tions when the system matrix is an H+ -matrix. This makes these methods more

�exible and e�etive than earlier similar methods in atual omputation. Numer-

ial experiments show that the two-stage multisplitting relaxation methods are

superior to the matrix multisplitting iteration methods in omputing time, and

an ahieve a satisfatory parallel e�ieny. Numerial experiments also show

that the omputing time is the least for only a few inner iterations.
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The number of alls to the ambulane servie in Mosow is equal about 5

million per year. About two thirds of the alls lead to ambulane trips. We

analyse here only suh kind of the alls (NAT

1
). The funtion is noted as Q(t) .

We onsidered it as a random proess. Than we approximate the funtion by a

ubi spline ΨQ(t) .

Figure 1. a. The long-term trend hanges NAT Q(t) . b. Calulated typial NAT ΨQ(t) �

the 28 years periodi funtion, whih depends only on the time of year and day of the week. It

also shows daytime, night shifts and their sum. On the horizontal axis are marked on January

1.

We an use the funtion as a foreast of NAT, but the approah is not good;

see the urves 1 on the Fig.2. We an realise the approah for various subgroups

of diseases, too.

We used in the study the arhives of the Ambulane Servie in Mosow

2
as

well as meteorologial arhives of the Hydrometeorologial Center of Russia. We

1
The number of the ambulane trips.

2
The operative data about the alls are available on the site http://www.mos03.ru/about/about.php. We

used the depersonalized database of trips during 2009-2013.
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used an additional information about the air temperature T (t) to improve the

foreast of NAT, see the urves 2.

We use the known statistis of the alls for the urrent and previous days

to predit them for tomorrow and for the following days. We assume that this

algorithm will work operatively, will ylially update the available information

and will move the horizon of the foreast.

Sure, the auray of suh foreasts depends on their lead time, and from

a hoie of some group of diagnoses. For omparison we used the error of the

inertial foreast (tomorrow there will be the same number of alls as today). Our

tehnology has demonstrated auray that is approximately two times better

ompared to the inertial foreast.

We obtained the following result: the number of alls depends on the atual

weather in the ity as well as on its rate of hange. We were interested in the

auray of the foreast for 12-hour sum of the alls in real situations. We evaluate

the impat of the meteorologial errors [Bagrov 2014℄ on the foreast errors of

the number of Ambulane alls.

Figure 2. The RMS error of the foreast of the total NAT per 12 hours depending on

the lead time z (days). Data is divided into daytime shifts (solid line) and night (dashed

line). 1 � the deviation Q(t) from ΨQ(t) . 2 � the deviation Q(t) from ΨQ,Tmin,Tmax
(t) . 3

� the error of the foreast, whih uses information about NAT from several previous days,

but without separation into super-groups of diseases; the data about air temperature were

ignored. 4 � foreast without separation onto super-groups of diseases, but with impat of

the temperature. 5 � we use the separation onto super-groups A, B, C, and do not use air

temperature. 6 � we use the separation onto super-groups A, B, C, and take into aount the

air temperature for our foreasting. Here the temperature was assumed to be known exatly

for the urves 2, 4, and 6. Curves 7 desribe the foreast whih is similar to 6, but it use

the foreasted air temperature with orresponding lead time [Bagrov 2014℄ instead of real air

temperature.

The weather and the Ambulane alls number both have seasonal tendenies.

Therefore, if we have medial information from one ity only, we should separate
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the impats of suh preditors as "annual variations in the number of alls" and

"weather". We need to onsider the seasonal tendenies (assoiated, e. g. with the

seasonal migration of the population and government holidays), week periodiity,

and the impat of the air temperature simultaneously, rather than sequentially.

We foreasted separately the number of alls with diagnoses of ardiovasular

group, where it was demonstrated the advantage of the foreasting method, when

we use the maximum daily air temperature as a preditor. We have a hane to

evaluate statistially the in�uene of meteorologial fators on the dynamis

of medial problems. In some ases it may be useful for understanding of the

physiology of disease and possible treatment options.

In future we are going to assimilate some personal arhives of medial param-

eters for the individuals with onrete diseases and the relative meteorologial

arhive. As a result we hope to evaluate how weather an in�uene the intensi-

ty of the disease. Thus, the knowledge of the weather foreast for several days

will help us to predit a state of health. The person will be able to take some

proative ations to avoid the antiipated worsening of his health.
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The Navier-Stokes equations are of interest both itself and in ombination

with additional equations for more omplex physial phenomena. At the same

time, e�ient and robust numerial methods for its solving is extremely hal-

lenged up to now.

In present talk the 2D system of the Navier-Stokes equations is onsidered

for a visous inompressible �uid in a hannel Ω with Γin , Γout and Γrigid as

inlet, outlet, and rigid sides boundary orrespondene. On outlet boundary the

modi�ed �do nothing� boundary ondition is imposed [1℄. Its e�ieny is shown

by numerial experiments.

To onstrut a disrete analogue, we use a semi-Lagrangian approah to ap-

proximation of the transport derivatives [2℄. In our ase the set of transport

derivatives is onsidered to be a (Lagrangian) �rst-order derivative along a given

diretion l = (1, u, v) :

∂f

∂t
+

∂

∂x
(fu) +

∂

∂y
(fv)

︸ ︷︷ ︸
+ inompressibility

=
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
≡ ∂f

∂l
,

whih may be approximated by �nite di�erene or inside the �nite element

method. Then we onsider in a hannel the following problem

∂U

∂l
− ν∆U+

1

ρ0
∇p = f ,

∇ ·U = 0

under the onditions

U(t,x) = Uin ∀(t,x) ∈ (0, T )×Γin, U(t,x) = (0, 0) ∀(t,x) ∈ (0, T )×Γrigid,

−ν∂nU+
1

ρ0
pn =

1

ρ0
pextn ∀(t,x) ∈ (0, T )× Γout.

Here U = (u, v) is a veloity vetor, p is a pressure, ν is a kinemati visosity,

ρ0 is a onstant density, f = (f1, f2) is a given vetor of body fores.

We use ombination of semi-Lagrangian approah to approximation of the

transport derivatives and a onforming �nite element method to approximation

1
The work was supported by Russian Foundation of Fundamental Researhes (grant 14-01-00296-a)
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of other terms (namely, Stoks problem). Veloity omponents are approximated

by biquadrati elements and the pressure does by bilinear elements on retangles.

As a result of this ombined approah, the stationary problem with a self-

adjoint operator is obtained on eah time level. This problem is numerially

solved by the multigrid method whih allows one to derease the omputational

time.

The theoretial results are on�rmed by numerial experiments.
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A variant of the global generalized Hessenberg method is presented whih

allows varying preonditioning at eah restart. Theoretial results that relate

the residual norm of this new method with its original version are developed.

As two speial variants, the �exible global GMRES method and the �exible

global CMRH method are investigated both theoretially and experimentally.

Numerial examples are onduted to illustrate the performane of these two

�exible global methods in omparison with both the original global methods and

weighted global methods.

We onsider the solution of large and sparse linear systems with multiple

right-hand sides of the form

AX = B, (1)

where A ∈ R
n×n

and X,B ∈ R
n×s

with usually s≪ n .

I The matrix Krylov subspae

For X, Y ∈ Rn×s
, we de�ne the Frobenius salar produt (X, Y )F =

tr(XTY ) . Moreover, a system of matries in R
n×s

is said to be F -orthogonal if

it is orthogonal with respet to the produt (·, ·)F .
The matrix Krylov subspae Km(A, V ) is spanned by V , AV , · · · , Am−1V ,

or equivalently, for any W ∈ Km(A, V ) , we have

W =
m∑

i=1

αiA
i−1V, (2)

where V ∈ R
n×s

and αi ∈ R for i = 1, · · · , m . This is di�erent from the blok

Krylov subspae exploited in the usual blok methods. Assoiate with the matrix

Krylov subspae is the produt ∗ de�ned by

Vm ∗ x =

m∑

i=1

(x)iVi, (3)

where Vm = [V1, · · · , Vm] ∈ R
n×ms

and x = [(x)1, · · · , (x)m]T ∈ R
m
.

1
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II The global generalized Hessenberg methods with �xed

preonditioning

We now onsider a right preonditioning for the original linear system (1),

namely,

AM−1(MX) = B, (4)

where M is an appropriate preonditioner. It should be noted that M−1
is solved

from an equation instead of forming expliitly.

The Gl-GH proess generates a matrix basis span{V1, · · · , Vm} of the matrix
Krylov subspae Km(A,R0) through the relations

V1 = R0/β and (H̄m)i+1,iVi+1 = AVi −
i∑

j=1

(H̄m)j,iVj, (5)

where β and (H̄m)i+1,i are saling fators for i = 1, · · · , m . Let Y1, · · · , Ym be

linearly independent matries, where Yi ∈ Rn×s
for i = 1, · · · , m . The salars

(H̄m)j,i in (5) are opted by imposing the orthogonality ondition

Vi+1 ⊥F Y1, · · · , Yi, i = 1, · · · , m. (6)

Using (5) and (6), we have

(H̄m)j,i =
(Yj, U)F
(Yj, Vj)F

=
tr(Y T

j U)

tr(Y T
j Vj)

,

where U = AVi −
∑i

j=1(H̄m)j,iVj . With the above relations, we sketh out the

global generalized Hessenberg proess with �xed preonditioning. Based on Al-

Algorithm 1. The Gl-GH proess with �xed preonditioning.

1: β = ‖V ‖, V1 = V/β ;
2: for i = 1, · · · , m do

3: Zi =M−1Vi ; % inner proess with a �xed preonditioner M
4: U = AZi ;
5: for j = 1, · · · , i do
6: (H̄m)j,i = tr(Y T

j U)/tr(Y
T
j Vj) ; U = U − (H̄m)j,iVj ;

7: end for

8: (H̄m)i+1,i = ‖U‖ ; Vi+1 = U/(H̄m)i+1,i ;

9: end for

gorithm 1, the global generalized Hessenberg method with �xed preonditioning

for solving (4) an be presented as follows.
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Algorithm 2. Gl-GH: the global generalized Hessenberg method with �xed pre-

onditioning.

1: Choose X0 and ompute R0 = B −AX0 . Set β = ‖R0‖, V1 = R0/β ;
2: Generate the blok matrix Vm = [V1, · · · , Vm] from Algorithm 1. Update

Xm = X0 + M−1
Vm ∗ ym , where ym = argminy∈Rm ‖βe1 − H̄my‖2 and

e1 = [1, 0, · · · , 0]T ∈ Rm+1
.

3: If onverged then stop; otherwise set X0 = Xm and goto line 2.

III The global generalized Hessenberg methods with �ex-

ible preonditioning

In Algorithm 2, reall that the same preonditioner M is used throughout

the iterations. On the ontrary, if we employ �exible preonditioners Mi , that is,

preonditioner hanges at eah step, then it an be expeted the preonditioner

will be improved from one step to the next with the newly information. This

is the idea behind the main algorithm in this paper, i.e., the �exible global

generalized Hessenberg method (FGl-GH) whih is shown below. We are ready

Algorithm 3. FGl-GH: the �exible global generalized Hessenberg method.

1: Choose X0 and the restarting frequeny m .

2: Compute R0 = B −AX0 . Set β = ‖R0‖, V1 = R0/β ;
3: for i = 1, · · · , m do

4: Zi =M−1
i Vi ; % inner proess with a �exible preonditioner Mi

5: U = AZi ;
6: for j = 1, · · · , i do
7: (H̄m)j,i = tr(Y T

j U)/tr(Y
T
j Vj) ; U = U − (H̄m)j,iVj ;

8: end for

9: (H̄m)i+1,i = ‖U‖ ; Vk+1 = U/(H̄m)i+1,i ;

10: end for

11: Form Zm = [Z1, · · · , Zm] by solving an inner system at line 4. Update

Xm = X0 + Zm ∗ ym , where ym = argminy∈Rm ‖βe1 − H̄my‖2 .
12: If onverged then stop; otherwise set X0 = Xm and goto line 2.

to omment on Algorithm 3 in omparison with Algorithm 2. If Mi ≡ M , then

Algorithm 3 redues to Algorithm 2. Further, in Algorithm 3, we need to save an

additional blok matrix Zm , whih presents the major di�erene between these

two algorithms. As a result, a relation of the form holds:

AZm = Vm+1 ∗ H̄m, (7)

where Vm+1 = [V1, · · · , Vm+1] and Zm = [Z1, · · · , Zm] .
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NUMERICAL METHODS FOR SYSTEMS WITH

COMPLEX MATRICES

Xue-Ping Guo

East China Normal University, Shanghai, China

Systems of nonlinear equations with omplex symmetri Jaobian matries

an be derived in many pratial problems, suh as nonlinear waves, hemial

osillations, quantum mehanis, turbulene, and so on. we onsider an e�etive

and robust algorithm for solving large sparse systems of nonlinear equations

F (x) = 0, (1)

where F : D ⊂ Cn → Cn
is nonlinear and ontinuously di�erentiable. The

Jaobian matrix of F (x) is large, sparse and omplex symmetri, i.e.,

F
′

(x) = W (x) + iT (x)

satis�es W (x)T = W (x) , T (x)T = T (x) . Moreover, matries W (x) and T (x)
are real positive de�nite and real positive semi-de�nite matries, respetively.

By making use of the speial struture of the oe�ient matrix A , Bai et

al. in [2℄ derived a modi�ation of the well-known HSS iteration method [4℄, i.e.,

MHSS. In order to further aelerate the onvergene rate of MHSS, Bai et al. in

[3℄ preonditioned the omplex symmetri linear system by hoosing a symmetri

positive de�nite matrix V ∈ Rn×n
. The new splitting iteration method an be

desribed as follows.

The PMHSS iteration method

Let x0 ∈ Cn
be an arbitrary initial guess. Compute xk+1 for k = 0, 1, 2, · · ·

using the following iteration sheme until {xk} onverges,
{
(αI +W )xk+ 1

2
= (αI − iT )xk + b,

(αI + T )xk+1 = (αI + iW )xk+ 1
2
− ib, (2)

where α is a given positive onstant and V ∈ Rn×n
is a presribed symmetri

positive de�nite matrix.

By making use of the preonditioned modi�ed Hermitian and skew-Hermitian

splitting (PMHSS) iteration as the inner solver to approximately solve the New-

ton equations, we establish the modi�ed Newton-PMHSS method.

The loal onvergene properties under the H�older ontinuous ondition are

analyzed and numerial results are given to on�rm the e�etiveness of our

method.
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The modi�ed Newton-PMHSS method(MN-PMHSS)

1. Given an initial guess x0 , positive onstants α and tol , and two positive

integer sequenes {lk}∞k=0 , {mk}∞k=0 ;

2. For k = 0, 1, · · · until ‖F (xk)‖ ≤ tol‖F (x0)‖ do:

2.1. Set dk,0 = hk,0 = 0 ;
2.2. For l = 0, 1, · · · , lk − 1 , apply Algorithm PMHSS to the linear

system:

{
(αV (xk) +W (xk))dk,l+ 1

2
= (αV (xk)− iT (xk))dk,l − F (xk),

(αV (xk) + T (xk))dk,l+1 = (αV (xk) + iW (xk))dk,l+ 1
2
+ iF (xk),

and obtain dk,lk suh that

‖F (xk) + F
′

(xk)dk,lk‖ ≤ ηk‖F (xk)‖ for some ηk ∈ [0, 1). (3)

2.3. Set yk = xk + dk,lk .
2.4. Compute F (yk) .
2.5. For m = 0, 1, · · · , mk − 1 , apply Algorithm PMHSS to the linear

system:

{
(αV (xk) +W (xk))hk,m+ 1

2
= (αV (xk)− iT (xk))hk,m − F (yk),

(αV (xk) + T (xk))hk,m+1 = (αV (xk) + iW (xk))hk,m+ 1
2
+ iF (yk),

and obtain hk,mk
suh that

‖F (yk) + F
′

(xk)hk,mk
‖ ≤ η̃k‖F (yk)‖ for some η̃k ∈ [0, 1). (4)

2.6. Set xk+1 = yk + hk,mk
.
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fousing and Wave Collapse, Springer Verlag, New York, 1999.

24. Q.-B. Wu and M.-H. Chen Convergene analysis of modi�ed Newton-

HSS method for solving systems of nonlinear equations, Numer. Algor.,

64(2013), pp: 659-683.

25. A.-L. Yang and Y.-J. Wu Newton-MHSS methods for solving systems of

nonlinear equations with omplex symmetri Jaobian matries, Numer.

Algebra, Control and Optimization, 2(2012), pp: 839�853.



30 "Numerial Algebra with Appliations"

ON THE COMPUTATION OF THE INVERSE

STURM-LIOUVILLE PROBLEM IN IMPEDANCE

FORM

Huang Zhengda

Shool of Mathematial Siene, Zhejiang University, China

This is a report of our group's work on the appliation of numerial algebra

methods in the omputation of the inverse Sturm-Liouville problem in impedane

form.

The inverse Sturm-Liouville problem in impedane form onsidered here is

to reover the unknown impedane funtion a(x) > 0 on [0, 1] in the equation,

(a(x)y(x)′)′ + λa(x)y(x) = 0, 0 < x < 1, (1)

with Dirihlet boundary onditions

y(0) = y(1) = 0. (2)

Problem 1 : Given the �rst n eigenvalues, λ1 < λ2 < · · · < λn , of (1) with
boundary onditions (2), we seek an approximation to the impedane a(x) .

Sine the impedane an only be determined up to a multipliative onstant,

it will be assumed in what follows that the normalization

a(ξ) = 1 (3)

for some ξ ∈ [0, 1] .
Over the mesh

0 = x0 < x1 < x2 < · · · < xK < xK+1 = 1, xi = ih, h =
1

K + 1
, (4)

where K is a undetermined positive integer, (1) is approximated by di�erene

equations

aiyi−1− (ai+ai+1)yi+ai+1yi+1 = −Λh2yi(ai+ai+1)/2, i = 1, 2, . . . , K (5)

with

y0 = 0, yK+1 = 0, (6)

where yi ≈ y(xi), Λ ≈ λ , and ai ≈ a(xi − h/2) for i = 1, 2, . . . , K + 1 .
The matrix form of (5) and (6) an be

BY = ΛDY, (7)

where Y = (y1, y2, . . . , yK)
T
, D , a diagonal matrix, and B , a tridiagonal matrix,

are determined by ai, i = 1, 2, · · · , K .
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Two ases, without and with the symmetri assumption for the impedane,

are onsidered.

For the ase without the symmetri assumption, we hoose ξ = 0 and K = N
a suitable positive integer, and seek a least square approximation a(x) ∈ 1 +
span{φ1(x), φ2(x) · · · , φm(x)} , where {φi(x)}mi=1 are appropriately hosen basis

funtions. In other words, a(x) is in the form of

a(x) = 1 +
m∑

i=1

φi(x).

Let φ0(x) = 1 and c0 = 1 , then (7) is hanged to

( m∑

i=1

ckBk

)
Y (c) = Λ(c)

( m∑

i=1

ckDk

)
Y (c),

where c = (a1, c2, . . . , cm)
T
, Λ(c) ≈ λ and Y (c) = (y1, y2, . . . , yN)

T
, Bi and

Di are diagonal and tridiagonal matries i = 1, 2, · · · , N .

Now Problem 1 for the ase without symmetri assumption is transferred

to

Problem 2 : Given the �rst n eigenvalues, λ1 < λ2 < · · · < λn , we �nd

c ∈ Rm
suh that the funtion

G(c) =

n∑

i=1

(Λi(c) + ε(i, h)− λi)2

is minimized, where

ε(i, h) = i2π2 − 4
sin2( iπh2 )

h2
, i = 1, 2, · · · , n

are orretions (or regular onditions or preonditioners) whih will improve a-

uraies in numerial omputations.

Three methods are onstruted to solve Problem 2 . Firstly, by solving the

equation

dc(t)

dt
= −∇G(c)

numerially with the fourth order Runge-Kutta method we get the desent �ow

method, where c(t) is alled the steepest desent �ow on Rm
for G(c) and t is

a ertain arti�ial parameter.

Seondly, let P be a positive matrix. By solving the equation

dc(t)

dt
= −P∇G(c)
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numerially with the fourth order Runge-Kutta method ombined with BFGS's

method we obtain a modi�ed desent �ow method.

Thirdly, by solving Problem 2 with ULM-Newton like method ombined with

the desent �ow method above, we onstrut a ULM-like desent �ow method.

For the ase of the symmetri impedane, let K = 2n + 1 . Sine the

impedane funtion a(x) is assumed to be symmetri, we have

ai = a2n+3−i, i = 1, 2, . . . , n+ 1,

and let an+1 = 1 for mathing the normalization (3). Then (7) an be substituted

with

B(a)Y (a) = Λ(a)D(a)Y (a), (8)

where a = (a1, a2, . . . , an)
T
, and D(a) is a positive de�nite matrix sine ai > 0

for all i = 1, 2, . . . , n .
Now Problem 1 is transferred to

Problem 3 : Given the �rst n eigenvalues, λ1 < λ2 < · · · < λn , we seek
based on (8) a n-vetor a whose i-th omponent, i = 1, . . . , n , is a good

approximation to a((i− 1/2)h) , where h = 1/(2n+ 2) .
De�ne f : Rn → Rn

by

(f(a))i = Λi(a) + ε(i, h)− λi, i = 1, 2, . . . , n, (9)

where

ε(i, h) := i2π2 − 2
1− cos(iπh)

h2
, i = 1, 2, · · · , n

are orretions (or regular onditions, preonditioners) too. Then Problem 3
may be solved by omputing the zeros of the nonlinear equation

f(a) = 0. (10)

We use the simple Newton's method

f ′(0)(ak+1 − ak) = −f(ak),

where the initial approximation a0 is hosen with all entries equal and f ′(0) =
is the nonsingular Jaobian matrix of f at a = a0 with entries

[f ′(0)]ij =
2 cos((2j − 1)iπh)(1− cos(2iπh))

h
, i, j = 1, 2, . . . , n.

We have for n ∈ N if there exists a onstant C(n) > 0 suh that ‖a′(x)
a(x)
‖2 <

C(n) and ak is positive for eah k , then the sequene generated by the simple

Newton's method with a0 , whih is hosen with all entries equal, onverges to a

solution of (10).

Numerial examples for smooth, non-smooth and disontinuous impedane

funtions are performed to show the e�ieny of these methods.
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USING COMPUTER ALGEBRA SYSTEM FOR THE

STABILITY ANALYSIS OF NONLINEARLY ELASTIC

CYLINDER WITH INTERNAL STRESSES

1

Karyakin M.I., Shubhinskaya N. Y.

Southern Federal University, Rostov-on-Don, Russia

Introdution. The onept of internal, or residual, stresses existing in solids

that are free from external loads was appeared �rstly in the works of V.Volterra

[1℄ at the beginning of the XX entury. One partiular reason of suh stresses

ould be the existene of isolated linear defets, well known due to A.Love [2℄

terminology as Volterra disloations. The idea of disloation as a linear defet of

the rystal lattie arose in physis muh later � in the thirties of the last entury

[3℄. The onept of dislinations (rotational defets or rotary disloations) ap-

peared even later though having found pratial on�rmation not only in latties

but in di�erent various material strutures either [4�5℄.

Simulation of disloation within the ontinuum desription is quite wide and

rapidly developing branh of modern mehanis. A signi�ant ontribution to its

development was made by the Rostov-on-Don shool of mehanis, some results

of the work of whih had been presented in [6℄, partiularly in matters related

to the generalization of the theory of elasti disloations and dislinations to the

nonlinear ase.

Isolated srew disloation was the objet rather �onvenient� for the study

within the framework of the nonlinear ontinuum mehanis, sine the orre-

sponding stress-strain state is desribed by a funtion of the radial oordinate,

namely the funtion of radial displaement of the points of the ylinder. Various

aspets of this problem, inluding the elimination of singularities at the axis of

disloation, the existene of disontinuous solutions et. for inompressible media

were onsidered, for example, in [7℄. In this paper we onsider the equilibrium

and stability of nonlinear elasti ylinder with a srew disloation in the ase of

a ompressible material. The in�uene of defet formation on the length of the

load-free ylinder was studied. Some questions of the stability of the expansion

and ontration proesses were disussed.

The main method used for this analysis is so-alled �semi-inverse� method

when the nonlinear boundary value problem of equilibrium is formulated by

means of pre-determined semi-inverse representation of deformation. When appli-

able this method redues 3D problem to the BVP of smaller dimension. Despite

rather narrow area of usage � simple geometri deformations of anoni-shaped

bodies � this method ould deliver answers for many fundamental questions of

qualitative and quantitative behavior of essentially nonlinear problems' solutions.

It is quite e�etive in analysis of standard experiments � strething, torsion, bend-

ing et. � whih are arried out while studying new materials and developing new

1
Supported by Russian Ministry of Eduation and Researh, projet 9.665.2014/K
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models of nonlinear behavior for real-life materials. This method is very algorith-

mi but for many spei� strain energy analytial derivation of boundary value

problem is exessively hard and not always reliably.

Within the framework of omputer algebra system Maple an interative pro-

gram pakage for analysis of nonlinear elasti problems has been developed [8℄.

This pakage is based upon the semi-inverse method and inludes set of algo-

rithms of automati generation of boundary-value problems of equilibrium, in

Cartesian as well as in orthogonal urvilinear o-ordinate systems. The goal of

the pakage is full omputer automation of semi-inverse method and so releasing

the researher from umbersome analyti derivation routine. Computer algebra

system Maple have been hosen as a shell due to ombining powerful and re-

liable analyti transformation tools, e�etive algorithms and variety of graphi

representation of results.

To analyze the stability the bifuration approah was used that based on

linearization of the equilibrium equations in the neighborhood of the obtained

solutions. The bifuration point was de�ned as suh value of the "loading" pa-

rameter (Burgers vetor magnitude, streth ratio or other strain harateristi)

for whih the linearized problem has a nontrivial solution. Numerial determina-

tion of the bifuration points was based on the analysis of the homogeneous linear

boundary value problem of sixth order whose oe�ients expressed through the

radial displaement funtion and its derivative. The similar problem of ompres-

sion was used for veri�ation purposes. Some extensions of the pakage [8℄ for

stability analysis were used to obtain numerial results presented hereafter.

The equilibrium of the ylinder with a srew disloation. The ap-

pearane of a srew disloation in the ylinder is desribed by the following

semi-inverse representation:

R = P (r) , Φ = ϕ + ψz, Z = γz + aϕ, (1)

where {R,Φ, Z} , {r, ϕ, z} � ylindrial oordinates of the atual and referene

on�guration, respetively, streth ratio γ desribes hanging of the ylinder

length, a = |b| /2π � disloation parameter, b � Burgers vetor, P (r) � funtion
of radial displaement of points of the ylinder. Sine the formation of disloation

may be aompanied by twisting [9, 10℄, parameter ψ � twist angle per unit

length of the ylinder � was introdued in the semi-inverse representation (1).

Given a semi-inverse representation (1) all tensorial harateristis of strain

ould be determined, namely deformation gradient C , Cauhy-Green strain mea-

sure G , and its invariants Ik, k = 1, 2, 3 [11℄. After setting up the spei� po-

tential energy funtion W , the equilibrium equations for Piola stress tensor D
an be written as follows

divD = 0. (2)

We will limit our onsiderations by the simple boundary onditions on the lateral

surfae of the ylinder

er ·D = 0, (3)
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meaning no applied loads there; {er, eϕ, ez} � orthonormal basis in a ylindrial

oordinate system of referene on�guration. By using (1) problem (2)�(3) is

redued to a boundary value problem for an ordinary di�erential equation of

seond order for the funtion P (r) .
To desribe the mehanial properties of the ylinder we will use two models

of ompressible medium, i.e. two spei� energy funtions.

W = λ
1

2
I21 (U − E) + µI1

[
(U − E)2

]
, (4)

and

W = µ
1

2
(1− β)

[
I2I
−1
3 +

1

α
(Iα3 − 1)− 3

]
+ µ

1

2
β

[
I1 +

1

α

(
I−α3 − 1

)
− 3

]
(5)

Model (4) is known as harmoni material, while Eq. (5) presents Blatz and Ko

material. In (4)�(5) U = G1/2
� distortion tensor, λ, µ, β, α - material param-

eters. In the ase of small strains parameter α is assoiated with Poisson ratio

by relation α = ν/(1− 2ν) .
Investigation of the stability of the ylinder under tension or ompression

should obviously begin with an analysis of the �proper� length of the ylinder,

due to the formation of disloations. Following the sheme presented in [12℄, it is

onvenient to introdue following representations of axial fore Q and twisting

moment M in the form:

Q =

∫∫

S

DzZdS (6)

M =

∫∫

S

DzΦRdS. (7)

Consider �rstly the ase of non-twisted ylinder assuming ψ = 0 in (1). Then,

following the sheme in [12℄, from the ondition Q = 0 we obtain the dependene

between the streth fator γ and disloation parameter a . For the ase of har-
moni material (4) numerial alulations show that the disloation formation

in the ylinder always leads to its shortening. For the model (5) the situation is

more ompliated: the ylinder an be shortened or strethed depending on the

parameter β . These results are onsistent with the asymptoti formulas given in
[12℄.

To analyze the ylinder with free ends both parameters γ and ψ should

be onsidered as varying, wherein to determine these parameters it is neessary

to vanish the axial fore (6) and twisting moment (7). Calulations show that

hange of length is not monotoni for values α lose to 0.5 , whih orresponds

to a Poisson ratio ν = 1/4 ; the ylinder is shortened for all other onsidered

values of parameter α . Analysis of the loading diagrams show that for di�erent

values of parameter α orresponding urve has the maximum point, followed by

a dereasing segment. Suh segment may indiate a stability loss of the ylinder

at tension.
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Stability analysis. Let us give small displaements to all points of the ylin-

der from the known equilibrium state by hanging the semi-inverse representation

(1): 



R = P (r) + εU1 (r, ϕ, z) ,
Φ = ϕ + ψz + εU2 (r, ϕ, z) ,
Z = γz + aϕ + εU3 (r, ϕ, z) ,

(8)

ε � small parameter, Uk, k = 1, 2, 3 � new unknown funtions. The linearization

proess is redued to omputation following expressions for all strain harater-

istis

◦
F =

d

dε
F (R0 + εw) |ε=0. (9)

Here R0 � the radius vetor of the known equilibrium position, w � vetor of

small displaements expressed in terms of the unknown funtions. Finally, by

linearizing Piola stress tensor we hange the original nonlinear problem (2)�(3)

by its linearized version:

div
◦
D = 0, (10)

er ·
◦
D = 0. (11)

Equations (10) are linear partial di�erential equations of seond order with

respet to the unknown funtions Uk . System (10)�(11) admits solution in the

form

U1 (r, ϕ, z) = u1 (r) cos (nϕ+ bz) ,
U2 (r, ϕ, z) = u2 (r) sin (nϕ+ bz) ,
U3 (r, ϕ, z) = u3 (r) sin (nϕ+ bz) ,

(12)

where b = πm/l ; n,m ∈ N ; l � initial length of the ylinder.

The substitution (12) turns the system (10)�(11) into a linear boundary val-

ue problem for a system of three ordinary di�erential equations of seond order

in relation to uk (r) . Detailed sheme of analysis of the existene of non-trivial

solutions for suh systems was desribed in [13℄. Analysis of typial bifuration

urves was performed for both material models as well as for ompression and

for tension. Instability of su�iently long ylinder at ompression ours by the

mode (n,m) = (1, 1), at tension � by the mode (n,m) = (0, 1), i.e. by axially

symmetri mode. It an be seen in partiular that the e�et of disloation on

bukling during ompression is muh more important than in tension. One spe-

i� feature of Blatz and Ko model is non-monotoni harater of the bifuration

urve at tension that appears to be onneted with the inverse Poynting e�et

[14℄.
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NUMERICAL SOLUTION OF STEADY

CONVECTION-DIFFUSION EQUATION IN

COMPRESSIBLE MEDIUM

1

L. A. Krukier, B. L. Krukier

Southern Federal University, Institute of MM and CS SFU,

Rostov-on-Don, Russia

Introdution

The onvetion-di�usion-reation (CDR) equation is the base for mathemat-

ial modeling in many �elds of siene and engineering. But up to now the main

attention of researhers has been onneted with onvetion-di�usion (CD) prob-

lems and their numerial solution [11℄. The most di�ult problems for numerial

solution of CD equation are [23℄:

1. di�usion is quite small whih means that the dimensionless parameter

Pe > 103 ,
2. the �eld of veloity has stagnation points,

Many di�erent approahes have been proposed [15℄, [19℄, [23℄ to resolve the

di�ulties - exponential �tting, ompat di�erenes, upwinding, streamline di�u-

sion [5℄, arti�ial visosity and so on. Approximation of the �rst order derivatives

in CD is the most interesting moment of the solution for problem and very im-

portant work. It is well known [22℄, [15℄ that using for approximation �rst order

derivatives upwind shemes gives us linear equation systems with M-matrix [21℄,

but matrix whih an be obtained by using entral FD shemes [6℄ is positive

real. Eah of these shemes have their own advantages and de�ienies whih

have been disussed in [23℄, [15℄.

When CRD equations investigate it is neessary to take into aount the sign

of reation oe�ient. If it is nonnegative than there is no problem with numerial

solution, but if it is negative than the di�ulties an arise. So if the negative

oe�ient reation exists in CDR equation it means that after approximation it

moves spetra of arising matrix in the left half part and matrix an lose property

of being positive real. So, there is one more di�ulty added to CDR equation in

this ase:

3. the oe�ient of reation is negative.

Consider the onvetion-di�usion-reation equation written in symmetri

form [10℄ in bounded domain Ω = [0, 1]× [0, 1] with boundary ondition:

− 1
Pe∆C + 1

2

(
u∂ C∂ x + ∂ (uC)

∂ x + v ∂ C∂ y + ∂ (vC)
∂ y

)
+ αC = f(x, y), (1)

1
This work was supported by RFBR, grants N15-01-00441a, N15-51-53066 and N14-01-31076
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C| δΩ = Cgr, (2)

~divŨ = 0, (3)

where Pe is Pelet number, Ũ = {u, v} is the �eld of veloity in Ω , C is un-

known funtion, α is reation oe�ient,

~divŨ = 0 (for inompressible medium),

f is the right part of equation, δΩ is the boundary of Ω , Cgr is the boundary

value.

Finite di�erene approximation of the equation

The uniform grid Ωh with step hx = hy = h has been introdued in

domain Ω . Introdue funtions C(xi, yk) = Cik , xi = i ∗ 1
h , yk = k ∗ 1

h . All

unknowns are alulated in the middle of the ell. The boundary onditions on

∂Ω are interpolated on the boundary ∂Ωh with a seond order trunation error.

The standard notation originating from [17℄ is used. The boundary onditions,

with appropriate oe�ients, are taken into aount on the right-hand side of the

di�erene equations. The entral di�erene approximation of the �rst derivatives

has been used. So, we obtain for (1)

− 1

Pe
∆hC +

1

2

(
Uik

Ci+1k − Ci−1k
2h

+
Ui+1kCi+1k − Ui−1kCi−1k

2h
+ (4)

Vik
Cik+1 − Cik−1

2h
+
Vik+1Cik+1 − Vik−1Cik−1

2h

)
+ αCik = fik.

Here ∆hC is the di�erene analogue of Laplae operator. Transform (4),

multiply both parts of equation by Peh2 . Then

(4Cik − Ci+1k − Ci−1k − Cik+1 − Cik−1) +
Peh

2

[
Uik + Ui+1k

2
Ci+1k−

−Uik + Ui−1k
2

Ci−1k +
Vik + Uik+1

2
Cik+1 −

Vik + Uik−1
2

Cik−1

]
+

+αPeh2Cik = Peh2fik

or

(4 + αPeh2)Cik +

[(
−1 + Peh

2
Ũik

)
Ci+1k +

(
−1− Peh

2
Ũi−1k

)
Ci−1k+ (5)

(
−1 + Peh

2
Ṽik

)
Cik+1 +

(
−1− Peh

2
Ṽik−1

)
Cik−1

]
= f̃ik,
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where

Ũik =
Uik + Ui+1k

2
, Ũi−1k =

Uik + Ui−1k
2

,

Ṽik =
Vik + Vik+1

2
, Ṽik−1 =

Vik + Vik−1
2

,

f̃ik = Peh2fik.

The oe�ients in (5) inlude the quantity

Reh = Peh/2 (6)

whih was alled ell Reynolds number or the skew-symmetry oe�ient of the

problem.

System of linear algebrai equation

Using natural ordering of the unknowns, we transform (5) to the nonsym-

metri linear system of equations

Au = f,
A = A∆ + A1 +D, A0 =

1
2

(
A+ AT

)
= A∆ +D = AT

0 ,
A1 =

1
2

(
A−AT

)
= −AT

1 ,
(7)

where A is (N − 1)× (N − 1) matrix , N = 1
h , u = {u11, u12, ..., uN−1N−1}T is

the vetor of solution , f = {f11, f12, ..., fN−1N−1}T is the vetor of the right

part. Matrix A an be naturally expressed [6℄ in the ase of entral di�erene

approximation of the onvetive terms in (5) as a sum of symmetri positive

de�nite matrix A∆, skew-symmetri matrix A1 and diagonal matrix D . A∆ is

a di�erene analogue ∆h of operator ∆ , desribing a di�usion proess, D is

disrete analogue of the reation term in the equation (1). A1 is a di�erene

analogue of the onvetive terms. Thus, linear system (7) with non-symmetri

matrix A is onstruted.

If in (7)

A0 = AT
0 > 0,

then matrix A is alled positive real.

The linear system (7) is alled strongly non-symmetri if

‖A0‖ / ‖A1‖ ∼ O(1),

where ‖∗‖ is one of matrix norms.

It an be easily veri�ed that system (7) beomes strongly nonsymmetri for

large values of Pe and α = 0 . As a result we have

‖A0‖∞ = 4,
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‖A1‖∞ = Rehmaxi(|v1i,j + v1i,j−1|+ |v1i,j + v1i,j+1|+
+ |v2i,j + v2i+1,j|+ |v2i,j + v2i−1,j|)/2,

Theorem 1. Let equation (1) be approximated by �nite di�erene sheme

(5). Then the system (7) is positive real if α ≥ 0 .
Proof.

The symmetri part A0 of matrix A has the form A0 = A∆+D and doesn't

have a de�nite sign in general ase, but it is well known [17℄ that matrix A∆

is positive de�nite. So, if diagonal matrix D has nonnegative elements than A0

will be positive de�nite as the sum of positive de�nite and nonnegative de�nite

matries. The last means that A0 > 0 if α ≥ 0 and system (7) is positive real.

It is well-known [15℄, [19℄ that using upwind sheme for equation (1) leads us

to the system (7) with A being M -matrix [20℄, but in this ase the obtained sys-

tem won't be essentially nonsymmetri beause matrix A has diagonal dominant.

It is neessary to pay our attention [10℄ that the form in whih we will approx-

imate onvetion-di�usion equation plays a great role in suessful numerial

solution.

Consider ase when oe�ient α < 0 . If Ω = [0, 1]× [0, 1] , boundary on-

ditions are (2) and regular mesh is used, then eigenvalues and eigenvetors of

Lh = − 1
Pe∆h + α are well-known [18℄, [12℄:

λmp(Lh) =
4

Peh2

(
sin2

mπh

2
+ sin2

pπh

2

)
+ α,

m = 1, 2, . . . n− 1; p = 1, 2, . . . n− 1,

2π2

Pe
+ α ≤ λi ≤

8

Peh2
+ α,

i = 1, 2, . . .N, N = (n− 1) ∗ (n− 1).

So, for α ≤ −2π2

Pe , di�erene operator for di�usion and reation terms an lose

the property of being positive real then from Hirsh theorem [13℄, its spetrum

an move to the left half plane.

Theorem 2. Matrix (7), obtained from (5) is positive real, if

αconv ≥ −
2π2

Pe
.

Two-parameters skew-symmetri iterative solvers

Besides important role in the mathematial modeling onvetion-di�usion-

reation equation is a good test for iterative methods. A lot of papers [1℄, [4℄,
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[23℄ have already desribed numerial experiments with CD or CDR equations

for di�erent parameters.

Di�erent basi iterative methods suh as ILU [1℄, [3℄, [16℄, SOR [21℄, [22℄

have been used diretly for solution of arising after approximation of CD or

CDR equations by linear equation systems as well as preonditioners for CG or

BiCG type's methods [14℄. As it was shown in [1℄, ILU as a preonditioner for

GMRES(20) and BiCGStab has been broken for large Reh , α = 0 from (6) and

natural ordering of the unknowns.

We present a two parameters triangular [7℄ and produt triangular iterative

[2℄ methods that use the skew-symmetri part of the matrix as an input and

only require the matrix (7) to be positive real. Some ideas for using the splitting

of skew-symmetri part of the matrix to solve linear equation systems arising

after entral di�erene approximation of �rst order terms in (5) have been �rstly

proposed in [6℄.

Let us approah (7) by onsidering the iterative method of the following form:

B(ω)
yn+1 − yn

τ
+Ayn = f , n ≥ 0 , (8)

where f, y0 ∈ H ,H is an n-dimensional real Hilbert spae, f is the right

part of (7), A, B(ω) are matries)in H, A is given by equation (7) , B(ω) is

invertible, y0 is an initial guess, yk is the k -th approah, τ, ω > 0 are iterative

parameters, u is the solution that we obtain, ek = yk − u and rk = Aek denote

the error and the residual in the k -th iteration, respetively.

Here it is important to note that B(ω) is in a ertain sense a preonditioned

matrix. In general, B(ω) is supposed to be nonsymmetri.

Method (8) may be also represented as

yn+1 = Gyn + τf,

G = B−1(ω)(B(ω)− τA) . (9)

Consider the two ways of hoosing matrix B . The �rst is

B(ω) = BC + ω((1 + j)KL + (1− j)KU), j = ±1, Bc = BT
c (10)

and the seond is

B(ω) = (BC + ωKU)B
−1
C (BC + ωKL), Bc = BT

c (11)

where KL + KU = A1, KL = −KT
U , BC = BT

C . The matries KL and KU

represent stritly upper and lower triangular parts of a skew-symmetri matrix

A1 from (7) and matrix BC an be hosen arbitrarily, but has to be symmetri.

These methods are alled two-parameters triangular (TM) and produt triangu-

lar (PTM) methods respetively.

Matrix B is non-symmetri and an be represented as
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B = B0 +B1, B0 =
1

2

(
B + BT

)
= BT

0 , B1 =
1

2

(
B −BT

)
= −BT

1 .

We �nd the symmetri and the skew-symmetri parts of matrix B for TM

B0 = BC +
1

2
ωj (KU −KL) , j = ±1, B1 =

1

2
ωA1 (12)

and PTM

B0 = BC + ω2KUB
−1
C KL, B1 = ωA1. (13)

The iteration matrix G from (9) for these methods is

G = B−1 (B − τA) = (B0 +B1)
−1 (B0 + B1 − τA0 − τA1) . (14)

We onsider the norm of iteration matrix G in (14). Let us require that

matries (10) and (11) are positive real and de�ne matries

L0T = B0 −
1

2
ωA0, (15)

and

L0PT = B0 − ωA0. (16)

Using (12), (14) and (15) iterative matrix GT for TM an be represented as

GT =
(
B0 +

1
2ωA1

)−1 (
B0 +

1
2ωA1 − τA0 − τA1

)
=

=
(
B0 − 1

2ωA0 +
1
2ωA0 +

1
2ωA1

)−1 (
B0 − 1

2ωA0 +
1
2ωA0 +

1
2ωA1 − τA0 − τA1

)
=

=
(
L0T + 1

2ωA
)−1 (

L0T − (τ − 1
2ω)A

)

Introdue matries

P0T = L
− 1

2

0T AL
− 1

2

0T , (17)

and

P0PT = L
− 1

2

0PTAL
− 1

2

0PT . (18)

and require for TM that

L0T = B0 −
1

2
ωA0 = LT0T > 0 (19)

and for PTM

L0PT = B0 − ωA0 = LT0PT > 0 (20)

Then

GT = L
−1/2
oT (I + 1

2
ωP0T )

−1(I − (τ − 1
2
ω)P0T )L

−1/2
oT = L

−
1

2

0T GPL
1

2

0T ,
GP = (I + 1

2
ωP0T )

−1(I − (τ − 1
2
ω)P0T ).
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The last equality means that matrix L0 generates energy norm ‖GT‖L0T
and

‖GT‖L0T
=

∥∥∥∥(I +
1

2
ωP0T )

−1(I − (τ − 1

2
ω)P0T )

∥∥∥∥ (21)

Lemma 1. Let C be positive real, α ,β are positive numbers. Then inequality

−α < β ≤ α, α > 0 (22)

∥∥(I + αC)−1(I − βC)
∥∥ < 1 (23)

Proof.

First of all we point out that matries (I + αC)−1 and (I − βC) are om-

mutative. Later we onsider matrix

T = (I + αC)−1(I − βC)

and estimate its norm

‖T‖2 = supv 6=0
‖Tv‖2

‖v‖2 = supv 6=0
((I+αC)−1(I−βC)v,(I+αC)−1(I−βC)v)

(v,v) =

= supv 6=0
((I−βC)(I+αC)−1v,(I−βC)(I+αC)−1v)

(v,v) .

Let

u = (I + αC)−1v

then

‖T‖2 = supu 6=0
((I−βC)u,(I−βC)u)
((I+αC)u,(I+αC)u) = supu 6=0

(u,u)−2β(Cu,u)+β2(Cu,Cu)
(u,u)+2α(Cu,u)+α2(Cu,Cu) =

= 1− (α+ β) infu 6=0
2(Cu,u)+(α−β)(Cu,Cu)

(u,u)+2α(Cu,u)+α2(Cu,Cu) .

So, if 


α+ β > 0
α− β ≥ 0
α > 0



 (24)

and

(Cu, u) ≥ 0

then

‖T‖ < 1.

and (23) ful�lls. Inequalities (24) transform to (22).

✷

Lemma 2. [8℄ Let D = DT > 0 and A be positive real. Then

∥∥∥(D + σA)−1(D − σA)
∥∥∥
D
< 1 ,
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where σ > 0 is parameter.

Proof Let

T = (D + σA)−1(D − σA).
First we note that

T = D−1/2(I + σD−1/2AD−1/2)
−1×

×(I − σD−1/2AD−1/2)D1/2

and

‖T‖D =
∥∥∥T̃
∥∥∥ (25)

where

T̃ = (I + σM)−1(I − σM),
M = C−1/2AC−1/2

Then we obtain from (25) and Lemma 1 with α = β = ω result of Lemma 2.

✷

We applied Lemma 1 to matrix GT in (21) and get following Theorem.

Theorem 3.Let A in (7) be positive real. Then iterative method (8), (10)

onverges in HL0T
if (19) ful�lls and

0 < τ ≤ ω (26)

Proof of this theorem onsists of two step:

-show that P0T is positive real (Its the property of positive real matrix [18℄,

if A is positive real, then C = QAQT
is positive real, too). So, from (17) P0T

is positive real.

- insert in (22) α = 1
2ω, β = (τ − 1

2ω) then we've got (26).

Similar laying out we an repeat for PTM just replae (21) on

‖GT‖L0PT
=
∥∥(I + ωP0PT )

−1(I − (τ − ω)P0PT )
∥∥

using (13), (14), (16), (18) and (20).

✷

Theorem 4. Let A in (7) be positive real. Then iterative method (8), (11)

onverges in HL0PT
if (20) ful�lls and

0 < τ ≤ 2ω

The proof of this theorem is the same of the previous one.

✷
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Problem No. v1 v2
1 1 −1
2 1− 2x 2y − 1
3 x+ y x− y
4 sin 2πx −2πy cos 2πx

Table 1. Veloity oe�ients for test problems.

Numerial experiments

In this setion we present the results of numerial experiments in whih the

tehnique desribed above is used to solve nonsymmetri linear systems with

α < 0 and α = 0 . We ompare the performane of SSOR [14℄ and PTM [2℄ iter-

ative methods to solve linear systems arising from the standard 5-point FD ap-

proximation of the steady onvetion�di�usion-reation problem (1) - (3) where

F is hosen so that the solution of (1) is de�ned as

ũ(x, y) = exy sinπx sin πy .

Equation (1) has been disretized by entered di�erenes on a uniform grid

with 33 × 33 . In the table 1 the used veloity oe�ients of (1) are presented.

Note that, for eah model problem they are hosen to satisfy the onstraint

div~v = v1x + v2y = 0 (whih follows from the medium inompressibility for the

problem (2)). On the whole, in order to the test results to be omparable with

those obtained in the other adjaent papers we take the analytial solution and

the veloity oe�ients similar to those in [3℄.

The initial guess in all runs was a zero vetor and iterations were performed

until

‖rm‖
/
‖r0‖ ≤ 10−6 , (27)

where rm is the residual vetor, and ‖⋆‖ represents the Eulidean norm. Chek-
ing and omparing iterative methods SSOR and PTM for di�erent negative α
(Table 2) we show that methods are very good for |α| > 100 . It means that ma-
trix (7) is strongly diagonal dominant. This is onneted with existene on main

diagonal of elements a1 = (4 + αPeh2) , whih we obtain after approximation

of oe�ient of reation. It inludes numbers α and Reh , grows by module α
and Reh . As we an see from the Table 2 the number of iteration for α = 0
grows with the inreasing Pelet number. In ontrast of this behavior of both

iterative methods, the number of iteration dereases with grow of Pelet number

and modula oe�ient of reation.



Krukier L.A. . . . NUMERICAL SOLUTION . . . 47

Pe Problem 1 Problem 2 Problem 3 Problem 4

PTM SSOR PTM SSOR PTM SSOR PTM SSOR

α = 0
103 77 113 50 106 66 107 68 157

104 565 863 297 565 279 632 369 1054

105 5196 6725 1990 3531 1694 4980 2538 7416

α = −10
103 51 72 31 37 45 54 59 108

104 32 41 22 23 33 34 33 65

105 30 41 23 23 32 33 32 65

α = −100
103 7 5 9 6 9 7 12 13

104 7 5 9 6 9 7 12 13

105 7 5 9 6 9 7 12 13

α = −1000
103 5 3 6 3 5 3 7 4

104 5 3 6 3 5 3 7 4

105 5 3 6 3 5 3 7 4

α = −5000
103 5 2 4 3 4 3 6 3

104 5 2 4 3 4 3 6 3

105 5 2 4 3 4 3 6 3

α = −10000
103 4 2 4 3 4 3 5 3

104 4 2 4 3 4 3 5 3

105 4 2 4 3 4 3 5 3

Table 2. Number of iterations for di�erent α
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Conlusions

The behavior of iterative methods to solve (7) whih was obtained after ap-

proximation of CD (α = 0) and CDR (α < 0) equations is quite di�erent (Table
2). The ase with α = 0 shows that matrix loses the property of diagonal dom-

inane and the methods require more iterations as Reh inreasing. Case with

α ≤ 0 for big numbers α shows a very quik onvergene of both methods for

big numbers of Reh .
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ITERATIVE SOLUTION OF THE CONSTRAINED

NONLINEAR LEAST-SQUARES PROBLEMS

1

Martynova T.S.

Southern Federal University, Rostov-on-Don, Russia

Solving the nonlinear least squares problems arising in nonlinear data �tting is

onsidered. This problem holds, for example, in the simulating of the environment

pollutants by X-ray analysis.

Let x∗ a loal minimizer, R : Rn → Rm
ontinuously di�erentiable. Nonlin-

ear least squares problem (NLLS) an be written in the following form:

min
x∈Rn

F (x) =
1

2
R(x)TR(x) =

1

2

m∑

i=1

ri(x)
2,

where m > n (usually, m ≫ n), ri(x) are nonlinear funtions. Parameter

estimation and urve �tting are typial appliations for NLLS, where data sets

(ti, yi) , i = 1, ..., m should be approximate by nonlinear model M(x, t) . The ve-
tor x ∈ R

n
ontains the n parameters to be estimated. The residual funtions

ri(x) =M(x, ti)−yi are the di�erenes between the model and the observations.
Most speialized algorithms for NLLS exploit the speial struture of the non-

linear least-squares objetive funtion. Let J(x) ∈ R
m×n

is the Jaobian of the

R(x) , i.e. J(x)ij = ∂ri(x)/∂xj , H(x) is the Hessian and g(x) is the gradient of
the F (x) respetively. Then [1℄ H(x) = J(x)TJ(x)+Q(x) , g(x) = J(x)TR(x) ,
where Q(x) =

∑m
i=1 ri(x)Hi(x) . For NLLS problems we approximate the Hessian

as H ≈ JTJ , so far as Q(x)→ 0 if x→ x∗ .
For solving unonstrained NLLS we have used trust-region algorithm. The

quadrati model funtion mk at eah iterate xk is

mk(d) =
1

2
‖Rk‖22 + dTJTk Rk +

1

2
dTJTk Jkd. (1)

Thus at eah iteration, we seek a solution dk ∈ Rn
of the subproblem based on

the (1) subjet to some trusted region:

min
d

1

2
‖Jkd+ Rk‖22, ‖Dkd‖2 ≤ ∆k, (2)

where ∆k > 0 is the trust-region radius, Dk ∈ R
n×n

is a diagonal matrix with

positive diagonal entries. The solution of the (2) satis�es an equation of the form

(JTk Jk + λD2
k)d = −JTk Rk , λ ≥ 0 [1℄. It is the Levenberg-Marquardt method.

Many approahes exist for the solution of nonlinear least-squares problems,

however, most researh has foused on the NLLS without onstraints.

1
Supported by Ministry of Eduation and Siene of the Russian Federation (basi part, projet N1420)

and RFBR, grant N15-01-00441-a, grant N15-51-53066 GFEN-a.
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Let the onstraint funtion h(x) is a vetor-valued linear funtion desribing
any onstraints on the parameters. The method of Lagrange multipliers an

be used to solving this problem. Optimality onditions for the problems with

equality onstraints are as follows [2℄:

{
∇xL(x, λ) = ∇F (x) +∇h(x)λ = 0,
∇λL(x, λ) = h(x) = 0,

(3)

where L(x, λ) is the Lagrange funtion, i.e. L(x, λ) = F (x) + λTh(x) , λ ∈ Rp

is a vetor of Lagrange multipliers, p ≤ n is a number of the onstraints. Then

(x∗, λ∗) ∈ Rn+p
is a saddle point of the Lagrange funtion.

The Gauss-Newton (GN) method for solving (3) is [2℄:

xk+1 = xk +∆xk, λk+1 = λk +∆λk,

were (∆xk,∆λk) ∈ Rn+p
an be obtained from the following system:

∇2L(xk, λk)
[
∆xk
∆λk

]
= −∇L(xk, λk)

or

[
JTk Jk ∇h(xk)
∇h(xk)T 0

] [
∆xk
∆λk

]
= −

[
∇xL(xk, λk)

h(xk)

]
.

Let h(x) = Ex− f = 0 , the matrix E ∈ Rp×n
has full rank and f ∈ Rp

. Then

[
Mk ET

E 0

] [
∆xk
∆λk

]
= −

[
uk
vk

]
, (4)

where Mk = JTk Jk ∈ Rn×n
are positive semide�nite, (uTk , v

T
k )

T ∈ Rn+p
, and

uk = JTk Rk + ETλk , vk = Exk − f , uk ∈ R
n
, vk ∈ R

p
, k = 0, 1, .... .

We employ the augmented Lagrangian method [3℄, the matrix M will be

replaed by a positive de�nite matrix M̃k ≡Mk+ γkE
TE , γk > 0 and iteration

methods an be applied to solve the augmented linear system.

[
M̃k ET

E 0

] [
∆xk
∆λk

]
= −

[
uk + γkE

Tvk
vk

]
. (5)

Many omputational di�ulties an be overome by using preonditioning (4)-

(5). We an rewrite the saddle-point linear system into non-symmetri form [4℄

Aw = b,

A =

[
M̃ ET

−E 0

]
, w =

[
∆x
∆λ

]
, b =

[
−ũ
v

]
,
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where ũ = u + γETv (hereinafter subsript of the Gauss-Newton iterations

omitted for onveniene).

Analogous to [5℄ the matrix A an be split into its symmetri and skew-

symmetri parts as

A = A0 +A1,

where

A0 =
1

2
(A+AT ), A1 =

1

2
(A−AT )

are the symmetri and the skew-symmetri parts of the matrix A :

A0 =

[
M̃ 0
0 0

]
, A1 =

[
0 ET

−E 0

]
.

The skew-symmetri part A1 an be split into

A1 = KL +KU =

[
0 0
−E 0

]
+

[
0 ET

0 0

]
,

where 0 is a zero matrix with suitable dimension, KL and KU are the stritly

lower- and the stritly upper- triangular parts of A1 . Note that KL = −KTU .
Based on these splittings in [6℄ the authors established generalized skew-

Hermitian triangular splitting iteration method (GSTS) for solving non-

Hermitian saddle-point linear systems. Let the matrix BC be de�ned as

BC =

[
B1 0
0 B2

]
,

where B1 and B2 are symmetri and nonsingular matries. Then GSTS - pre-

onditioner is de�ned as [6℄:

B(ω1, ω2) = (BC + ω1KL)B−1C (BC + ω2KU),

or in blok form

B(ω1, ω2) =

[
B1 0
−ω1E B2

] [
B−11 0
0 B−12

] [
B1 ω2E

T

0 B2

]
,

where ω1 and ω2 are nonnegative aeleration parameters and, at least, one of

them is nonzero. In atual implementations we hoose B1 = M̃ . Then

B(ω1, ω2) =

[
M̃ ω2E

T

−ω1E B2 − ω1ω2EM̃
−1ET

]
,
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and preonditioned blok-strutured linear system is:

B−1(ω1, ω2)Aw = B−1(ω1, ω2)b.

We onsider three ases for the GSTS aording to the di�erent hoies of the

matrix B2 , and obtain the GSTS-preonditioned GMRES iteration method.

We onstrut a model of the sattering group of hemial elements that may

be ontained in water. In the desription of the pro�le of experimental sattering

pattern we selet the pro�le funtion for the peak shape. Clari�ation of the line

pro�le based on the introdution of the funtion F whih must be minimized

with respet to all parameters:

F =

∑m
i=1 |yobsi − ycalci |2∑m

i=1 |yobsi |2
,

where yobsi are experimental data set, ycalci are alulation data set and

ycalci =
k∑

j=1

IjPV (ti, x
(j)
0 ,∆x(j), η(j)) + ϕ(ti, x1, ..., xs).

Here k is the number of peaks, Ij is the integrated intensity, ϕ(ti, x1, ..., xs) is the
bakground. The parameter sets spei�es by the nonlinear least squares are peak

shape {Ij, x(j)0 ,∆x(j)} , weight oe�ients {η(j)} , j = 1, ..., k and the parameters
belonging to the ϕ : {xl}, l = 1, ...., s . We approximate ϕ by a ubi spline

with natural boundary onditions. Equality onstraints in the onstrained NLLS

problem are I1/Ij = I1/Ij, j = 2, ..., k, η(j) = η(i),∆x(j) = ∆x(i), i, j = 1, ..., k ,
the values {Ij} , j = 1, ..., k are taken from the [7℄.

At �rst we solve unonstrained NLLS problem by the Levenberg-Marquardt

method. Our implementation of this algorithm uses QR-deomposition of the

Jaobian matrix and does not require any matrix fatorization for determination

of the parameter λ . Figure 1 shows experimental and model sattering pat-

tern for the problem with 112 parameters. Then the equality-onstrained large-

sale NLLS problem is solved by the GN method. Iterations of the Levenberg-

Marquardt algorithm and outer iterations of the GN method are terminated if the

urrent iterations satisfy ‖R‖1 ≤ ε1 , ‖xk+1 − xk‖1 ≤ ε2 , ε1 = 10−6, ε2 = 10−7 .
When the saddle-point linear system is solved by preonditioned GMRES at

eah step of the GN method then inner iterations terminated if

‖B−1b− B−1Awk‖2 ≤ 10−6‖B−1b− B−1Aw0‖2.

The iteration methods GSTS(1), GSTS(2) and GSTS(3) with di�erent hoies

of the matrix B2 (Table 1) are employed as preonditioners to full GMRES. In

atual alulations B1 = M̃ . The optimal values of the parameters are numerial

optimal values, ω1 = ω2 = ωexp . The hoie γk = ‖Mk‖2/‖E‖22 [3℄ has been

found to perform well in pratie.
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Figure 1. Experimental (dash-dot line) and model (ontinuous line) of the sat-

tering pattern for the problem with 112 parameters
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MATHEMATICAL MODELING OF NEURAL

ACTIVITY

1

Muratova G.V., Andreeva E.M., Bavin V.V., Belous M.A.

Southern Federal University, Rostov-on-Don, Russia

An important development in present siene is the inreased use of methods

from mathematis, omputer siene and theoretial physis in the exploration

of biologial systems. This is due to great advanes in the understanding of living

systems, establishment of new experimental tehniques, methodologial advanes

in mathematial modeling, and the ontinuing growth in available omputer pow-

er for numerial alulations and simulations.

Neurosiene is among the biologial sub-disiplines where the use of mathe-

matial tehniques are most established and reognized. An important reason for

this is the suess of Hodgkin and Huxley [1℄ more than 50 years ago of desrib-

ing signal transport in a single neuron (nerve ell) as a modi�ed eletrial iruit

where the harge arriers are Na+ , K+
, Ca++

, Cl− and other ions �owing

through the neuron ell membrane. This mathematial formulation, known as

Hodgkin-Huxley theory, ould not only aount for the results from experiments

used to onstrut the model and �t the model parameters. From their model they

ould also predit the shape and veloity of the so alled ation potential whih is

a pulse-like eletrial disturbane travelling down thin outgrowths, alled axons,

of neurons [2℄.

Due to its obvious suess in desribing ation potentials, the Hodgkin-Huxley

approah has later been generalized to inlude modeling of the signal proessing

properties of entire neurons [3℄-[4℄. Thus modelers now have a relatively �rm

starting point for mathematial explorations of neural ativity.

Mathematial models in neurosiene an be distinguished by their pur-

pose [5℄.

Mehanisti models aim to aount for the properties of neurons or neural

iruits on the basis of the underlying biophysial properties of neurons and neu-

ral networks. This orresponds to the traditional physis approah to modeling

nature.

Desriptive (or statistial) models try to aount mathematially for experi-

mental data without the aim to explain what aspets of the neurons or neuronal

iruitry gives rise to the mathematial struture. Interpretive models aims to

eluidate the funtional roles of neural systems, i.e., relating neural responses to

the task of proessing useful information for the animal. Information theory is

typially used in suh modeling [5℄. Interpretive modeling is unique to biologial

systems whih have developed under evolutionary pressure.

So there exist the various approahes for modeling neural ativity.

On the basis of dynami mehanisms of neuron various mathematial models

are onstruted. Among them there are relatively simple ones, suh as �Inregrate

1
This work was supported by RFBR, N15-51-53066



Muratova G.V. . . .MATHEMATICAL MODELING. . . 57

and Fire�, in whih a neuron is represented as a apaitor onneted in parallel,

orresponding to the apaitive urrent for the membrane, and a resistor simu-

lating the leakage of ions through ion hannels [6℄. More omplex, biologially

plausible model were reated, for example, Hodgkin-Huxley model [1℄, whih is

muh more di�ult omputationally and in terms of the analysis of its dynamis,

but it is muh more aurate to desribe the dynamis of the membrane potential

of the neuron. This model belongs to the lass of point models. Point models do

not share a neuron into segments, not isolated parts of the dendrite and soma.

The spatial geometry of the nerve ells is omplex and diverse. Therefore,

modeling of neurons using the point model is big enough simpli�ation. More

omplex multisegment models were onstruted for example able equation.

I Izhikevih model

We investigate Izhikevih model [7℄, whih is a ertain ompromise between

omputational omplexity and biophysial verisimilitude. Despite the omputa-

tional simpliity of the model, depending on the parameters it an operate in

di�erent dynami modes, relevant neurons present. Izhikevih model desribed

as a fast-slow system of two di�erential equations desribing the dynamis of the

membrane potential of the neuron. Depending on the initial onditions and the

applied urrent model an be in two dynami modes, the movement to the rest

potential P1 , or the generation of an eletrial pulse P2 [8℄.

Izhikevih model belongs to the lass of phenomenologial models. In these

models the dynamis of the membrane potential is reprodued as a phenomenon.

The full Izhikevih model is the following:





Cm
dV

dt
= k(v − vr)(v − vt)− u + Isyn + Iext

dU

dt
= a (b(v − vr)− u)

if v > Vp, B >

{
V ← c
U ← U + d

,

where b � sensitivity U to subliminal volatility of V , Cm � membrane apa-

itane, c � potential after spike, d � growth U after spike, vr � rest potential,

vt � minimum potential of generating ation potential, k � oe�ient inverse

membrane resistane.

As a result of researh the model of the neural eletrial ativity based on

the Izhikevih model is onstruted. The algorithm of its implementation using

tehnologies GPGPU is suggested. GPGPU tehnology enabled the maximum

use of the proessing power of the omputer by dividing the original data stream

of neural network model into a plurality of parallel proessing threads in a GPU.

Some numerial results are presented. The vetor �eld and nerve impulse

form obtained by Izhikevih model are shown on the �gure 1.
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Figure 1. The Izhikevih model

Bibliography

1. Hodgkin A.L., Huxley A.F. A quantitative desription of ion urrents and

its appliations to ondution and exitation in nerve membranes //Journal

of Neurophysiology. 1952. Vol. 117. N. 4. P. 500-544.

2. Einevoll G.T. Mathematial modeling of neural ativi-

ty //Department of Mathematial Sienes and Tehnolo-

gy Norwegian University of Life Sienes, 1432 As, Norway.

http://arken.umb.no/∼gautei/forskning/einevoll_NATO_2006.pdf

3. Koh C., Segev I. (eds.)Methods in Neuronal Modeling (2 ed.). Cambridge,

MA: MIT Press, 1998.

4. Bower J.M., Beeman D. (eds.) The Book of Genesis: Exploring Realisti

Neural Models with the General Neural Simulation System (2.ed.). New

York: Springer, 1998.

5. Dayan P., Abbott L.F. Theoretial Neurosiene. Cambridge, MA: MIT

Press, 2001.

6. Jolivet R., Lewis T.J., Gerstner W. Generalized integrate-and-�re models

of neuronal ativity approximate spike trains of a detailed model to a high

degree of auray //Journal of Neurophysiology. 2004. Vol. 92. N. 2. P. 959-

976.

7. Izhikevih E.M. Dynamial systems in neurosiene: the geometry of ex-

itability and bursting. Cambridge, MA: MIT Press, 2007. 464 p.

8. Hale J., Koak H. Dynamis and Bifurations. New York: Springer, 1991.

567 p.



Sorokin S.B. DISCRETE ANALOG OF CONJUGATE-OPERATOR. . . 59

DISCRETE ANALOG OF CONJUGATE-OPERATOR

MODEL OF A PROBLEM OF HEAT CONDUCTIVITY

ON NON-MATCHING GRIDS

1

Sorokin S.B.

Institute of Computational Mathematis and Mathematial

Geophysis SB RAS, Novosibirsk State University, Novosibirsk,

Russia

Using a nonuniform non-mathing grid for variable parameters of the medium

(in partiular, a disontinuous parameter), we onstrut and numerially inves-

tigated a new di�erene sheme for the onjugate-operator model of the heat

ondutivity problem [1℄: in the domain Ω equations hold

R∗w = div w =
[

∂
∂x1

, ∂
∂x2

] [ w1

w2

]
= f,

w = Kq =

[
k11 k12
k21 k22

]
q,

q = Ru = −grad u = −
[ ∂

∂x1
∂
∂x2

]
u,

boundary onditions u|∂Ω = 0.
The di�erene sheme has seond order auray.

Computational domain and grids used are shown in Figure 1.

Figure 1. The alulation domain and grids.
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Vertial line Γ (dashed) divides the domain into two parts

Ω = Ω1 ∪ Ω2.

In domain Ω was set grids: grid ω for uh � dark irles, grid ω 1
2
for wh,qh

� dark and gray squares. Gray irles auxiliary and do not partiipate in the

alulation.

Hh � spae of grid funtions uh de�ned in points ω and beomes zero at the

boundary ∂Ω. H∗h � spae of grid funtions wh
de�ned in the points ω 1

2
.

The operator R in the de�ning relations is taken as the support operator.

His approximation Rh : Hh → H∗h is determined in eah retangular ell of grid

area as follows [2, 3℄ (numbering points see Figure 1)

[qh]5 = (Rhu
h)5 = −

[
1
2
(u

h
4−uh1
h̃1

+ uh3−uh2
h̃1

)
1
2(
uh2−uh1
h̃2

+ uh3−uh4
h̃2

)

]

5

= (

[
R1h

R2h

]
uh)5.

Here h̃1, h̃2 grid steps in the �rst and seond diretions, respetively. They shall

take appropriate value for eah subregion. For points (x1, x2) of the Ω1 : h̃1 =
h11, h̃2 = h21, for points (x1, x2) of the Ω2 : h̃1 = h12, h̃2 = h22 = h21/2. The
�rst index indiates the number of oordinate diretion, the seond � the number

of the subregion.

For nodes ω 1
2
blak squares marked the ation of Rh is determined by the

same rule. The di�erenes is that h̃2 = h22 and in this ase involved the �titious
nodes marked gray irles are replaed by interpolation from the losest vertial

neighboring nodes ω :
near ∂Ω from three nodes interpolation type

u(x2 +
h

2
) =

3

8
u(x2) +

6

8
u(x2 + h) +

−1
8
u(x2 + 2h) +O(h3),

otherwise from four nodes interpolation type

u(x2+
h

2
) = − 1

16
u(x2−h)+

9

16
u(x2)+

9

16
u(x2+h)− 1

16
u(x2+2h)+O(h4).

We de�ne a salar produt in the Hh and H∗h :

(uh, vh)Hh
=

∑

(x1,x2)∈ω
uh(x1, x2)v

h(x1, x2)h̃1h̃2 ∀ uh ∈ Hh, v
h ∈ Hh,

(wh, σh)H∗
h
=

∑

(x1,x2)∈ω 1
2

2∑

k=1

wh
k(x1, x2)σ

h
k(x1, x2)h̃1h̃2, ∀ wh ∈ H∗h, σh ∈ H∗h.
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For the points (x1, x2) ∈ Γ the �rst step h̃1 = h11
2 + h12

2 , the seond h̃2 = h22.

For nodes (x1, x2) ∈ ω 1
2
blak squares marked: h̃1 = h11, the seond h̃2 = h22.

In the approximation R∗h :H
∗
h→Hh of the operator R∗ hoose adjoint to Rh

[4, 3℄:

(Rhu
h,wh)H∗

h
= (uh, R∗hw

h)Hh
.

If you enter ei � orthogonal basis in Hh (in the salar produt (·, ·)Hh
) the R∗hw

h

� element of Hh an be represented as an expansion

R∗hw
h =

N∑

j=1

(R∗hw
h, ej)Hh

(ej, ej)Hh

ej =

N∑

j=1

(wh, Rhej)H∗
h

(ej, ej)Hh

ej .

As a basis in Hh take the system of network funtions e(x1,x2) , eah of whih is

equal to one in one of the grid points ω and at all other points is equal to zero:

e(x1,x2)(x̃1, x̃2) =

{
0, (x1, x2) 6= (x̃1, x̃2),
1, (x1, x2) = (x̃1, x̃2),

∀(x1, x2), (x̃1, x̃2) ∈ ω.

Then the value R∗hw
h
at the point (x1, x2) ∈ ω is represented as

R∗hw
h(x1, x2)=

∑
(x̃1,x̃2)∈ω

(wh,Rhe(x̃1,x̃2))H∗
h

(e(x̃1,x̃2),e(x̃1,x̃2))Hh

e(x̃1,x̃2)(x1, x2) =
(wh,Rhe(x1,x2))H∗

h

(e(x1,x2),e(x1,x2))Hh

e(x1,x2)(x1, x2) .

For all grid points ω , exept for the points loated on the vertial nearest Γ,
latter formula gives (numbering points see Figure 1).

R∗hw
h
1 =

1
2 [

(wh
1 ) 6−(wh

1 ) 7
h̃1

+ (wh
1 ) 5−(wh

1 ) 8
h̃1

] + 1
2[

(wh
2 ) 8−(wh

2 ) 7
h̃2

+ (wh
2 ) 5−(wh

2 ) 6
h̃2

].

For the grid points loated in the vertial nearest Γ expression for R∗hw
h
more

ompliated.

Approximation of tensor K :H∗h→H∗h :

[wh]5 = [Khq
h]5 =

[
k11 k12
k21 k22

]

5

[qh]5.

Finally, disrete onjugate-operator model has the form of

R∗hw
h = fh,

wh = Khq
h,

qh = Rhu
h,

uh ∈ Hh, wh ∈ H∗h.

The tables ontains the results of test alulations, on�rming the seond

order onvergene of di�erene sheme.
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The alulations were made in the domain Ω = (0, 2)× (0, 1). The area was
divided into two equal parts

Ω = Ω1 ∪ Ω2 = (0, 1)× (0, 1) ∪ (1, 2)× (0, 1).

In eah sub-region was set uniform grid: in Ω1 with the steps h11 = h21, in Ω1−
h12 = h22 = h21/2. Use the steps shown in the �rst two olumns.

The remaining olumns indiate di�erent harateristis of error

Zh =
[
wh, uh

]T −
[
w, u

]T
.

Here

[
w, u

]T
� a solution of the di�erential problem,

[
wh, uh

]T
� the

solution of the di�erene problem.

In the third olumn the error rate of the seond omponent

max
(x1,x2)∈ω

∣∣u(x1,x2)− uh(x1,x2)
∣∣ = maxu.

The fourth � the rate of the seond omponent of the error

max[ max
(x1,x2)∈ω 1

2

|w1(x1, x2)− wh
1(x1, x2)|, max

(x1,x2)∈ω 1
2

|w2(x1, x2)− wh
2(x1, x2)|] = maxw.

In the �fth olumn of the norm of the projetion of the seond omponent error

on interfae of subdomains Γ

max
(x1,x2)∈Γ

∣∣u(x1, x2)− uh(x1, x2)
∣∣ = maxΓ.

Finally, in the last � error rate

∥∥Zh
∥∥
H
=

√√√√√√√√

∑
(x1,x2)∈ω

(
u(x1, x2)− uh(x1, x2)

)2
h̃1h̃2+

+
∑

(x1,x2)∈ω 1
2

2∑
k=1

(
wk(x1, x2)− wh

k(x1, x2)
)2
h̃1h̃2

.

Table 1 orresponds to the alulations with the thermal ondutivity tensor

K(x1, x2) =

[
1 0
0 1

]
, (x1, x2) ∈ Ω1 ∪ Ω2,

and the exat solution u(x1, x2) = sin3(πx1)sin
3(πx2), (x1, x2) ∈ Ω1 ∪ Ω2.

Table 2 orresponds to the alulations with the thermal ondutivity tensor

(mixed derivatives and disontinuous oe�ients)

K(x1, x2)=

[
0.002 0.01
0.01 0.002

]
, (x1, x2) ∈ Ω1, K(x1, x2)=

[
2 1
1 2

]
, (x1, x2) ∈ Ω2
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h11 = h21 h12 = h22 maxu maxw maxΓ
∥∥Zh

∥∥
H

1/10 1/20 0.8802E-01 0.2137E+00 0.1043E-01 0.1158E+00

1/20 1/40 0.2069E-01 0.5404E-01 0.2492E-02 0.2765E-01

1/40 1/80 0.5096E-02 0.1348E-01 0.6164E-03 0.6837E-02

1/80 1/160 0.1266E-02 0.3371E-02 0.1534E-03 0.1705E-02

Table 1.

and the exat solution

u(x1, x2) = sin3(πx1)sin
3(πx2), (x1, x2) ∈ Ω1,

u(x1, x2) = sin3(10πx1)sin
3(10πx2), (x1, x2) ∈ Ω2.

h11 = h21 h12 = h22 maxu maxw maxΓ
∥∥Zh

∥∥
H

1/40 1/80 0.1514E+00 0.8146E+01 0.6161E-01 0.4028E+01

1/80 1/160 0.3462E-01 0.1944E+01 0.1453E-01 0.9287E+00

1/160 1/320 0.8446E-02 0.4831E+00 0.3501E-02 0.2281E+00

1/320 1/640 0.2065E-02 0.1199E+00 0.8270E-03 0.5677E-01

Table 2.

This study di�ers from those above by the following:

1. All omponents of the disrete analogs of vetors are given at the same grid

nodes. This enables us to orretly de�ne the ation of the disrete analog of the

thermal ondutivity tensor on the disrete analog of the temperature gradient

and, in onjuntion with the approximation method for the gradient, have the

seond order of onvergene.

2. The seond order of onvergene holds not only for salar grid funtion

(approximations to temperature) but also for the grid vetor funtions (approx-

imations to the heat �ow).

3. A sheme of the seond order of auray (on nonuniform non-mathing

grids for the variable medium parameters) is onstruted only by the approahes

of the theory of di�erene shemes. From a methodologial point of view, the

method for sheme designing presented in this is muh learer and easier than

onstruting a seond-order sheme with the use of projetional statements.
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DYNAMIC BEHAVIOUR OF HETEROGENEOUS

POROELASTIC STRUCTURES

Vatulyan A.O., Gusakov D.V.

Southern Federal University, Rostov-on-Don, Russia

We onsider the steady osillations of heterogeneous poroelasti transversely

isotropi layer under the ation of harmoni load applied to the upper fae in the

framework of the plane deformation. All mehanial harateristis onsidered

to be the funtions of transverse oordinate. We follow the Biot [1℄ theory for

modeling poroelasti media.

The dimensionless equations of motion, onstitutive equations and the equa-

tion of pressure in the pores are:

σ̄11,1 + σ̄13,3 + κ2ū1 = 0,
σ̄13,1 + σ̄33,3 + κ2ū3 = 0,
σ̄11 = γ1ū1,1 + γ7ū3,3 − β1p̄,
σ̄33 = γ7ū1,1 + γ4ū3,3 − β3p̄,
σ̄13 = γ5 (ū1,3 + ū3,1) ,
µ1p̄,11 + (µ3p̄,3),3 + iκ (η1ū1,1 + η3ū3,3) + iκδp̄ = 0.

(1)

where the following dimensionless parameters and funtions are introdued: ūi �
displaement vetor elements, p̄ � pore pressure, σ̄ij � stress tensor elements,

γ̄j � elasti tensor elements, β̄j � Biot e�etive stress oe�ients, µ̄j � intrinsi
permeability oe�ients, κ � frequeny.

It is important to note that order of the material onstants and the values

of the funtions in original equations several orders of magnitude di�erent from

eah other. In this ase dimensionless equations (1) are employed. The symbol ē
is dropped below.

The Fourier transform along the longitudinal oordinate is applied to the

equations (1). The transformed equations are seond order di�erential equations

on funtions uk and p with variable oe�ients. For solving this equations shoot-
ing method [2℄ is employed. Main idea of this method is representing solutions as

the linear ombinations of the solutions for several Cauhy problems. Note that

with the growth of the transformation parameter |α| system takes the form of

"sti�" system of di�erential equations, whih is equivalent to the presene of a

small parameter at the highest derivative. To solve suh a system we use Gear

method [3℄, with the boundary onditions replaed by:

I : ξ3 = 0 : u1 = 0, u3 = 0, p′ = 0 σ33 = e−|Sα|, σ13 = 0, p = 0
II : ξ3 = 0 : u1 = 0, u3 = 0, p′ = 0 σ33 = 0, σ13 = e−|Sα|, p = 0
III : ξ3 = 0 : u1 = 0, u3 = 0, p′ = 0 σ33 = 0, σ13 = 0, p = e−|Sα|

where S is the normalization parameter [4℄.
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To obtain values for the parameter S all variable oe�ients in (1) replaed

by their top estimates γ̂i ≥ |γi| . The harateristi equation takes the form:

∣∣∣∣∣∣

γ̂5λ
2 + (κ2 − α2γ̂1) −iα(γ̂7 + γ̂5)λ iαβ̂3
−iα(γ̂7 + γ̂5)λ γ̂4λ

2 + (κ2 − α2γ̂5) −β̂3λ
καη̂1 iκη̂3λ µ̂3λ

2 + (iκδ̂ − α2µ̂1)

∣∣∣∣∣∣
= 0 (2)

We introdue replaement λ = S|α| , and α→∞ . In this ase equation (2)

splits into two equations:

µ̂3S
2 − µ̂1 = 0

γ̂5γ̂4S
4 − ((γ̂7 + γ̂5)

2 + γ̂25 + γ̂1γ̂4)S
2 + γ̂1γ̂5 = 0

Obtained S values for anellous bone [5℄ are: S1 = −S4 = 1 , S2 = −S5 =
0.497 , S3 = −S6 = 1.463 .

Solution of the original problem in general has the form:

uj(ξ1, ξ3) =
1

2π

∫ ∞

−∞

Dj(α, κ, ξ3)

D0(α, κ)
e−iαξ1dα, (3)

where Dj, D0 � is analytial funtions of their arguments.

It an be shown that for the α ∈ R1, D0 6= 0 this representation of the

solution is orret. At the same time, due to dereasing integrands when |α| →
∞ , it is possible to alulate the integral (3) within �nite limits, the hoie the

parameter R allows ontroling auray.

uj(ξ1, ξ3) ≈
1

2π

∫ R

−R

Dj(α, κ, ξ3)

D0(α, κ)
e−iαξ1dα

It should be noted that with the inrease of parameter α solutions in trans-

formants tend to 0 aording to the law 1/|α| . Consequently, it seems reasonable
to replae trasformants for large α values with approximation of the form G/|α| ,
where G is omplex onstant determined separately for eah of the transformants

at |α| > R . Experimentally found that in most ases values of R = 20 is enough

to build solutions with an auray more than 10−3 . This fat allows reduing
the number of the α parameter values, whih are neessary to build a solution

in transformants, and signi�antly redues the running time.

To �nd the original solutions we use "Filon" quadrature formulas from [6℄.

We have obtained numerial data for displaement �eld for di�erent laws of

variation of the elasti moduli. Figure 1 represents results of alulating displae-

ment �elds on the upper layer fae for the load onentrated at ξ1 = 0 in the ase

of various inhomogeneities γ̂j = γj ∗ f(ξ3) . As shown in Figure 1 displaements

have a logarithmi singularity at ξ1 = 0 . And with the growth of the oordinates
have the form of attenuating wave.

Finally, we note that numerial solutions were obtained of the problem for

various harateristis of the layer irregularities laws. Based on the analysis of

the solutions we have revealed the in�uene of these harateristis on the dis-

plaement �eld at the upper layer fae.
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Figure 1. Displaements Re(u3) for various inhomogeneities of γj , onentrated
load at ξ1 = 0
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TWO NEW SPLITTINGS AND PRECONDITIONER

FOR ITERATIVELY SOLVING NON-HERMITIAN

POSITIVE DEFINITE SYSTEMS

Rui-Ping Wen

Higher Eduation Key Laboratory of Engineering and Sienti�

Computing in Shanxi Provine, Taiyuan Normal University,

Taiyuan, China

Consider a large sparse system of linear equations

Ax = b, (1)

where the oe�ient matrix A = (aij) ∈ Rn×n
is a non-Hermitian positive

de�nite matrix and b ∈ R
n
.

Based on the Hermitian/skew-Hermitian (HS) splitting

A = H + S, (2)

where

H =
1

2
(A+A∗), S =

1

2
(A− A∗)

with A∗ being the onjugate transpose of A , of the oe�ient matrix A . In
artiles [1-3℄ Bai et al. derived some alternative methods named HSS and PSS

iteration methods. It is proven that for a non-Hermitian positive de�nite lin-

ear systems, the HSS and PSS iteration methods both onverge unonditionally

to the unique solution of the system (1). However, both HSS and PSS iter-

ation shemes are variants of an alterative iteration method. The Hermitian

or the skew-Hermitian system needs to be solved at eah iteration step. The re-

searh into a skew-Hermitian system of linear equations is also onduted in [4-6℄.

In this talk, a new iteration method for solving a linear system with oef-

�ient matrix being non-Hermitian positive de�nite is presented as follows; An

aelerated method is proposed, whih will �nd the optimal solution in hyper-

plane generated by {xk, · · · , xk+m} .

Our new method is just presented in view of the splitting (2). Let

H = M −N,

P =M + αS,

Q = N + (α− 1)S,
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where α is a parameter. Then

A = P −Q,

and the iteration matrix is given by

T = P−1Q.

Method 1.

Step 0. Give an initial point x0 and a tolerane ǫ > 0 , for k = 0, 1, 2, . . .
until the iteration onverges.

Step 1. Solve the system of linear equations for xk

Pxk = Qxk−1 + b

Step 2. If ‖Axk − b‖ < ǫ, stop; Otherwise, k ⇐ k + 1 and go bak to Step

1.

Method 2.

Step 0. Given an initial point x(0,0) , the preision ε > 0 , for k = 0, 1, 2, · · ·
until the proess onverges.

Step 1. For l = 0, 1, 2, · · · , m, omputing

Px(k,l+1) = Qx(k,l) + b.

Step 2. Let

r(k,l) = Ax(k,l) − b,

r =
m∑

l=1

α
(k)
l r(k,l),

min
α
r∗H−11 r

s.t.
m∑

l=1

α
(k)
l = 1.

Step 3.

x(k+1,0) =
m∑

l=1

α
(k)
l x(k,l).

Step 4. If ‖r‖2 < ε , stop; Otherwise, goto Step 1.
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Remark In fat, the method 2 is the aeleration of method 1. If m = 2 , it
an be straightly shown in the following:

x(k+1,0) = α(k)x(k,1) + (1− α(k))x(k,2).

We study the spetral radius and ontration properties of the iteration

matries and then analyze the best possible hoie of the parameters. With the re-

sults obtained, we show that the new methods are onvergent for a non-Hermitian

positive de�nite linear system. Furthermore, a preonditioner generated by the

splitting is proposed, the ondition number of preonditioned matrix is disussed.

The numerial examples show these methods are e�etive.
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TWO-STAGE ITERATION METHODS FOR SADDLE

POINT PROBLEMS

Guo-Feng Zhang, Mu-Zheng Zhu, Jing-Yu Zhao

Shool of Mathematis and Statistis, Lanzhou University,

Lanzhou, P.R.China

In this talk, we will fous on the solution of large sparse saddle point problems

A u ≡
[
A B∗

B 0

] [
x
y

]
=

[
f
g

]
≡ b (1)

with Case 1 or Case 2.

Case 1: A ∈ Rn×n
is a symmetri positive de�nite (SPD) matrix, B ∈ Rm×n

is

of full rank, x, f ∈ R
n, y, g ∈ R

m
and m ≤ n .

Case 2: A ∈ Cn×n
is a non-Hermitian matrix and its Hermitian part

H = 1
2
(A + A∗) is positive de�nite (Non-HPD), B ∈ Cm×n

is of full rank,

x, f ∈ C
n, y, g ∈ C

m
and m ≤ n .

Linear systems of the form (0.1) arises in a variety of sienti� omputing

and engineering appliations, inluding omputational �uid dynamis[8, 11℄, on-

strained and weighted least squares optimization[8, 13℄, image reonstrution and

registration[14, 15℄, mixed �nite element approximations of ellipti PDEs and

Navier-Stokes problems[7, 12, 10℄ and so on; see [2, 7, 8℄ and referene therein.

In reent years, there has been a surge of interest in linear systems of the

form (1) and a large numerial solution methods for (0.1) have been proposed.

For examples, diret solves, stationary iteration methods [9, 4, 1, 3, 6℄, null spae

methods and preonditioned Krylov subspae methods[8, 10, 5℄ and so on on.

Iteration methods and preonditioned Krylov methods are interested beause

of their preservation of sparsity and lower requirement for storage. We refer to

some omprehensive surveys [8, 7, 13℄ and the referenes therein for algebrai

properties and solving methods for saddle point problems.

We de�ne a matrix P (α) as

P (α) :=

[
In −B∗(BB∗)−1

0 Im

] [
In 0
B −αBB∗

]
=

[
In − B∗(BB∗)−1B αB∗

B −αBB∗

]
,

where α is a positive onstant. By preonditioning the saddle point problem (1)

from the left with P (α) , we an get the following preonditioned linear system:

P (α)A = P (α)

[
f
g

]
⇐⇒

[
(I −B∗(BB∗)−1B)A+ αB∗B 0

BA− α(BB∗)B BB∗

] [
x
y

]
=

[
f −B∗(BB∗)−1Bf + αB∗g

Bf − αBB∗g

]

⇐⇒
[
A1 0
A3 A2

] [
x
y

]
=

[
b1
b2

]
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with

A1 := (I−B∗(BB∗)−1B)A+αB∗B, A2 := BB∗, A3 := BA−α(BB∗)B, (2)

b1 = f − B∗(BB∗)−1Bf + αB∗g, b2 = Bf − αBB∗g.
We an get the solution of the system (0.1) by solving the oupled linear

systems of the form

A1x ≡
(
(I −B∗(BB∗)−1B)A+ αB∗B

)
x = b1,

A2y ≡ (BB∗)y = b2 − A3x.

Thus it an be solved by �rst omputing x from

A1x = b1 (3)

and then omputing y from

A2y = b2 −A3x. (4)

Theorem 1 Let A de�ned in (0.1) be nonsingular and B be of full rank. Then

the matrix A1 de�ned in (0.2) is nonsingular for any iteration parameter α 6= 0 .
Sine the system (0.4) is SPD, any solver for SPD systems an be applied.

This ould be a Cholesky fatorization, or a preonditioned onjugate gradient

(PCG) method, or some speialized solvers.

Generally, the oe�ient matrix A1 in (0.3) is large and dense, so diret

omputations are very ostly and impratial in atual implementations. Then

we will solve the linear system (0.3) iteratively by splitting tehnology.

Algorithm 1: (A ∈ R
n×n

being a SPD matrix)

Stage 1: solve the linear system (0.3) iteratively by PCG or Cholesky fatoriza-

tion:

M1(α)x
(k+1) = N1x

(k) + b1 (5)

with M1(α) := A+ αB∗B and N1 := B∗(BB∗)−1BA .
Stage 2: solve the system (0.4) by using Cholesky fatorization, or PCG method.

Theorem 2 Let A ∈ R
m×m

be SPD, and B ∈ R
m×n

be of full olumn rank.

Then, the iteration (0.5) is onvergent when α > α∗ , where α∗ = λ2max

µminλmin
.

Furthermore, we have limα→∞ ρ(T (α)) = 0 . Here, T (α) = M−1(α)N is the

iteration matrix. λ2max and λmin are the maximum and minimum eigenvalues of

T (α) , µmin is the minimum eigenvalue of BTB .

Algorithm 2: (A being large and non-Hermitian matrix)

Stage 1: solve the linear system (0.3) iteratively by PCG or Cholesky fatoriza-

tion:

M2(α)x
(k+1) = N2x

(k) + b1 (6)



Guo-Feng Zhang . . . TWO-STAGE ITERATION METHODS . . . 73

with M2 := H + αB∗B and N2 := B∗(BB∗)−1BA− S , where H = 1
2(A+A∗)

and S = 1
2(A− A∗) .

Stage 2: solve the system (0.4) by using Cholesky fatorization, or PCG

method[5, ?℄.

Theorem 3 Let A ∈ C
n×n

be a non-Hermitian matrix and its Hermitian part

H = 1
2(A+ A∗) is positive de�nite (Non-HPD) and B ∈ Cm×n

be of full rank.

Then the iterative method (0.6) is onvergent if the following ondition is satis-

�ed:

α > max

{√
η21 + (β − η2)2 − γ

τ
, 0

}
.

Here,

η1 + iη2 =
x∗B∗(BB∗)−1BAx

x∗x
, iβ =

x∗Sx

x∗x
, γ =

x∗Hx

x∗x
, τ =

x∗B∗Bx

x∗x
,

and x is an eigenvetor of the iterative matrix M−1N in stage I. Furthermore,

we have ρ(M−1
2 N2) monotonially dereases and tends to 0 as α→ +∞ .
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GROUP ANALYSIS OF INTEGRO-DIFFERENTIAL
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Many important physial proesses in nature are governed by di�erential

equations. Nonlinearity and the presene of a large number of variables in the

initial equations are soures of signi�ant mathematial di�ulties in the analysis

of the solutions of these equations. Frequently, it is virtually impossible to give

expliit solutions, and while a multitude of numerial methods has been devel-

oped to obtain approximate solutions, there remains intense interest in �nding

exat solutions. Eah solution has value, �rst, as the exat desription of the

real proess in the framework of a given model; seondly, as a model to ompare

various numerial methods; thirdly, as a basis to improve the models used. One

of methods for onstruting exat solutions is group analysis.

The group analysis method, besides onstruting exat solutions, provides a

regular proedure for mathematial modeling by lassifying di�erential equations

with respet to arbitrary elements.Wemention here that modeling a given system

of di�erential equations with the use of di�erene equations and meshes an also

be based on symmetries [1℄.

The lassial Lie group theory provides a universal tool for alulating ad-

mitted Lie group for a system of di�erential equations. However, appliations

of the group analysis method to integro-di�erential equations presents some dif-

�ulties. The main di�ulty omes from their nonloal terms (integral terms).

Sine the de�nition of an admitted Lie group given of partial di�erential equa-

tions annot be applied to integro-di�erential equations, this onept requires

further investigation. A regular method for alulating an admitted Lie group

of integro-di�erential equations was reently introdued in [2, 3, 4℄. A Lie group

admitted by integro-di�erential equations is also de�ned as a Lie group satis-

fying determining equations. The way of obtaining determining equations for

integro- di�erential equations is similar (and not more di�ult) to the way

used for di�erential equations. The main di�ulty in obtaining an admitted

Lie group of integro-di�erential equations onsists of solving the determining

equations. Notie that the determining equations of integro-di�erential equa-

tions are integro-di�erential.

In the present work we fous on the appliation of the group analysis method

to the one-dimensional equations desribing behaviour of visoelasti materials
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vt = σx, et = vx, ϕ(σ) = e+

∫ t

0

H(t, τ)e(τ)dτ, ϕ′(σ) 6= 0. (1)

Here time t and distane x are independent variables, the stress σ , the
veloity v , and the strain e are dependent variables, H(t, τ) is the kernel of

relaxation, ϕ(σ) is a smooth funtion of the stress. If ϕ(σ) is a linear funtion,
then system (1) desribes linear behavior of a visoelasti material. Notie that

system (1) is a system of integro-di�erential equations. The admitted Lie group

of (1) is found. Invariant solutions of this system of equations are also disussed

in this study.
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MULTIGRID METHOD WITH SPECIAL

APPROXIMATION FOR THE NAVIER-STOKES

EQUATIONS IN A VISCOUS INCOMPRESSIBLE

FLUID

1

Andreeva E.M., Muratova G.V.

Southern Federal University, Rostov-on-Don, Russia

I Introdution

We propose some approah for solving the two-dimensional Navier-Stokes

equations for a visous inompressible �uid. In this paper we onstrut speial

FEM basis funtions for these equations. They are of the usual form at the time

level where an approximate solution is sought, and they have useful properties

for the approximation of transport derivatives between time levels. As a result, at

eah time level a stationary problem of a simpler form with a self-adjoint operator

is obtained. To solve this problem, we apply the onforming �nite element method

with the bilinear elements for veloities and pieewise-onstant elements for the

pressure on retangles [1℄, [2℄.

II Problem formulation

Consider lassial formulation of the Navier-Stokes equations in domain Ω =
(0, 1)× (0, 1) with boundary ∂Ω

∂V

∂t
+ (∇ ·V)V − 1

Re
∆V +∇p = F, (1)

divV = 0, (2)

where Re is Reynolds's number, and V = (u(x, y, t), v(x, y, t)) is the veloity,
p is the pressure.

To provide uniqueness of the pressure, we use the ondition

∫

Ω

p, dΩ = 0, ∀t ∈ [0, T ]. (3)

The initial onditions are as follows:

u(0, x, y) = u0(x, y),
v(0, x, y) = v0(x, y), (x, y) ∈ Ω.

(4)

1
This work was supported by RFBR, N15-51-53066
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The boundaries onditions are as follows:

u(t, x, y) = ug(t, x, y),
v(t, x, y) = vg(t, x, y), (t, x, y) ∈ (0, T )× ∂Ω. (5)

To approximate the time derivative and inertial �rst spae derivatives a

method of harateristis is used. The method of harateristis was suggest-

ed by the he Frenh and Amerian sientists for approximating the equations of

visous inompressible liquid with the �rst order of approximation. It has spe-

ial theoretial and pratial development in Pirrono's work for mass transfer

equation [4℄.

Spae disretization is arried out by �nite element method. It's used a mixed

formulation in the �nite element method, when a ombination of simple �nite el-

ements � bilinear for veloities and onstant elements for pressure is applied. This

ombination provides stability of pressure alulation with additional appliation

of a numerial �ltration.

Consider the following basis funtions for the veloity omponents (i =
0, ..., n1, j = 0, ..., n2) :

ϕi,j(x, y) =

{ (
1−|x−xi|

h1

)(
1−|y−yj|

h2

)
, if(x, y) ∈ [xi−1, xi+1]× [yj−1, yj+1],

0, otherwise.
(6)

The basis funtions for the pressure are of a more simple form (i = 0, ..., n1−
1, j = 0, ..., n2 − 1) :

ψi+ 1
2
(x, y) =

{
1, if(x, y) ∈ [xi, xi+1)× [yj, yj+1),
0, otherwise.

(7)

An approximate solution at level t = tk has the following form:

uh(x, y) =
∑

0≤i≤n1,1≤j≤n2−1
αi,jϕi,j(x, y), (8)

vh(x, y) =
∑

0≤i≤n1,1≤j≤n2−1
βi,jϕi,j(x, y), (9)

ph(x, y) =
∑

0≤i≤n1−1,0≤j≤n2−1
γi,jψi+ 1

2 ,j+
1
2
(x, y). (10)

As a result of the approximation we get the blok system of algebrai equa-

tions at level tk :

Au ≡



A11 O A13

O A22 A23

AT
13 AT

23 O





u
v
p


 =



f1
f2
f3


 ≡ f . (11)
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whih is solved by multigrid method. Here, O denotes a zero matrix of the

orresponding dimension. Note that matries A11 and A22 are self-adjoint and

positive de�nite.

III Multigrid method

The multigrid method (MGM) is one of the e�etive and enough univer-

sal iterative methods for solving the systems of the linear algebrai equations.

The multigrid method belongs to a lass of quikly onverging iterative meth-

ods [3℄, [5℄.

The multigrid idea is based on two priniples: error smoothing and oarse

grid orretion. Some iterative methods have a smoothing e�et on the error

of approximation. This property is fundamental for the multigrid idea and is

onneted with fast damping high-frequeny Fourier omponents of an initial

error in deomposition on the basis from eigenvetors.

The multigrid algorithm allows to inrease onsiderably e�ieny of the main

iterative method, ombining usual iterative proess with the oarse-grid or-

retion. One of the MGM omponents is basi iterative method or smoothing

proedure. This is the most sensitive part of the method of the problem under

onsideration.

There are some lassial iterative methods for saddle point problems whih

an be used as the smoothers in MGM:

• The generalized minimal residual (GMRES) method, whih, in exat arith-

meti, onverges within m iterations for any non-singular matrix K ∈
Rm×m

.

• The Uzawa method. The rate of onvergene of iterative methods depends

on the type Uzawa resampling on time and with a derease in the value of

this step falls. Therefore, iterative methods suh as preonditioners Uzawa

are used for multigrid methods.

• The semi-impliit method for pressure-linked equations (SIMPLE) method.

SIMPLE is based on �nite-volume disretization of the Navier-Stokes equa-

tions. One of the important properties of �nite volume method is the exat

preservation of the integral quantities suh as mass, momentum and energy

for any group of ontrol volumes and, onsequently, the entire omputa-

tional domain.

• Braess-Sarazin smoother. In ontrast to the exat Uzawa and the SIMPLE

methods, the Braess-Sarazin smoother omputes the iterates ut+1
and pt+1

from the old veloity iterate ut .

• Vanka Smoothers were �rst introdued within the ontext of a multigrid

method for staggered mesh disretizations of the Navier-Stokes equations.
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This smoother an be onstruted without knowledge of the geometry

or the disretization of the underlying PDE. The additive version of this

smoother an be interpreted as an inexat Uzawa relaxation sheme.

On the �rst stage of our investigation we use simple iteration method as

the smoother beause after disretization we obtain a linear algebrai equation

system with a symmetri matrix whih has a spetrum with alternating signs.

un+1
h = unh − τAT

h (Ahu
n
h − fh).

The seond omponent of a multigrid method is the oarse grid orretion

determined by restrition operator R2h
h and prolongation operator P h

2h , whih

are realized for veloity omponents by templates:

R2h
h = 1

16




1 2 1
2 4 2
1 2 1



2h

h

and P h
2h =

1
4




1 2 1
2 4 2
1 2 1



h

2h

.

The operators of restrition R2h
h and prolongation P h

2h are realized for pres-

sure omponents by other templates:

R2h
h = 1

4

[
1 1
1 1

]2h

h

and P h
2h =

[
1 1
1 1

]h

2h

.

The results of some numerial experiments allow to onlude the e�ieny of

the suggested approah for solving the Navier-Stokes equations.

IV Numerial results

We onsider the equation (1)-(2) with initial and boundary onditions (3)-(5)

and the exat solution:

u(x, y, t) = x ∗ (1− x) ∗ y ∗ (1− y) ∗ (t+ 2)
v(x, y, t) = sin(x) ∗ (1− x) ∗ y ∗ (1− y) ∗ (t+ 1)
p(x, y, t) = (x− 1/2) ∗ (y − 1/2) ∗ t

(12)

Table 1 presents a omparison of the numbers iterations and times alulation

of the multigrid method with a di�erent numbers of levels MGM and simple

iteration method. Pelet numbers is 1000, number of smoothing iteration is 5.

Table 2 presents a omparison of the multigrid method for solving the problem

with a di�erent number of smoothing iterations. Pelet numbers is 1000, mesh

size is 65× 65 .

V Conlusion

For the the Navier-Stokes equations it has been shown that by mixing the

method of harateristis and the �nite element method we are able to derive

�rst and seond order aurate onservative shemes of the upwinding type.
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Mesh grid Sample MGM MGM MGM MGM MGM

iteration l=2 l=3 l=4 l=5 l=6

33× 33 76306 4362 5452 4884

12se 11se 11se 11se

65× 65 787942 98376 72425 55989 43307

5min 8min 4min 4min 3min

129× 129 5857643 868407 639641 464102 325721 226555

87min 108min 105min 78min 58min 30min

Table 1. Multigrid method with a di�erent number of levels

Smoothing MGM MGM MGM

iterations l=5 l=4 l=3

5 43307 55989 72425

3min 4min 4min

10 31131 37341 44069

3min 3min 3min

15 24347 28054 31715

2min 3min 3min

Table 2. Multigrid method with a di�erent number of smoothing iterations

Appliation of a ombination of the method of harateristis and the �nite

element method allows building the e�etive numerial algorithm. These shemes

are numerially better than the usual upwinding shemes beause they require

numerial solution of symmetri systems only. After disretization we obtain a

linear algebrai equation system with a symmetri matrix whih has a spetrum

with alternating signs. We use multigrid method with simple iteration method

as the smoother for solving this system.

The results of some numerial experiments allow to onlude the e�ieny of

the suggested approah for solving the Navier-Stokes equations.
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This paper onerns some pratial aspets of the appliation of a 3D hydro-

dynami ode [1℄ to modelling of radioative ontamination within an industrial

site. The 3D ode is intended to simulate the propagation of ontamination tak-

ing into aount the atual geometry of obstales and to alulate doses from

various external soures and via di�erent paths of exposure (louds of arbitrary

shape, inhomogeneous surfae deposition, inhalation). The CFD model allows for

alulating doses reeived by the personnel for the whole territory of a faility in

the ase of a non-uniform wind �eld and non-isotropi turbulene.

An essential feature of Gaussian models still widely used in safety assess-

ment analysis is their poor adaptation to real urban onditions. A omparison

of onentrations alulated via a Gaussian model and obtained by experiment

for the same weather onditions demonstrates that Gaussian models fail even in

quantitative estimation of the distribution of onentrations. They are not able

to reprodue the omplexity of �ows around an obstale of realisti geometry.

This gives a reason for using a CFD ode whih ould in priniple to predit the

atual distribution of veloities.

The main goal of our researh is to make estimations of doses in a more

realisti and aurate fashion. Known analytial solutions suh as the point or

linear soure approximation are not su�iently aurate for our purposes. To

attain this objetive we take into aount the radiation emitted by all points of

a radioative loud

ḋvol (~r0, n) =

∫∫∫

Ω

I (~r, ~r0) · ρvol (~r) · σ (~r, n) · dV

or a ontaminated surfae

ḋsurf (~r0, n) =

∫∫

∂S

I (~r, ~r0) · ρsurf (~r) · σ (~r, n) · dS

where σ (~r, n) is the dose rate [Sv/ (s · Bq)] from the point soure of radiation

of the nulide n on the distane r , I (~r, ~r0) is the visibility (an be only 0

or 1) of the point with radius-vetor ~r from the point with radius-vetor ~r0 ,
ρvol (~r) , ρsurf (~r) - volume and surfae onentration, ḋvol (~r0, n) , ḋsurf (~r0, n) -

volume and surfae dose rate at the point with radius-vetor ~r0 . Thus, the whole
soure is divided into a set of point soures. The dose of radiation reeived by

the exposed objet from a point soure is determined by whether or not there
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is any obstale in the straight line onneting the soure and the reipient. If

there is, we leave out the amount of radiation delivered by the soure. Suh an

integral method alls for a huge amount of alulations to be performed. A way

to aelerate alulations is the appliation of a parallel algorithm.

In this paper we present a desription of a 3D CFD ode apable of making

estimations of doses in a more realisti and aurate fashion for the needs of

emergeny analysis. As a result, a robust CFD model is implemented on the

base of the Navie-Stokes equations. The onversation laws of mass

∂ρ

∂t
+ div(ρ~u) = 0

impulse

ρ
∂~u

∂t
+ ρ
(
~u~∇
)
~u = −~∇δP + ~∇

(
ρνT ~∇

)
~u+ ρ~g

δθ

θ
+ ~f

an equation for potential temperature to better aount for pressure drop with

height due to a signi�ant vertial sale

dθ

dt
=
∂θ

∂t
+ ~u~∇θ = ~∇

(
χ~∇θ

)

and equations for dispersion of around 20 radionulides taking into aount their

deay rates

∂Cn
∂t

+ (u+ wn)~∇Cn = ~∇
(
DT

~∇Cn
)
+QCn

are applied. Due to the fat that an essentially subsoni �ow is onsidered, the

surrounding medium approximates to an inompressible one. Sine the little dif-

ferene between atual and dry-adiabati temperature is assumed, perturbations

of potential temperature are supposed to be small.Moreover, for the given range

of hydrodynami parameters the Boussinesque approximation is justi�able, hene

ρ (θ) = ρ (θ0) +
∂ρ

∂θ

∣∣∣
θ=θ0

(θ − θ0)

The e�et of turbulene is modelled via a RANS approah. A modi�ed ver-

sion of k − ǫ model is applied to avoid mesh re�nement near solid surfaes,

thereby signi�antly dereasing omputational osts. To avoid small dimensions

of boundary ells, adapted boundary onditions on solid surfaes for k and ǫ are
utilized on the base of Monin-Obukhov theory. An assumption is made that a

veloity pro�le in a boundary ell is given by the formula

u (△) =
u∗
κ

[
ln

(△
r

)
+ φ(p)

]

derived in Monin-Obukhov theory. Then we substitute the frition veloity in

formulas

k =
u2∗

C
1/2
µ

ε =
u3∗
κ△
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thereby ahieving for the turbulent oe�ient a formula idential to that in

Prandtl theory for the ase of neutral strati�ation, as far as other types of

strati�ations are onerned the modi�ed oe�ient is used. A positive feature is

that we do not have to re�ne mesh signi�antly near solid surfaes, but the size

of the boundary ells should be from 10 to 15 times larger than the roughness

length.

There is a onventional pratie [2℄ to reprodue the onditions of a �eld

experiment in a wind-tunnel to augment the amount of data obtained in the

�eld test. We tested our ode with a �eld data of the experiment arried out in

Oklahoma-ity [3℄. A omparison of measured and alulated onentrations are

shown in �g. 1 only for surfae points, where squares represent alulated values

and triangles denote measured values.
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Figure 1. A omparison of measured and alulated onentrations

As an be seen, our predition of the maximum value of surfae onentration

is lose to the measured value with an auray of 5%.Taking into aount that

it is a ruial point for our ode to predit maximum onentrations fairly well

due to the fat that it onerns safety analysis issue, we an onsider the result

as a good one.Nevertheless, our ode su�iently underestimates the value of

onentration measured at the point 13. It an be explained by an existene of

steep gradients of onentration in the viinity of the point.

Atually, a thorough examination of the site of station 13 disposition distint-

ly reveals a presene of several trees down the street, whih ould be a signi�ant

obstale for the �ow and may dramatially hange the harater of onentration

iso-lines. Sine it is di�ult to embed in geometry suh omplex objets as trees,

the simulated and experimentally measured �ow may di�er onsiderably. There-

fore, to make reasonable judgements about simulated results one should arry
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out a sensitivity analysis of the results obtained. As an be seen from �g. 2,

whih demonstrates a sharp growth of onentration along the street, the results

strongly depends on the seletion of the measurement point.
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Figure 2. A sensitivity analysis of onentration distribution

Despite of the, so-alled engineering problems, the issues onsidered in our

report an not be solved rigorously. It is required,in a sense, a simplisti approah

to be applied to all the aspets of suh a problem, inluding the geometry of

objets, initial and boundary onditions. All in all, our approah provides a

su�ient degree of auray in omparison with more sophistiated models suh

as FEM3MP (USA,LLNL) [4℄.
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Introdution

For the desription of proesses of impurity distribution in the atmosphere

(domain ) it is used three-dimensional linear turbulent di�usion equation [1℄

∂q

∂t
+ ~v · grad q = div( ~K · grad q) + f(M) · g(t), (1)

at following onditions q
∣∣∣
t=0

= q0 , q
∣∣∣
∂D×[0,H ]

= 0 , ∂q
∂z

∣∣∣
z=0

= 0 , q
∣∣∣
z=H

= 0 ,

where q = q(M, t) � onentration of an pollution impurity, M = (x, y, z) �

spatial oordinates of a point, ~v = (vx, vy, vz) � vetor of speeds of a wind,

~K =
(Kx, Ky, Kz) � vetor of oe�ients of turbulent di�usion, f(M) � funtion

desribing spatial arrangement of a pollution soure, g(t) � ation intensity of

soure.

In present study a speial ase of the identi�ation problem for intensity

of the soure is studied in appliation to the modelling of the transport of air

pollution [2℄. The onsidered approah uses as input parameters the set of known

sensitivity oe�ients and orresponding pollution measured in given loations

Mj = (xj, yj, zj) :

cji, j = 1, . . . , J, i = 1, . . . , N,

where cji � onentration measured by jth sensor at the moment of time ti , J
is the number of sensors, N is the number of time steps.

Measurements are taken in time intervals ∆t .
Let's onsider, that an error of onentration measurements is additive

cji = q(Mj, ti) + δ · γ,

where δ � root-mean-square error of sensor measurements, γ � standardized

Gaussian random variable (Average(γ) = 0 , V ariance(γ) = 1) .
The identi�ation problem for a soure is haraterized by solution insta-

bility to errors of onentration measurements also demands speial methods

of the solution [3, 4, 5℄. To solve the problem were used methods step-by-step

regularization and sequential funtion spei�ation.
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Sequential funtion spei�ation method

Linearity of the problem (1) allows to use the superposition priniple and

numerial analogue of Duhamel's theorem

qji = q0 +
i∑

n=1

gn ·∆φj(i−n), (2)

where qji = q(Mj, ti) , ∆φj(i−n) = φj(i−n+1) − φj(i−n) , φji = Q(Mj, ti) , Q(M, t) �

solution of the diret problem (1) at g(t) = 1 and q
∣∣∣
t=0

= 0 .

The value φji is alled step sensitivity oe�ient, and the value ∆φji � pulse

sensitivity oe�ient.

We shall estimate gi , onsidering g1, g2, . . . , gi−1 are known values, alulated
on the previous steps. For giving stability to the solution of the inverse problem

we shall onsider g(t) on several (r ) time intervals at one. At r = 1 the

method step-by-step regularization turns out. r is disrete parameter of regular-
ization. Let's onsider, that gi, gi+1, . . . , gi+r−1 are onneted by some funtional
dependene.

Using (2) for the moments of time ti, ti+1, . . . , ti+r−1 let's write down the

matrix equation

Φ · g = Q− q0 −Q|g=0, (3)

where Φ ∈ Rr·J×r
, g ∈ Rr

, Q,Q
∣∣
g=0
∈ Rr·J

, Φk, Qk, Qk|g=0 ∈ RJ
,

Φ =




Φ0 0 · · · 0
Φ1 Φ0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

Φr−1 Φr−2 · · · Φ0


 , Q =




Q0

Q1
.

.

.

Qr−1


 , Q|g=0 =




Q0|g=0

Q1|g=0
.

.

.

Qr−1|g=0

,

g =




gi
gi+1
.

.

.

gi+r−1


 , Φk =




∆φ1(i+k)
∆φ2(i+k)

.

.

.

∆φJ(i+k)


 , Qk =




q1(i+k)
q2(i+k)

.

.

.

qJ(i+k)


 , Qk|g=0 =




q1(i+k)|g=0

q2(i+k)|g=0
.

.

.

qJ(i+k)|g=0


 ,

qj(i+k)|g=0 =
i−1∑
n=1

gn ·∆φj(i+k−n) . The Φ is the low triangular blok matrix of

Toeplitz type.

The equation (3) an be solved exatly only for the ase r = 1 and J = 1
(Stolz solution) [5℄. In this ase the solution of the inverse problem frequently

instably. In ase using of several time steps (r > 1) or several sensors (J > 1)
the equation an be solved only approximately by means of the least-squares

method.

We minimize the sum of squares of di�erenes between measured C and

alulated Q values of onentration

S = (C−Q)T · (C−Q)→ min, (4)
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where C =



C0

C1

· · ·
Cr−1


 , Ck =



c1(i+k)
c2(i+k)
· · ·
cJ(i+k)


 .

It is possible to approah the solution of the equation (??) in two ways:

• to solve equations set with r unknown values gi, gi+1, . . . , gi+r−1 ;

• to redue number of unknown values onsidering,

that gi+1, gi+2, . . . , gi+r−1 is expressed by mean of some funtional depen-

dene from gi and from the previous values gi−1, gi−2, . . . , gi−p .

In the �rst ase values gi, gi+1, . . . , gi+r−1 an turn out unrelated values them-

selves, though in pratie of values of intensity g(t) annot vary at arbitrarily.

In the seond ase the hosen funtional dependene provides improvement of

smoothness and stability of solution. The funtional dependene is a regulariza-

tion fator.

Then the sequential estimation algorithm will look like

1. for the hosen funtional dependene gi+1, gi+2, . . . , gi+r−1 from gi and

gi−1 we shall estimate the unique unknown value gi ;

2. we shall pass to a following step, temporarily assuming dependene

g(i+1)+1, g(i+1)+2, . . . , g(i+1)+r−1 from g(i+1) and g(i+1)−1 .

Let this funtional dependene looks like

g = A · gi +B · gi−1,

where A,B ∈ Rr
.

We onsider the elementary ase of funtional dependene � the assumption

of a onstany g(t) during r the sequential intervals of time

gi = gi+1 = · · · = gi+r−1,

and also a ase of linear dependene between gi, gi+1, . . . , gi+r−1

gi+k = gi + k · (gi − gi−1) = (k + 1) · gi − k · gi−1, k = 0, 1, . . . , r − 1.

We shall �nd the estimation of intensity gi

ĝi =
(
(Φ · A)T · (Φ ·A)−1 · (Φ ·A)T · (C− q0 −Q|g=0 −Φ · B · gi−1 (5)
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Results of omputing experiments

Using number of methodial problems numerous alulation experiments

are lead. Stability numerial approximation to desired value intensity are

onstruted, inluding at presene of measurement errors in measurements

(δ = 0÷ 0, 03 · qmax ). Sensors are settled down outside of an operative range

of a soure (f(M) = 0) and in an operative range of a soure (f(M) 6= 0).
The root-mean-square error was used for the aount of auray of intensity

estimation g(t)

σg =

√√√√ 1

N

N∑

n=1

(
g((n− 1/2) ·∆t)− gn

)2
.

For eah sensor there is the ritial step ∆tst[1] , suh, that as eah step of

the solution of the inverse problem ∆t > ∆tst[1] the solution is stability, i.e. the

step-by-step regularization e�et takes plae.

The desire to inrease the auray of intensity estimation, reduing a step on

time, leads to instability of the solution of inverse problem. Using several sensors

(J > 1) the sensor with smaller ∆tst[1] has prevailing in�uene. In this ase it

is possible to use funtion spei�ation method with several (r > 1) sequential
steps on time.

The analysis of results of numerial experiments allows to draw a onlusion,

that for pair numbers (∆t/∆tst[1], δ) , ∆t/∆tst[1] ∈ [0, 1; 1] , δ ∈ [0; 0, 03 ·qmax] it
is possible to pik up r and in this ase errors of estimation g(t) will be minimal.

The information of onentration measurements from sensors is understand-

ing sequentially in the onsidered method, that allows to organize the on-line

monitoring over emissions of pollution in the atmosphere.
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Due to the drasti growth of omputer performane in the last deades, urban

emission simulations an provide a su�ient resolution of �ows around buildings

and other obstales. Despite of the promising prospets a ross-veri�ation of

di�erent numerial models applied to the same problem learly demonstrated

a substantial disrepany of the results. Taking into aount that suh models

are intended for dealing with many ruial problems (e.g. a safety analysis of

nulear objets, the estimation of terroristi threats, urban planning), a thorough

experimental validation of obtained results is needed.

To �ll the gap between alulated results and experimental data an initia-

tive [1℄, alled COST 732, in the frame of COST (European Cooperation in

Siene and Tehnology) ativity was proposed. The main goals of the initiative

were to establish a ommonly aepted quality assurane proedure for the mod-

els in question and provide researhers with data sets that are quality heked

and ommonly aepted as a standard for model validation purposes .

To attain these objetives the researhers from 22 European ountries ar-

ried out a set of numerial simulations using 12 CFD models and ompared

the alulated results with two �eld experiments seleted as su�iently omplex

test ases: the Mok Urban Setting Test (MUST) and the Joint Urban 2003

Oklahoma City (OKC) Atmospheri Dispersion Study.This work is dediated to

ross-veri�ation of a programm blok for aerothermodynamis modelling in ase

of a real 3D objet omprising numerous obstales(the MUST experiment) and

a blok for alulation of the radiation situation in the viinity of an objet of

omplex geometry.

MUST presents a regular array of 120 ontainers situated in a �at desert

in the state of Utah. The �eld data was supplemented with data measured in

a wind-tunnel experiment [2℄. The data are olleted in form of Exel sheets

free-available from Internet.

1
The work of this author is supported by GK �H.4x.44.9Á.14.1037
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The CFD models involved in veri�ation inlude general purpose odes (e.g.

CFX, FLUENT, STAR_CD) as well as speially developed odes for urban emis-

sion simulations (M2UE, MISKAM, VADIS). Table 1 presents the some results of

the statistis proessing of the measured and alulated values of two wind om-

ponents based on onventional riteria for a quantitative analysis of aerothermo-

dynamis modelling in ase of industrial and urban buildings.The total amount

of the measurement points is 566.

MISCAM Length

(Number

of grid

points

per

obstale)

Width

(Number

of grid

points

per

obstale)

Height

(Number

of grid

points

per

obstale)

U,

hit

rate

%

W,

hit

rate

%

U,

FAC2

%

W,

FAC2

%

Standard k−ǫ 24 6 5 73 16 93 14

Standard k−ǫ 12 3 5 77 21 92 27

Standard k−ǫ 12 3 5 75 21 90 29

Modi�ed k− ǫ 12 3 5 81 15 89 12

Modi�ed k− ǫ 15 3 5 79 14 91 12

Modi�ed k− ǫ 24 5 5 75 20 90 31

CFX

Standard k−ǫ ≈ 13 ≈ 5 ≈ 4 82 18 94 23

Standard k−ǫ 13 5 4 76 15 86 16

Shear Stress

Transport

(SST) k − ω

13 5 4 1 11 1 11

SSG Reynold

Stress turbu-

lene model

13 5 4 60 20 73 27

Our model 24 5 5 71 20 86 27

Table 1. Models ross-veri�ation

The �rst riterion, alled hit rate q , spei�es the fration of model results that
di�er within an allowed range D or W from the omparison data. D aounts

for the relative unertainty of the omparison data. W desribes the repeatability

of the omparison data.

q =
N

n
=

1

n

n∑

i=1

Ni with Ni =

{
1 for

∣∣∣Pi−Oi

Oi

∣∣∣ ≤ D or |Pi − Oi| ≤ W

0

where Pi and Oi are modelled and experimental results respetively.The seond

riterion is the fator of two observations (FAC2) de�ned in a similar fashion.
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FAC2 =
N

n
=

1

n

n∑

i=1

Ni with Ni =





1 for 0.5 ≤ Pi

Oi
≤ 2

1 for |Pi| ≤W or |Oi| ≤W

0

The results of our model is ompared against the results obtained by two mod-

els(speialized MISCAM and general purpose CFX) on grids of approximately

the same resolution as ours.The researhers onduted series of alulations vary-

ing the type of wall funtions and grid resolution of the obstales. Parameters

W and D are taken to be equal to 0.034 and 0.25 respetively.

Our model ahieves omparable results without using wall-funtions and for

pratially the same grid resolution

To alulate doses in ase of omplex geometry of the objet and an arbitrary

shape of the loud one should de�ne the visibility funtion for all the points of

the air spae and then integrate exposure inomes from all visible elementary vol-

umes. Due to a large amount of alulations to be performed a parallel algorithm

is proposed.

To verify the proposed algorithm a program is written for alulation of dose

rates from the loud in the viinity of a ube or hemisphere, as well as dose rates

from the surfae in the viinity of a hemisphere taking into aount the surfae

of the hemisphere itself.The visibility funtion of arbitrary points is derived from

the analytial equation of the surfae of the objet. The sattering and absorbtion

e�ets are also taken into aount.

The tests were arried out in a domain with dimensions : x =
[−500; 500], y = [−500; 500], z = [0; 500], and the size of ells equal to 10 m.

This size is on�rmed as a relevant one on the base of alulations on �ner

meshes. As test objets a hemisphere and a ube were taken with radius and

edge equal to 200 m. Volume and surfae onentration was onsidered to be 1

Bq/m3
in all the spae and 1 Bq/m2

on all surfaes respetively. The �gures

below demonstrate the dependeny of dose rate relative error along a straight

line on the distane from an arbitrary point of this line. Fig.1 presents the rel-

ative error hange along a straight line lying at a height of 245 m and parallel

to the horizontal plane. The on�guration of the segment of the line is shown in

�g. 2.

In �g. 3 and 4 the ase with a ube is presented

An example of more realisti distribution of onentration is shown in �g. 5

and 6. The dimensions of the domain were 100 m in eah diretion.The ompu-

tational grid was homogeneous and the mesh size was equal to 1 m.There were

two pairs of parallelepipeds with dimensions 16×16×70 and 21×21×50 . The
geometri enters of the �rst pair were in the points with oordinates (37,5; 37.5;

35) and (62,5; 62,5; 35), of the seond - in (70; 30; 25) and (30; 70; 25). A soure

with intensity 0.2 GBq/s and duration of 500  was situated in point(39; 20; 7).

The veloity of dry deposition no horizontal and vertial surfaes was taken as
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Figure 1. Relative error

Figure 2. The on�guration of the segment

Figure 3. Relative error

Figure 4. The on�guration of the segment

0.02 m/s . it is worth mentioning that in �g. 5 and 6 the distributions of dose

rates from the loud and the surfae are demonstrated on the moment the release

is �nished.Moreover all values are normalized in referene to the maximum value
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of dose rates from the loud and the surfae respetively.

Figure 5. Isolines of dose rate from the loud

Figure 6. Isolines of dose rate from the ontaminated surfaes (buildings and

ground)
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COMPARISON ANALYSIS AND PARALLEL

IMPLEMENTATIONS OF TWO SEMI-LAGRANGIAN

TECHNOLOGIES FOR AN ADVECTION PROBLEM

1

Efremov A.A., Karepova E.D., Vyatkin A.V.

Institute of Computational Modeling SB RAS, Krasnoyarsk, Russia

Nowadays there is a lot of algorithms of the family of semi-Lagrangian meth-

ods. This approah provides unonditional stability and allows one to use large

time steps.

The method presented in [1℄ is based on a square grid only, it takes into a-

ount the boundary onditions, and it has theoretial justi�ation of onvergene

with the �rst order of auray. Moreover, a disrete analogue of the balane equa-

tion holds when going from an atual time layer to the next one. However, this

algorithm is both ompute-intensive and resoure-intensive, therefore its parallel

implementation is an urgent and preferable task. Notwithstanding the algorithm

is well-parallelizable (it is expliit with respet to time and data independene

in the general spae loop) our �rst attempts to use CUDA tehnology [1℄ faed

severe restritions of general-purpose GPU arhiteture.

We have srutinized the bottlenek of our sequential algorithm and its parallel

versions and the primary auses of poor CUDA performane have been deteted.

In our algorithm the biggest part of omputation is oupied by integration

stage. The proedure of determining the mutual arrangement of a urvilinear

quadrangle and a grid on a previous time level is espeially resoure-intensive.

This ode has many �ow ontrol instrutions (�if� statements, mainly) and a

deep nesting level of funtions.

We have revised the integration stage at the previous time level in order to

improve an e�ieny of the parallel implementation of our algorithm. In this

regard, in [2℄ another algorithm of integration over a urvilinear quadrangle at

the previous temporal level was proposed. The algorithm is based on an inte-

gral transformation and its Jaobian approximation. We have developed this

approah in suh a way that now it allows to esape deep nesting level of fun-

tions and to solve e�etively the problem under the �ne grids. However, we

sari�ed a onservatism of the disrete analogue and a theoretial justi�ation

of onvergene.

Numerial experiments orroborate a good CUDA performane of the new

version of the algorithm.

1
The work was supported by Russian Foundation of Fundamental Researhes (grant 14-01-00296-a)
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ON NUMERICAL CALCULATION OF SHAPES OF

CYLINDRICAL INCLUSIONS MIGRATING

THROUGH A CRYSTAL FOR PARTICULAR CASE OF

INTERFACIAL ENERGY ANISOTROPY

Garmashov S.I., Prikhodko Y.V.

Southern Federal University, Rostov-on-Don, Russia

The migration of liquid inlusions through a non-uniformly heated rystal

[1-3℄ ours beause of the thermodynami disequilibrium originating along the

solid-liquid interfae under the ation of temperature gradient. The tendeny of

the system to restore the equilibrium state leads to the dissolution of the rystal

substane at the hotter parts of the solid-liquid interfae, the rystallization at

the older parts of the interfae, and mass transfer in the liquid inlusion. As a

result of this mass transfer, the liquid inlusion moves through the rystal. Ex-

perimental data on the inlusion migration in rystals under di�erent onditions

and, in partiular, on the non-equilibrium inlusion shape, ontain information

on kinetis of the rystallization and dissolution proesses, the interfaial energy

and its anisotropy, and other parameters. In order to extrat this information

from the experimental data it is neessary to have a mathematial model of the

inlusion shape.

One of suh models (for the ase of ylindrial inlusions) has been proposed

in [4℄. The advantage of this model is in opportunity of alulating the inlusion

shape and veloity for arbitrary anisotropy of both the interfaial energy and the

interfae kinetis, and for arbitrary orientation of the temperature gradient. It is

possible due to an approximation (proposed in [2℄) of the solid-liquid interfae by

a set of �at faets, eah of whih is haraterized by both the presribed meh-

anism of growth (dissolution) and the value of spei� interfaial energy γi in
aordane with a �xed dependene γ(ϕi) , where ϕi is the angle determining the
orientation of the ith faet. The alulation of the inlusion shape and veloity

in aordane with model [4℄ is based on numerial solving a system nonlinear

algebrai equations for the faet sizes. But beause the omputational time in-

reases onsiderably with inreasing the number of faets, it makes sense to use

the model [4℄ in the ase if the anisotropies of interfae kinetis and interfaial

energy are desribed by rather ompliated funtions.

In the present paper we onsider a partiular ase of the interfaial energy

anisotropy desribed by the funtion γ(ϕ) in the form:

γ(ϕ) = γmin + (γmax − γmin)| sin(ϕ)|, (1)

where γmin , γmax are the minimal and maximal values of the interfaial energy.

The dependene (1) (see Fig. 1(a)) orresponds to the ase when the inlusion

is on�ned by two atomially-�at (singular) parts of the solid-liquid interfae

with the interfaial energy γmin (at ϕ = 0, π ) and by two atomially-rough
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urvilinear (non-singular) parts with the interfaial energy γmin < γ ≤ γmax .
The equilibrium ross-setional shape of a ylindrial inlusion for γ(ϕ) in the

form [1℄ is plotted in Fig. 1(b).

Figure 1. The dependene γ(ϕ) in the form (1) (a) and the orresponding ross-

setional shape of ylindrial inlusion in equilibrium (b) ( the inlusion boundary

parts I are the singular interfaes with the width of ws0 and the inlusion bound-
ary parts II are the non-singular interfaes)

A similar problem have been onsidered in [3℄ with an assumption that the

interfaial energy anisotropy is desribed by the funtion

γ(ϕ) =

{
γmin, ϕ = 0, π
γmax, ϕ 6= 0, ϕ 6= π.

(2)

However, the funtion γ(ϕ) in the form (1) is more adequate to the real situ-

ation and, therefore, the onstrution of the inlusion shape model is of interest

for this ase. In the present work, similar to the model [3℄, we onsider the ase

when the temperature gradient is direted normally to the singular parts of the

inlusion boundary.

The omplexity of alulating the inlusion ross-setional shape for γ(ϕ) in
the form (1) (in ontrast to the problem onsidered in [3℄) is aused by that the

funtion y(x) desribing the inlusion shape is the improper integral as follows:

y(x) =
wc
2

+

∫ x

0

−aξ2/2− bξ + 1√
1− (−aξ2/2− bξ + 1)2

dξ, (3)
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where a , b are the oe�ients alulated from the migration proess parameters;

wc is the width of the older singular part of the interfae (at x = 0). The x -
values hange from 0 to ℓ , where ℓ is the thikness of the ylindrial inlusion;
the value 2y(ℓ) orresponds to the width (wd ) of the hotter singular part of the
interfae (at x = ℓ).

The integrand from (3) and the numerially alulated funtion y(x) are

plotted in Fig. 2. As follows from Fig. 2(a), the integrand is an unbounded

funtion at x = 0 and x = ℓ . These singularities of the integrand restrit the

appliation of Simpson's rule [5℄ for alulating the funtion y(x) beause the

alulation error of this method for the onsidered ase beomes rather high near

the bounds of integration.

Figure 2. A plot of the integrand (a) and the orresponding alulated ross-

setional shape of the ylindrial inlusion (b), migrating in the diretion of the

temperature gradient G

Fig. 3 shows the rather slow onvergene of Simpson's rule (the dush-dotted

urve). Aitken's proess [5℄ allows to derease the alulation error of Simpson's

rule, but the onvergene remains slow (see the dushed urve in Fig. 3).

To solve the problem we used a tehnique desribed in [5℄, the essene of

that is in separating out the singularities and using speial quadrature formulas

taking into aount the harater of these singularities. Besides, Aitken's proess

[5℄ was used to rise the auray of the numerial integration with using the

dedued quadrature formulas. As follows from both Fig. 3 and the inset in it

(see the solid urve), the proposed tehnique for alulating the inlusion shapes

possesses the high onvergene and, therefore, provides the small omputational

time.
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Figure 3. The onvergene of numerial integration in the ase of using Simpson's

rule (dush-dotted urve), Aitken's proess for Simpson's rule (dushed urve), and

the method of separating singularities (with Aitken's proess) (solid urve) (n
is the number of nodes)

Figure 4. The omputer program developed for alulating the veloity and ross-

setional shape of the migrating inlusion in the ase of the interfaial energy

anisotropy desribed by the funtion (1)
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On the base of this tehnique, the omputer program for alulating the ross-

setion shape and veloity of ylindrial inlusions migrating through a rystal

has been developed. The program interfae is presented in Fig.4.

The inlusion shape and veloity are alulated with assumptions that: (i) the

interfaial energy anisotropy is desribed by the funtion (1); (ii) the temperature

gradient is normal to the singular (�at) parts of the solid-liquid interfae with the

orientation angles ϕ = 0, ϕ = π . The program allows alulating and plotting the

dependenes of the inlusion veloity and geometri parameters of the inlusion

shapes on various parameters of the migration proess, suh as the ross-setional

area, the temperature gradient, the ratio γmax/γmin , and so on.
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IMPULSION IN MODELS OF CONCORDANCE OF

PUBLIC AND PRIVATE INTERESTS

Gorbaneva O.I.

Southern Federal University, Rostov-on-Don, Russia

The present work is devoted to the system ompatibility with feedbak (im-

pulsion mehanism) in models of onordane of publi and private interests

(CPPI-models) and, in partiular, to investigation of eonomi and administra-

tive orruption if the orruption funtions are given. These funtions desribe

the in�uene of bribe on eonomi and administrative ontrol.

A two-level system onsisting of the supervisor and several agents subordinated

to him is onsidered [1℄-[2℄. The models of onordane of publi and private

interests have the form

gi(u) = pi(ri − ui) + sic(u)→ max, 0 ≤ ui ≤ ri, i ∈ N ; (1)

g0(u) =
∑

j∈I
gj(u)→ max, 0 ≤ si ≤ 1,

∑

j∈I
sj =

{
1, ∃i : si > 0,
0, otherwise,

(2)

where ri is a resoure of the i-th agent; ui is a share of the resoure assigned

by him for the publi purposes; c(u) is the publi payo� funtion; si is the i-th
agent's share of publi payo�; pi(ri− ui) is a private payo� funtion of the i-th
agent, gi(u) is the agent's total payo�, g0(u) is the supervisor's payo�, N is

the set of agents. Funtions are ontinuously di�erentiable and onave on all

variables.

In the ase of eonomi impulsion, si = si(ui) or si = si(u) . Using the �rst order
ondition we obtain that the system ompatibility inside the area of admissible

ontrols is possible only if

∂si(u)

∂ui
c(u) = [1− si(u)]

∂c(u)

∂ui
, i ∈ N ; (3)

For farther analysis it is possible to use two approahes: empirial and theo-

retial ones [3℄. Within empirial approah the widespread pratial methods of

publi payo� alloation are investigated. For example, proportional alloation

mehanism

si(u) =

{ ui∑
j∈N uj

, ∃m : um > 0,

0, otherwise,

In this ase (3) has the form

∑

j 6=i
uj[

∂c(u)

∂ui

∑

j∈N
uj − c(u)] = 0, i ∈ N.
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The expression in square brakets is equal to zero only if c(u) is linear, hene

the proportional alloation mehanism is system ompatible in CPPI-models in

whih the publi payo� funtion is linear.

Theoretial approah is based on the Germeyer theorem.

In the ase of administrative impulsion, the most natural interpretation of feed-

bak is orruption, and an additional ontrol level level is appeared.

As far as orruption in CPPI-models is onerned it is reasonable to distinguish

administrative and eonomi orruption aording to the authors' approah. The

prinipal e�ets on the set of admissible strategies or on purpose funtions of the

agents and performs administrative and/or eonomi ontrol of agents' ativi-

ty respetively. The prinipal is assumed to be non-orruptive, but real ontrol

funtions on behalf of him are performed by a supervisor who an weak adminis-

trative or eonomi demands in exhange for a bribe. Respetively, administrative

and/or eonomi orruption, i.e. feedbak on bribes of these ontrols ours.

We assume that if there is no orruption the publi payo� in model (1) - (2) is

alloated among prinipal, supervisor and agents in ratio p0 , r0 ,
∑n

j=1 s
0
j , where

p0 + r0 +
∑n

j=1 s
0
j = 1 .

This sheme an be desribed by the relation

p = p0 −
n∑

j=1

δj, r = r0 +
n∑

j=1

bjδj, si = s0i + (1− bi)δi, i ∈ N. (4)

where the new shares (4) also satisfy p+ r+
∑n

j=1 sj = 1 . Here δi is inrease of
the i-th agent's share of publi payo� in exhange for a "kikbak", bi is a share
of the i-th agent "kikbak" to the supervisor. Taking into aount eonomi

orruption the CPPI-model (1) - (2) takes the form

gS(b, δ, u) = [r0 +
n∑

j=1

bjδj]c(u)→ max, 0 ≤ δi ≤ 1, (5)

gi(bi, δi, u) = pi(ri−ui)+[s0i+(1−bi)δi]c(u)→ max, 0 ≤ bi ≤ 1, 0 ≤ ui ≤ ri, i ∈ N,
(6)

where gS, gi are payo� funtions of supervisor and the i-th agent orrespond-
ingly. The summand r0c(u) in funtion (5) desribes o�ial supervisor payo�,

and the summand c(u)
∑n

j=1 bjδj desribes his orruption payo�.

The model (5) - (6) an be investigated by two methods: desriptive and nor-

mative ones. In the ase of desriptive approah the orruption funtion δi(bi)
is assumed to be known. Then for agents the game in normal form ours in

whih agent strategies are the pair (bi, ui) . In the ase of normative approah

funtion δi(bi) is de�ned as an optimal guaranteeing supervisor strategy (ontrol
mehanism).

So, in this work the impulsion mehanism in models of onordane of publi

and private interests is investigated, in partiular, mehanisms of administrative
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and eonomi orruption. To investigate impulsion mehanism theoretial and

empirial methods are applied. Within empirial methods proportional and uni-

form alloations are onsidered. To desribe orruption two methods: desriptive

and normative, are applied.
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MESHLESS ALGORITHM FOR VORTICES

DYNAMICS ANALYSIS

1

Govorukhin V.N.

Southern Federal University, Rostov-on-Don, Russia

In this talk the algorithm based on variant of vortex-in-ells method is de-

veloped. The governing equations are the geophysial models of the atmosphere

formulated in terms of stream funtion and potential vortiity. It is a system of

two PDE equations:

Dω

Dt
≡ ωt + ψyωx − ψxωy = 0, (1)

ω = −∆ψ + Λ2ψ − 1

2
γr2. (2)

where ω is a vortiity, ψ is a stream funtion and D/Dt denotes the material
derivative. Here ψx = ∂ψ/∂x , ψy = ∂ψ/∂y , ψxx = ∂2ψ/∂x2 , et. γ = const ,

r =
√
x2 + y2 is the polar radius, Λ2 = f 2

0/gh = const , g is the aeleration

due to gravity, and h is the thikness of the �uid layer. The veloity of the �uid

v = (v1, v2) is expressed via the stream funtion ψ as

v1 = ψy, v2 = −ψx, (3)

The developed algorithm inludes alulating the dynamis of vortex on�g-

uration using a variant of the vorties-in-ells method, the alulation heuristi

harateristis of vortex struture and onstrution of the �eld of loal Lyapunov

exponents in eah moment.

The variant of the vorties-in-ells method was presented in [1, 2, 3℄. The

method is based on vortiity �eld approximation by its values at a set of N �uid

partiles and the stream funtion omputation using the Galerkin method. The

�ow domain is divided into retangular ells. Vortiity in every ell is interpolated

by a third order polynomial. The resultant pieewise ontinuous polynomial ap-

proximation of vortiity is employed to derive analytially Galerkin's oe�ients

of stream funtion expansion. Computed veloity �eld is used for �uid partiles

trajetories alulation as a solution of ODE system of hight dimension

ẋi = ψy(xi, yi), ẏi = −ψx(xi, yi) = v2, i = 1..N (4)

Analysis of heuristi harateristis of strutures is based on alulation of

oordinates of enters of vortiity of pathes

x(k) =
1

Ω(k)

∫

S(k)

xω(k)(x, y)dS, y(k) =
1

Ω(k)

∫

S(k)

y ω(k)(x, y)dS. (5)

1
Supported by RFBR Grant N 14-01-00470
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Figure 1. Vortiity �eld (top line), mixing map (seond line), streamline and

enters of vortiity (third line) and FTLE �eld (bottom line) for di�erent time

moments.

were in summation uses partiles wih was inluded in vortie with number k
in initial state. The topology of vortex strutures an be studied using (5) and

two heuristi harateristis: the distanes di,j between pathes and orientation

of triangles

θi,j,k =

∣∣∣∣∣∣

x(i) y(i) 1
x(j) y(j) 1
x(k) y(k) 1

∣∣∣∣∣∣
(6)

The evolution of partiles through the �ow is traked using a �ow map, whose

spatial gradients are subsequently used to setup a Cauhy Green deformation ten-

sor for quantifying the amount by whih the neighboring partiles have diverged

over the length of the integration. The maximum eigenvalue of the tensor is used

to onstrut a Finite Time Lyapunov Exponent (FTLE) �eld. The FTLE stru-
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tures divide �ow into regions of qualitatively di�erent dynamis and are used to

loate boundaries of the �ow segments. Any hange in the number of �ow seg-

ments over time is regarded as an instability, whih is deteted by establishing

orrespondenes between �ow segments over time.

The e�etiveness of the algorithm was studied in a number of test ases the

interation known vortex on�gurations. We onsidered the vortex on�guration

at the initial time of two or three vortex pathes with the following distribution

of vortiity

ωI(xc, yc) =

{
K e−5((x−xc)

2+(y−yc)2),
√
(x− xc)2 + (y − yc)2 ≤ 9

10

0,
√
(x− xc)2 + (y − yc)2 > 9

10

(7)

were K ≈ 1.6195 . . .
The �gure shows the alulation results for the initial on�guration

ω0(x, y) = ωI

(
−1− d

2
, 0

)
+ ωI

(
1 +

d

2
, 0

)
(8)

Calulations fully reprodue the results of physial experiments presented in

iteGov5.
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COMPACT DIFFERENCE SCHEMES FOR ROD
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Introdution

We onsider �nite-di�erene approximations for the rod lateral vibrations

equation

ρ
∂2u

∂t2
− ∂

∂x

[
R2ρ

∂3u

∂x∂t2

]
+

∂2

∂x2

[
ER2∂

2u

∂x2

]
= f, (1)

where ρ is rod's density, R � radius, � Young module; x ∈ [0, L], f = f(t, x)
� foring. The equation in partial derivatives is not resolved with respet to

higher temporal derivative, i. e. it has not Cauhy-Kovalevsky type, but Poinare-

Sobolev one. However, it is not an obstale for its high-order approximation.

We have investigated here the both ases: R = const , and R = R(x) .
We ompare high-order di�erene ompat and Crank-Niolson-type shemes.

We ompare the following properties: order of approximation, stability, ener-

gy onservation law (for homogeneous ase f = 0). The ase of the variable

oe�ients of the di�erential equation is muh more di�ult for a good approx-

imation. High-order ompat approximation for a set of boundary onditions is

also disussed.

Compat di�erene sheme

We use the following 3-5-3-point stenil, see Fig.1, for a ompat di�erene

sheme, whih an be expressed as a linear algebrai equations for the values of

the grid funtions u and f in stenil's knots:

a∗(un+1
0 + un−10 ) + aleft(u

n+1
−h + un−1−h ) + aright(u

n+1
h + un−1h ) + bun0+

+cleftu
n
−h + crightu

n
h + dleftu

n
−2h + drightu

n
2h =

= p0,left(f
n+1
−2h,j + fn−1−2h,j) + p0,right(f

n+1
2h,j + fn−12h,j )+ (2)

+q0,left(f
n+1
−h,j + fn−1−h,j) + q0,right(f

n+1
h,j + fn−1h,j ) + r0(f

n+1
0,j + fn−10,j )+

+p1,leftf
n
−2h,j + p1,rightf

n
2h,j + q1,leftf

n
−h,j + q1,rightf

n
h,j + r1f

n
0,j

Here n is a temporal step number, and the lower index shows spatial position

of stenil points over the stenil's enter. These seventeen onstants are alulated
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for every spatial grid point xj by substituting the following test monomials

uk(t, x) (see Fig. 1) and the orresponding right-hand sides, were alulated

aording to (1), see for details (Gordin, Tsymbalov, 2014):

fkj(t, x) =
∂2uk
∂t2
−R2

j

∂4uk
∂x2∂t2

− 2Rj(R
′

j)
∂3uk
∂x∂t2

+ 2Eρ−1(R
′

j)
2∂

2uk
∂t2

+

+E R2
jρ
−1∂

4uk
∂x4

+ 4E Rj(R
′

j)ρ
−1∂

3uk
∂x3

+ 2ERjρ
−1∂

2uk
∂x2

(R
′′

j).

Here Rj, R
′

j, R
′′

j are values of R(x), ∂R(x)
∂x

, ∂
2R(x)
∂x2

at xj . The derivatives may
be evaluated either analytially or numerially (the high-order ompat relations

for the �rst and seond derivatives, see (Patterson, 1983)).

Figure 1. Stenil and Newton's diagram of test monomials uk(t, x) for ompat
di�erene sheme (2).

Crank-Niolson-type sheme

The Crank-Niolson-type sheme an be written as:

a∗(un+1
0 + un−10 ) + aleft(u

n+1
−h + un−1−h ) + aright(u

n+1
h + un−1h )+

+eleft(u
n+1
−2h + un−1−2h) + eright(u

n+1
2h + un−12h ) + bun0 + cleftu

n
−h + crightu

n
h =

= p0,left(f
n+1
−2h,j + fn−1−2h,j) + p0,right(f

n+1
2h,j + fn−12h,j )+ (3)

+q0,left(f
n+1
−h,j + fn−1−h,j) + q0,right(f

n+1
h,j + fn−1h,j ) + r0(f

n+1
0,j + fn−10,j )+

+p1,leftf
n
−2h,j + p1,rightf

n
2h,j + q1,leftf

n
−h,j + q1,rightf

n
h,j + r1f

n
0,j

We need to inverse on every temporal step of CN-sheme a �ve-diagonal

matrix (see Fig.2) against three-diagonal one for the ompat sheme (2).

Stability

Our numerial experiments demonstrated:
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Figure 2. Stenil and Newton's diagram of test monomials uk(t, x) for Crank-

Niolson-type sheme (3).

• The onditional stability of the ompat di�erene sheme (2) if ν∗ <
µ∗ + 1/12 ; here and after µ∗ = (R∗)2h−2, ν∗ = (R∗τ)2Eρ−1h−4, R∗ =
maxjR(xj) .

• The absolute stability of Crank-Niolson sheme (3).

We have also disovered stability issues for a small number of spatial grid

points N in ase of low smoothness order of rod's radius funtion R(x) .

Numerial experiments

For shemes' errors evaluation, we use mesh norms C and L2 as well as the

mesh energy norm

√
R(x)2 ‖(∂tuanal − δtudiff)2 + E R(x)2ρ−1(∂xuanal − δxudiff)2‖L2

‖R(x)2(∂tuanal)2 + E R(x)2ρ−1(∂xuanal)2‖L2

(4)

Here uanal is analytial solution, udiff is a di�erene one. Usage of norm (3)

allows us to aount the kineti part of solution, while standard C and L2 mesh

norms ignore it.

Table 1. Errors and orders of auray of the solution of (1) with ompat di�erene sheme

(2) (left) and Crank-Nionsol-type sheme (3) (right). Orders of auray exeed fourth for

both shemes in energy norm, seond order for norms C and L2 . Sheme (2) is more aurate

than (3). L = 4π, ρ = 7000, E = 2.1∗108, utest = sin(x)sin(t)+2, R(x) = 0.4+0.01cos2(x), T =
0.2, ν∗ = 0.05

Norm N = 12 N = 24 N = 48 N = 96 RMS

C 1.99-3 6.72-4 1.75-4 4.42-5 1.84

L2 1.62-3 4.75-4 1.24-4 3.13-5 1.90

(4) 3.59-5 9.67-7 4.41-8 2.52-9 4.62

N = 12 N = 24 N = 48 N = 96 RMS

C 3.70-2 9.30-3 2.24-3 5.56-4 2.02

L2 3.02-2 6.57-3 1.59-3 3.93-4 2.09

(4) 3.91-2 1.80-3 1.04-4 6.38-6 4.20
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Conlusion

We on�rmed high auray order for the ompat sheme (2) and for the

Crank-Niolson-type sheme (3). The CS is more exat and eonomial. CN is

absolutely stable and more e�etive when the right-hand side or oe�ients of

the equation (1) are not su�iently smooth.
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At the present time, a signi�ant attention is given to the analysis of nonlin-

ear paraboli systems, alled reation-di�usion systems. These partial di�erential

equations have found a wide range of of pratial appliations in theoretial biol-

ogy, hemistry, physiology, et. In this paper we onsider well-known FitzhHugh-

Nagumo model, a two-omponent reation-di�usion system with ubi nonlinear

reation term, whih was initially developed as nerve impulse propagation model

and has beome a lassial example of exitable media:

vt = ν1∆v + ε(w − αv − β)
wt = ν2∆w − v + µw − w3 (1)

Here v = v(x, t) , w = w(x, t) , x ∈ D , t > 0 , D = [0, 1] or D = [0, 1]× [0, 1] ,
µ ∈ R is a varying ontrol parameter, α > 0, β > 0, ε > 0, ν1 > 0, ν2 > 0 are

�xed model parameters. By setting α = 0, β = 0, ε = 1 in (1) and assuming

di�usion oe�ient equal to eah other (ν1 = ν2 = ν ), we arrive at Rayleigh

reation-di�usion system:

vt = ν∆v + w
wt = ν∆w − v + µw − w3 (2)

When no spatial dependene is assumed, i.e. by setting y1(t) = v(t) , y2(t) =
w(t) , we arrive at lassial Rayleigh ODE system:

ẏ1 = y2; ẏ2 = −y1 + µy2 − y32 (3)

This system ould be transformed to Van-der-Pol system by variable hange.

Both are well-known models, desribing nonlinear relaxation osillations.

The main purpose of the present work is to onstrut an asymptoti approx-

imation of seondary time-periodi solutions of system (2), whih branh from

zero stationary solution as ontrol parameter µ varies. It is a well-known fat

that di�usion does not a�et the behaviour of auto-osillations when zero-�ux

(Neumann) boundary onditions are set on the boundary of domain D , so here

we onsider homogeneous Dirihlet and Neumann boundary onditions, taking

into aount the mixed ase. For more details, see [5℄. Coe�ients of asymptoti

series are omputed by using standard numerial algebra pakages. We also study

numerially the bifurations, taking plae in the system, and the destrution of

periodi regime, whih ours as ontrol parameter µ varies.
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We employ Lyapunov-Shmidt method in the form, developed by V.I. Yu-

dovih [1℄ for onstruting asymptoti expansions. The method is appliable to

ODEs and PDEs, inluding Navier-Stokes equation [2, 3, 4℄.

We ould rewrite system (2) as ODE in funtional spae H :

u̇ = A(µ)u−K(u,u,u); u ∈H. (4)

Here H = L2(D) × L2(D) , u = (v, w) . Linear operator A(µ) : H → H ats

on vetor funtion u = (v, w) , v, w ∈ W 2
2 (D) by the following rule:

A(µ)u = ν∆u+Bu+ µCu.

where ∆ is Laplae operator, B =

(
0 1
−1 0

)
, C =

(
0 0
0 1

)
. Boundary on-

ditions of the system are taken into aount by hoosing the domain of opera-

tor A . Hereinafter we assume that homogeneous Dirihlet boundary onditions

(u|∂D = 0) or mixed boundary onditions (u|S1
= 0; ∂u∂n |S1

= 0; S1 ∪ S2 = ∂D )

are set on the boundary of D . Trilinear operator K(a, b, c) : H3 → H3
is

de�ned by:

K(a, b, c) = (0, a2b2c2) .

Let us �nd ritial value of ontrol parameter µ (i.e. suh value µcr that

some eigenvalues of linear operator A(µcr) are loated on the imaginary axis

and other eigenvalues are loated on the left-hand half plane).

µ
r

=
1

νλ1
+ νλ1 if ν ≥ 1

λ1
; µ

r

= 2νλ1 if ν <
1

λ1
.

If ν ≥ 1

λ1
then monotonous instability takes plae in the system, otherwise

osillatory instability is observed. Hereinafter we assume that ν <
1

λ1
, restriting

our attention to the ase of osillatory instability.

To �nd

2π

ω
-periodi in time solution of (2), where ω -unknown yli fre-

queny of osillations, we set τ = ωt and ε2 = µ − µcr in (4) and arrive

at:

ωu̇− A(µcr)u = ε2Cu−K(u,u,u), (5)

where di�erentiation by τ is denoted by dot symbol. We seek nontrivial 2π -
periodi by τ solution of (5) and unknown yli frequeny ω in the form of

series:

u =
∞∑

i=1

εiui, ω =
∞∑

i=0

εiωi (6)

Inserting these series into (5) and equating the oe�ients of like powers of ε
in both parts of the equation, we arrive at the sequene of equations for the
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unknown 2π -periodi funtions ui and numbers ωi . By solving these equations
one after the other, we �nd �rst terms of the series (6). We showed that soft

loss of stability ours in Rayleigh reation-di�usion system (2). When ε << 1
a stable limit yle exists in the system. First three terms of the series for yli

frequeny ω are equal to zero: ω1 = ω2 = ω3 = 0 , ω4 6= 0 . The expressions for
�rst terms of the series for 2π -periodi by τ solution of (2) are given by:

{
u = εα1(e

iωtϕ+ e−iωtϕ∗) + ε3(α3(e
iωtϕ+ e−iωtϕ∗) + up3(ωt)) +O(ε4)

ω =
√

1− ν2λ21 + ε4ω4 + O(ε5)
(7)

Expressions for α1 , u
p
3 , α3 , ω4 are found expliitly.

We found out that in ase where x ∈ [0, 1] derived formulas have a muh

simpler form. It was shown that for Dirihlet boundary onditions or Neumann

boundary onditions with additional requirement of zero average, expressions for

n-th term of series for 2π -periodi solution ontains only �nite linear ombina-

tions of basis funtions ψk , where k = 2 ∗ n + 1, n ∈ N, k ≤ n . For mixed
boundary onditions, expressions for n-th term of series also ontains linear

ombinations of basis funtions ψk , but k = 2 ∗ n+ 1, n ∈ N, k ≤ n+ 1

2
.

For Dirihlet boundary onditions we have:

µcr = 2νπ2, ω0 =
√
1− ν2π4 ϕ =

i

2ω0

(
1

νπ2 + iω0

)
sin(πx)

u
p
3 = w13(x)e

iτ +w33(x)e
3iτ + ..

w13(x) =
i
√
2

9
(νπ2 + iω0)P

3
1 sin(3πx)

w33(x) = −
i
√
2

9
(νπ2 + iω0)

3[P 1
3 sin(πx)−

1

3
P 3

3 sin(3πx)]

Figure 1. Asymptotial (A) and numerial (B) solution of system (2) in the ase

of Dirihlet boundary onditions (�rst omponent). System parameters are set

to: ν = 0.1, µ = µcr + 0.01
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System (2) was also studied numerially in ases where x ∈ [0, 1] . Di�usion
oe�ient ν was set to ν = 0.1 and values for ontrol parameter µ were taken

suh that µ >> µcr . Several numerial methods were used for numerial integra-
tion of the system: grid method, method of lines, Galerkin method. The results

of all numerial experiments were fully onsistent with eah other.

For the ase of Dirihlet boundary onditions, the destrution of self-

osillating mode was studied numerially. Critial value µcr , orresponding to

di�usion oe�ent ν = 0.1 was equal to µcr = 1.9739 in this ase. For values

of ontrol parameter, less than µcr + 0.01 , self-osillating mode was observed in

the system. Self-osillations were replaed by dual-frequeny quasi-periodi os-

illations as values of ontrol parameter were inreasing. When µ > µcr + 0.05 ,
an inhomogeneous stationary solution was observed in the simulations.

Figure 2. Numerial solution of system (2) (�rst omponent) for three values of

ontrol parameter µ : µ = µcr+0.03 (A), µ = µcr+0.06 (B), µ = µcr+0.1(C).
Di�usion oe�ient ν is set to: ν = 0.1

For the ase of Neumann boundary onditions, numerial simulations revealed

a set of spatially inhomogeneous stationary solutions. Simulations for funtions

u0(x) = v0(x) = cos(πnx), n ∈ N as initial onditions onverged to stationary

solutions, while simulations for all other initial onditions onverged to spatially

homogeneous periodi osillations.

We also studied numerially a generalized version of Rayleigh reation-

di�usion system:

vt = ν1∆v + ε(w − αu)
wt = ν2∆w − v + µw − w3 (8)

where x ∈ [0, 1] × [0, 1] . We used Odeint C++ library together with NVidia

CUDA v. 7.0 to improve performane of the simulations. Numerial integration

of the system was arried out by the method of lines. We onsidered the ase of

mixed boundary onditions and set the following values of system parameters:

ν1 = 0.05, ν2 = 0.00028, µ = 1, ε = 10 . Parameter α was varied. Noisy initial

onditions were onsidered. We observed for α < 0.01 a stable periodi mode in

the system. Starting from α = 0.04 , periodi osillations are replaed by spot

patterns during the evolution of the system. When α > 0.4 , osillations are
no longer observed in the system and it demonstrates the fast onvergene to
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spot patterns. We noted that the �nal on�guration of spots strongly depends

on initial onditions of the system.

Figure 3. Numerial solution of system (8) for di�erent values of parameter α
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Summary: The results of analytial and numerial study of the redued 3D

mathematial models of free water �ows in non-deformable beds are present-

ed. Full hydrodynami models were simulated in �nite-element software pakage

Comsol Multiphysis to verify the redued model. These results suggest that

the proposed 3D redued model of the longitudial slightly sinuous hannel �ow

adequately desribes its hydrodynamis.

Keywords: shallow stream, visous �uid, free surfae, mathematial mod-

elling, numerial study.

Introdution. Di�erent types of mathematial models are used to simulate

hydrologial harateristis of the water streams. The most aurate of them are

based on the full 3D hydrodynami equations of turbulent �ows. However, the

data of the real hydrologial measurements don't have the required preision of

the values of the hydrophysial parameters to obtain aurate solution in pratie,

as well as exat formulation of the initial and boundary onditions for the three-

dimensional partial di�erential equations. This work is devoted to analytial and

numerial study of one of the proposed in [1℄ redued mathematial models of

an longitudial shallow stream. The model is veri�ed by omparing the data of

diret numerial simulation based on the original equations for a visous �uid

and the results obtained on the basis of the redued model.

Redued model equations. Let's onsider slow water �ow in a non-

deformable hannel. We introdue retangular Cartesian oordinates, where the

plane xy lies on the �ow surfae and the axis z points to riverbed. Assume that

the axis x denote the diretion of the �ow and the axis y goes from the left bank

to the right one. The origin of the oordinate system is loated at the middle

of the inlet setion (see Fig. 1). Let's assume that free surfae of the stream is

weakly deformable and is de�ned as z = ξ(x, y, t) , where ξ(x, y, t) � unknown

funtion. The form of hannel is known and desribed as z = h(x, y) . Riverbanks
an be identi�ed by funtions y = l(x, t) and y = r(x, t) impliitly through the

equation

h(x, y)− ξ(x, y, t) = 0 (1)

The tehnique of deriving the redued 3D mathematial models of the �ow is

based on small parameter tehnique, whih has been applied to Reynolds equa-

tions (oupled with the Boussinesq turbulene hypothesis [2℄) written in the

speial dimensionless form. This tehnique was presented in details in [1℄.
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Figure 1. Flow layout and oordinate system and �ow ross-setion

Redued equations in dimensionless form for shallow and longitudial stream

are

p = G(z − ξ)
u = ReGI(J2 − ξJ1) + Fx(h− z)

v = ReG
∂ξ

∂y
(J2 − ξJ1) + Fy(h− z)

w = ReG

(
I
∂

∂x
(J4 − ξJ3) +

∂

∂y

(
(J4 − ξJ3)

∂ξ

∂y

))
+

+(h− z)
(
Fx
∂h

∂x
+ Fy

∂h

∂y

)

∂ξ

∂t
= ReG

(
I

(
∂

∂x
(J4 − ξJ3)− (J2 − ξJ1)

∂ξ

∂x

)
+ (J4 − ξJ3)

∂2ξ

∂y2
+

+
∂ξ

∂y

∂

∂y
(J4 − ξJ3)− (J2 − ξJ1)

(
∂ξ

∂y

)2
)
+

+(h− ξ)
(
Fx

(
∂h

∂x
− ∂ξ

∂x

)
+ Fy

(
∂h

∂y
− ∂ξ

∂y

))

where

J1 =

∫ h

z

dτ

ν
, J2 =

∫ h

z

τdτ

ν
,

J3 =

∫ h

z

J1(x, y, τ)dτ, J4 =

∫ h

z

J2(x, y, τ)dτ

Here u, v, w � longitudinal, transverse and vertial omponents of the �ow ve-

loity, respetively; p � pressure; h � riverbed funtion; ξ � free surfae funtion;

Re � Reynolds number; G � gravity parameter; I � slope parameter; Fx and Fy
� parameters, that denote values and diretion of the external fores; ν � dimen-

sionless funtion parameter, that determines visosity of the stream turbulene.
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Redued model analysys. The hypothesis of Boussinesq an be suess-

fully used to take into aount the turbulene in longitudial hannel �ow with

the redued hydrodynami models. In this ase, it is assuming that the visosity

of the liquid at a given point of the �ow does not depend on the �ow veloity,

but it depends of the oordinates that determine the distane to the bottom of

the rigid bed.

To selet orretly the funtional dependene of ν(x, y, z) , it should be iden-
ti�ed as O(1) at the stream's free surfae (z = ξ ) beause of the hoie of the
Reynolds number [1℄. On the other hand, in the boundary layer (z = h) visos-
ity is de�ned by the moleular properties of the liquid, so values of the visosity

funtion parameter should be very small.

Let's onsider the simplest ase of desribing the visosity funtion ν(x, y, z)
as the linear dependene of z-axis

ν = h2 −
(
h− νh

h

)
z (∗)

where parameter νh is de�ned as

νh = µ

(
Sx
S0

)a

Here µ is determined by moleular visosity of the liquid; S0 and Sx � areas of

the stream ross-setions at x = 0 and at the urrent point x ; a � adjustment

parameter that de�nes the sensitivity of the model to the riverbed deformations.

Formula (∗) has been tested numerially and provides good orrelation with

the solutions of the full equations of hydrodynamis.

Computational experiments. To verify the redued model we ompare

results of the simulation with the data, obtained by solution of the full Navier-

Stokes equations in laminar �ow and the Reynolds equations for the turbulent

stream (k−ǫ turbulene model). For that numerial simulation the CFD module

of the �nite-element pakage Comsol Multiphysis was used [3℄.

For the omparison of the models the form of riverbed was taken as

h(y) =
√
1− (0.2y)2 , I = 0.0001 and aspet ratio of the �ow is 1:10:100

(depth:width:lenght). The longitudinal veloity of the �ow is depited on the

Fig.2.

The form of the hannel h(x, y) = (1+ 0.1 sin 0.1x)(1− (0.2y)2) was hosen
to ompare models in the ase of urvilinear riverbed (see Fig.3).
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a)

b)

Figure 2. The longitudinal veloity of the �ow: (a) � due to the depth on the

fairway's line; (b) � due to the width on the surfae;I � laminar �ow; II � the

k−ǫ model turbulent �ow (1 � oarse mesh, 2 � �ne mesh); III � the 3D redued

model

a)

b)

Figure 3. The longitudinal veloity of turbulent �ow in the urvilinear hannel:

(a) � due to the depth on the fairway's line; (b) � due to the width on the

free surfae; I � 3D redued model; II � k − ǫ turbulene model; 1 � at the

ross-setion of minimum depth; 2 � at the ross-setion of maximum depth
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On Fig.4 the results of the simulation of permanent tail and adverse wind are

presented.

a)

b)

Figure 4. The longitudinal veloity of the turbulent �ow under external fore Fx :
(a) � due to the depth on the fairway; (b) � due to the width on the free surfae;

I � 3D redued model; II � k− ǫ turbulene model; 1 � Fx = 0 ; 2 � Fx = 0.5 ;
3 � Fx = −0.5 ; 4 � Fx = −1.5

Conlusion. To test proposed mathematial models numerial simulations

were made. The results show that redued 3D models adequately desribe the hy-

drodynamis of the natural shallow and longitudial streams. The proposed model

are quite simple and allows us to analyse the in�uene of the shape of the hannel

bed and the e�et of some external fores (e.g. wind) to the harateristis of the

�ow.
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MODIFICATION OF FINITE-VOLUME METHOD FOR

APPROXIMATION DIFFERENTIAL EQUATIONS IN

COMPLEX DOMAIN ON RECTANGULAR GRIDS

1

Shishenya A.V., Chistyakov A.E.

Southern Federal University, Taganrog, Russia

Motivation

When solving modern problems for partial di�erential equations with nu-

merial methods, typially there is a number of requirements for the solution

algorithm, suh as the following:

1. Su�ient auray of the solution of the problems inluding those in om-

plex domains must be provided;

2. The algorithm of the numerial solution must allow e�ient implementa-

tion for multiproessor systems;

One of the most popular methods of numerial solution of di�erential equa-

tions is the method of grids. The solving of the di�erential equations on un-

strutured grids allows desribing the geometry of the domain more aurately,

however, these grids have a number of disadvantages:

1. Derivation of a grid equation from the di�erential one requires more e�ort

on unstrutured grids ompared with strutured;

2. A grid generator is required for reating unstrutured grid eah time the

omputational domain hanges;

3. The working with unstrutured grids requires more operations with RAM;

4. Parallel implementation of numerial algorithms on unstrutured grids

with domain deomposition method requires splitting the nodes of the

omputational grids by proessors.

The algorithms of solving di�erential equations on strutured grids don't

have the former drawbaks, but they have another signi�ant disadvantage � low

preision of the approximation of the omputational domain boundary. Besides,

the disrete boundary of the domain doesn't onverge to the ontinuous one as

the spatial step tends to zero; moreover, the limit of the disrete boundary is

nowhere smooth funtion. Therefore, the disrete problem doesn't onverge to

the ontinuous one and instead it tends to an ill-posed problem.

Modi�ation of the �nite-volume method with partial "fullness"

The proposed �nite volume method with partial "fullness" allows reating

grid equation on uniform retangular grid suh that the obtained disrete problem

1
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onverges to the ontinuous one with �rst order on the boundary and with seond

order in the inner nodes. We assume that the omputational domain Ω is de�ned

with the indiator funtion q that we also all ontinuous fullness funtion. The

grid fullness funtion is de�ned aording to the following formula:

qi+ 1
2 ,j+

1
2 ,k+

1
2
=

1

hxhyhz

∫∫∫

Ω1,1,1
i,j,k

dω =
1

hxhyhz

∫∫∫

D1,1,1
i,j,k

qdω,

where D1,1,1
i,j,k is a ell of the omputational grid and Ω1,1,1

i,j,k = D1,1,1
i,j,k ∩Ω is a ontrol

volume. We assume that the grid fullness funtion is set in the enters of the ells

and the rest grid funtions are set in the nodes. Formulas for approximation the

�rst and the seond derivatives with the proposed method are derived in [1, 2℄.

Here we give only �nal formulas:

∫∫∫
Ω1,1,1

i,j,k

aϕ′xdω ≃ qi+1,j+ 1
2 ,k+

1
2
ai+ 1

2 ,j,k
ϕi+1,j,k−ϕi,j,k

2 hyhz+

+qi,j+ 1
2 ,k+

1
2
ai− 1

2 ,j,k
ϕi+1,j,k−ϕi,j,k

2 hyhz,
(1)

∫∫∫
Ω1,1,1

i,j,k

(ηφ′x)
′
xdω ≃ qi+1,j+ 1

2 ,k+
1
2
ηi+ 1

2 ,j,k
ϕi+1,j,k−ϕi,j,k

hx
hyhz−

−qi,j+ 1
2 ,k+

1
2
ηi− 1

2 ,j,k
ϕi,j,k−ϕi−1,j,k

hx
hyhz+

+(qi,j+ 1
2 ,k+

1
2
− qi+1,j+ 1

2 ,k+
1
2
)ηi,j,kϕ

′
xi,j,khyhz.

(2)

The formulas (1) and (2) oinide with the lassial ones if the grid fullness

funtion take only values zero and one.

Comparison of the approximation order of the lassial and pro-

posed method

When estimating order of the grid equation approximation the errors of the

boundary approximation are usually not taken into aount. The �nite volume

method is based on approximation of integrals of di�erential operators, so esti-

mating the errors of approximation of integrals will take into aount errors of

the domain approximation. The �nite volume method utilizes two formulas for

approximating integrals: Newton-Leibniz formula and mean value theorem. The

former is preise formula and the latter is approximate, so error that it introdues

is an error of approximation. The error of averaging is de�ned as follows:

ψ = 1
hxhyhz

( ∫∫∫
Ω1,1,1

i,j,k

ϕ(x)dω − qi+ 1
2 ,j+

1
2 ,k+

1
2

∫∫∫
D1,1,1

i,j,k

ϕ(x)dω
)

(3)

In the work we have showed that error (3) has the seond order by spatial

steps in the inner nodes and the �rst order in the boundary nodes for propose

modi�ed �nite-volume method with partial "fullness". In ase of using lassial

�nite-volume method, the error of approximation in inner nodes is the seond as

well, but in boundary nodes the approximation error is onstant and the disrete
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problem doesn't approximate the ontinuous one. Comparison of the proposed

modi�ation of the �nite-volume method with partial fullness and the lassial

method is performed for the model of visid �ow in the sloped reservoir. In ase

of using lassial �nite-volume method, the �ow near the sloped boundary is

signi�antly redued due to the stair-stepping of the boundary ompared to the

proposed method. Besides, pressure �eld values are di�erent even in the inner

nodes.

Conlusion

Modi�ation of the �nite volume method with partial "fullness" for approxi-

mation di�erential equations on strutured retangular grids is proposed. Inves-

tigation of the order approximation with respet to the errors of the boundary

approximation has shown that the proposed method has the �rst order of approx-

imation in the boundary nodes while the lassial one introdue onstant error.

Although both methods have seond order of approximation in the inner nodes,

in ase of the usage of the lassial �nite-volume method, the errors in bound-

ary nodes notieably hange the entire solution that is on�rmed by numerial

experiments.
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SIMULATION OF OIL POLLUTION IN THE KERCH

STRAIT
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Oil pollution is the imminent danger arising during the oil transport by water

from the plae of its extration to plaes of proessing. That's one example. On

the 11-th of November in 2007 during a severe storm in the Kerh Strait four

ships sank, six ships stranded, two tankers were damaged. About 2 million tons

of fuel oil spilled into the sea beause of tanker "Volgoneft-139" faults.

Oil entering the water basin has a negative in�uene on all physial, hemial

and biologial proesses. Therefore, it is neessary to predit the behavior of the

oil trapped in the water area for rapid deision-making in ase of liquidation of

negative onsequenes. Mathematial modeling the oil pollution spread on the

water surfae, as well as its thikness and on its borders, is one of the important

ways of this predition.

The objet of the researh is the behavior of oil spills in the Kerh Strait. The

spread of oil in the water basin is a omplex proess. It's neessary to onsider

a wide variety of fators in the simulation. Physial and hemial properties of

oil (boiling point frations, density, visosity) have an impat on the behavior of

pollutionis and external environmental onditions (wind �eld, the air tempera-

ture, the water temperature, the presene of oil-oxidizing bateria in the water,

salinity, solar radiation et). Proesses of spreading oil spill dominate on the �rst

stage of the oil spread.

The inevitable degradation of the oil omes under the in�uene of external

environmental fators in parallel with these proesses. Besides that, the move-

ment of the oil slik ours under the in�uene of winds and urrents in the water.

Three modes of [1, 2℄: inertial, gravitational, and visous regime of surfae tension

exist at the stage of oil spreading on the the water basin surfae.

For spills of less than 2000 m3
the most important phase of proliferation

is the phase under the ation of surfae tension fores. In the works of [2℄-[4℄

semi-empirial formula simulation ellipse desribing asymmetri shape oil slik

strethed along the diretion of the wind is proposed. Aording to these formula,

the spot diameter in a diretion perpendiular to the diretion of the wind is

alulated as follows:

lmin = 53.76(
∆ρ

ρoil
)1/3V

1/3
oil t

1/4,

1
Supported by The Ministry of Eduation and Siene of Russia (grant 1420)



128 "Numerial Algebra with Appliations"

and the spot diameter in the diretion of the wind:

lmax = lmin + 0.95U
4/3
windt

3/4,

ó�õ ∆ρ = ρw − ρoil , ρw ø ρoil � density of water and oil, respetively, Voil �
the amount of the original oil spill, Uwind � wind speed, t � after the spill.

It is obvious that the area of the ellipse will be As = frac pi4lmaxlmin(m
2) .

Drift spots under the in�uene of urrents and wind is desribed by the

onvetion-di�usion equation [4℄:

∂h

∂t
+∇(hv)−∇(D∇h) = Rh,

v =

(
ux +

τwx
Cf
, uy +

τwy
Cf

)
, (1)

D =
g · h2(ρw − ρOil)

ρwCf
,

where h � the thikness of the oil, ∂v � drift veloity of the �lm,

τwx
Cf

� shear

stress due to wind, D � funtion of the di�usion spread Spot rude oil, Cf
� oe�ient of frition between the oil �lm and surfae water (0.02kg / m2c),
Rh � the soures (Stok) funtion, g � aeleration of gravity, ∇ = (∂/∂x, ∂/∂y).
Initial thikness of spots is alulated as follows: h = Voil

As
.

The boundary and initial onditions [5℄ are added to the equation (1) . It

is assumed that the veloity �eld is known at every time step. The resulting

system of equations is solved by �nite di�erene method using impliit shemes.

The omputational domain is onstruted as retangular uniform in all diretions

of the grid. To approximate equations upwind sheme for the onvetive terms

is used. As a result of the �nite-di�erene approximation we obtain a system of

linear algebrai equations with �ve-diagonal matrix.

The mathematial model was implemented as a set of programs. The solution

is arried out on high-performane omputing systems with distributed memory

parallel programming environment MPI. The Parallel Library program Azte is

used for solving the linear algebrai equation system with sparse matrix. Azte in-

ludes proedures that realizing iterative methods from Krylov's subspae � on-

jugate gradient method (CG), generalized method of minimal residual (GMRES),

quadrati onjugate gradient method (CGS), a method quasiminimal residuals

(TFQMR), bionjugate gradient method (BiCGSTAB) with stabilization. All

methods are used with various preonditioners (polynomial method and domain

deomposition using both the diret method LU, and inomplete LU deom-

position in subdomains). Aording to researh results [6℄ bionjugate gradient

(BiCGSTAB) method was hosen for solving this system.

The numerial experiments to simulate an emergeny situation in the Kerh

Strait in November 2007 were made using onstruted omputer system [7℄.
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GROUP-LATTICE APPROACH TO COMPUTATION

OF SOCIAL CONSTANTS IN THE MODELLING OF

EVOLUTION PATHS OF THE ARCHAIC SOCIETY

1

Shvedovsky Vyaheslav, Standrik Anton

Lomonosov Mosow State University, Faulty of Soiology, Faulty

of Computational Mathematis and Cybernetis, Mosow, Russia

Sine anient times ultural odes of di�erent ountries, ethni groups and

nation were formed during the evolution depending on the evolution paths that

were traversed and the problem of �nd- ing formation paths and laws of these

odes is posed. It is hypothesized that the marodesription of evolution routes is

e�etive if a set of the most highly aggregated ategories to desribe way of life of

various ommunities of the soiety is used: the assignment, work, exhange, dis-

tribution and onsumption. As a subjet of onsideration of the author hose the

primitive lan ommunity epoh of mesolite, loated in the neighbors ' relations

we-they with the same ommunity. As models of these relations, he applies the

group of permutations, re�eting possible the reprodutive yles of the graphs

with 4, 6 and 8 verties.

Eah graph puts the maro-level system of soial reprodution, in whih a

set of n � verties is the set of reprodution kernels, overed by the range of

reprodutive yles � RC. In this ase the evolution of an arhai soiety is

modeled sequene of nested subgroups � Hn for whih removed law of hanges,

whih de�nes the omplexity of the soiety at the mastering of the mass of its

representatives of disoveries and inventions:

... ⊂ Hn ⊂ Hm ⊂ Hp ⊂ ..., n < m < p

First members of this sequene are guaranteed by selet of subgroups with

neessary devisors for group S4 . Next members of this sequene are subgroups

of otahedrons symmetries S6 , and group of tetrahedron S4 is subgroup of S6

group.

Disoveries and inventions are displayed on graphs by addition of new orient-

ed edges, permitting a new reprodution yles, or new verties (reprodution

kernels) � evidene of the emergene of new soial institutions that are ordered

by the omplexity level.

At formation of the riterion for the seletion of the evolutionary trajeto-

ries of soiety on the group latties there arises need to larify the alulated

entropy estimates of the omplexity of eah trajetory. It is obtained an initial

maroestimate of ompound H(n) for ompounding spetrum RC:

(n− 1) ∗ lnn− lnln(n− 1)−n < H(n) < lnL+(n− 1) ∗ lnn− lnln(n− 1)−n,
1
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where n degree of group Sn for system of soial reprodution, and L � const . [2℄

Based on the evaluation of the omplexity of the spetrum of reprodutive

yles of the olletive eonomy of the arhai soiety, the autor alulated the

number of soial onstants L for the phase transition from the Mesolithi to

Neolithi age. The author used the idea that fundamental hanges in soiety

our throught new inventions and disoveries that end up in the development of

new e�etive tehnologies (Behterev's Law of Changes) that signi�antly hange

the lifestyle of soiety and ompliate relations in it.

Reeived onstants will allow us to speify a road map of the evolution of

the most anient slav soiety and some other soieties in order to justify the

formation of a soial heredity of its di�erent groups, manifesting the ultural

ode of ondut on di�erent subsequent historial periods.

The problem of �nding all subgroups in a group was proved to be NP-

omplete problem by mapping groups on the Cayley graph therefore there is

no e�ient algorith of solving it. Computation algoritm is based on Lagrange's

theorem and shows satisfatory omputational time in theory and in pratie

in relation to �nding subgroups in permutation group of order eight whih is

equivalent to 8-vertex ordered graph. Estimated time of the algorithm is:

T (k) = O(k!2) ∗ Sn ∼ O(2πk(
k

e
)2k) ∗ Sn

Sn =
n−1∑

i=1

C i
nSn−i.

Subgroups omplexity was evaluated with Uemov riterium of oriented graph

omplexity whih is based on the number of hierarhial relationships of di�erent

types.[1℄

U(m, r) = −
n∑

j=1

k∑

i=1

lj,i
n− 1

ln(
lj,i
n− 1

)

m � set of verties and r is a set of all possible types of relationships between

these verties. This approah allows us to use median probability riterium:

0.5− ǫ ≤ P (ξi,j) ≤ 0.5 + ǫ

ξi,j � disontinuous variate on the set of omplexities of transitions from level i to

level j and to make suggestions about preferable(optimal) evolution routes. Due

to onstant overall omplexity for eah route, too omplex or too simple routes

were dropped from evolution tree. Finally the evolution lattie or evolution tree

was introdued. Example of ounted nested groups:

T0 = {1, 2, 3, 4, 5, 6, 7, 8}
T1 = {2, 1, 3, 4, 5, 6, 7, 8}
T2 = {1, 3, 2, 4, 5, 6, 7, 8}
... ...
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H2 = {T0, T1}
H18 = {T0, T1, T14, T15, T20, T21, T174, T175, T180, T181, T186, T187, T366, T367, T372,
T373, T378, T379}
H36 = {T0, T1, T14, T15, T20, T21, T54, T55, T60, T61, T66, T67, T120, T121, T134, T135, T140,
T141, T174, T175, T180, T181, T186, T187, T366, T367, T372, T373, T378, T379, T390, T391, T396,
T397, T402, T403}

|H144| = 144

|H576| = 576

|H1152| = 1152

|H40320| = 40320

H2 ⊂ H18 ⊂ H36 ⊂ H144 ⊂ H576 ⊂ H1152 ⊂ H40320

Complexities:

U2→18 = 4.591761, U18→36 = 2.983394, U36→144 = 37.935890, U144→576 =
195.189507, U576→1152 = 627.671115, U1152→40320 = 37863.326155

Every nation in the beginning of it's evolution in this an be spei�ed with a

set of restritions that a�ets it's development and formation of it's ultural ode.

For example poor soil fertility in China fored anient tribes to ooperate in order

to survive. Agriulture strategy in China was based on manpower surplus and

was aimed on inreasing the fertility by hemial fertilizers while the European

strategy was based on high soil fertility and lak of manpower therefore aimed

on the invention of e�etive agriultural tools. These onditions an be re�eted

in two kernel graphs that initiate the evolution proess.

(a) W : West (b) E :East

In the terms of omputation tehnology we an say that there are two types

of initial graphs: the Eastern and the Western graph. Relationships between

upper and lower kernels an be onsidered ad hierarhial. Relationships between

kernels on the same level an be onsidered as exhange or ooperate relations.

Considering full groups on these graphs that appear in the end of evolution routes

and ounting the relative values of hierarhy and exhange relations in both

groups we an see that there are 1.8 times more hierarhial and 2 time more

ooperation relations in the Eastern groups. This explains the emergene and

the development of traditionalist ultural values in the East and indivisualisti

values in the West.[3℄

As a result:
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1. Soial onstants that desribe omplexity level of soiety at eah stage of

it's development level were reieved.

2. The proess of ultural values priority formation in East and West soietes

was desribed by means of group-lattie approah.
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Abstrat

Computer tehnologies allow the prodution, transfer and storage of huge

amounts of di�erent types of data. We need e�etive methods for proessing and

analyzing these data for extrating new information and new knowledge. It is

important not only to ensure the adequay of methods for proessing di�erent

types of data, but also the opportunity to analyze the auray of methods to

better understanding the internal struture of the data.

Thus, the �rst task is to deompose the soure data (images) into hunks,

proess eah hunk separately and then analyze the results. Let's introdue lass

l ⊂ L2(Rd), d ≥ 1 and appropriately hosen set of funtions (ϕi)i∈I ⊆ L2(Rd) ,
alled "analyzing funtions", that eah f ∈ l satis�es the equation:

f =
∑

i∈I
ci(f)ϕi.

A ountable set of oe�ients ci(f), i ∈ I represents a signal deomposition

based on analyzing funtions (ϕi)i∈I . On the other hand, this equation desribes
the proess of restoring the soure signal using oe�ients ci(f) .

A separate issue is the �nding fragments of images with anisotropi har-

ateristis or breaks (lines or urves, objet's edges), beause traditional image

proessing tehniques are not sensitive to this kind of harateristis.

There are various image-proessing methods for �nding anisotropi objets in

the image, suh as diretional wavelets, omplex wavelets, ontourlets, urvelets,

et. o�ered over the past 20 years. A new approah to the analysis of anisotropi

harateristis of images, alled shearlet transform, proposed in 2006. Unlike

wavelets or urvelets, shearlets built in the lass of a�ne systems and have the

ability to determine the diretion through additional shear parameter [1-7℄.

Shearlets have a number of properties, whih distinguish them from oth-

er image proessing methods: a �nite number of generating funtions; optimal

representation of anisotropi harateristis of analyzed data; fast algorithmi

implementation; a uni�ed approah to proessing ontinuous and disrete data.

The main usages of the disrete shearlet transform (DST) are image de-

noising, edge detetion, morphologial analysis (splitting images to objets of

di�erent types, suh as points, lines and urves), and improving the quality of

images [1-10℄. Existing approahes to the analysis of the images allow extension
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into a spae of more than two dimensions (video) and appliable to problems in

mediine and geomonitoring [14℄.

The goals of the work are omparison of DST algorithms and development

a DST-based omputer tehnology for image proessing of atastrophi natu-

ral events. The main problems are image separation (morphologial analysis),

denoising and edge detetion.

I Computing tehnology

Based on the theoretial and methodologial review, let us onsider a modi�-

ation of the method of geometrial analysis of visual data, whih allows solving

a wide lass of problems in image proessing of omplex images of environmental

monitoring. We outline three types of problems: image separation (to points and

urves), edge detetion and data visualization using 4 distint DST algorithms

[8-13℄. Algorithms de�ned as follows: A � FFST (Fast Finite Transform Algo-

rithm) algorithm [12, 13℄; B � Shearlet Toolbox algorithm [1-8℄; C � ShearLab

algorithm [3-10℄; D � TGVSHCS algorithm [10, 11℄.

We propose the omputing tehnology and omputing system for solving

spei�ed problems. In a preliminary phase, the original image is broken down

to the omputational hunks and omputing system planning the sequene of

proedures for the optimal solution of the problem. In a on�guration phase,

omputing system hooses onrete algorithms depending on the problem and

the brightness and ontrast of images. In the next phase the system loading

and proessing images depending on the set of onditions. The �nal phase is an

analysis and ontrasting of the proessed images.

For omparison, omputations made on the images of di�erent sizes. The

quantitative indiator of the e�etiveness of algorithms is algorithm's mean work-

ing time. The results of omparison are the following: algorithm C is faster than

algorithm A on images of large sizes, while algorithm A has a slight advantage on

small images. Algorithm D is the slowest. Images larger than 512 on 512 pixels

analyzed by hunks.

Analyzed images belong to a number of related areas: wild�re propagation

snapshots, medial imaging, geoeology and geodynamis. All images proessed

with various brightness and ontrast values. Gaussian noise used for solving de-

noising problem and for omparison of denoising algorithms [14℄.

II Solution of geomonitoring problems

Geometri separataion of visual data. In aordane with the study of DST

algorithms proposed to use algorithm C for solving the �rst task for geomet-

ri separation of visual data of geoenvironmental monitoring. Estimation of the

image separation improving is 5-12% ompared to urvelets.
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Edge detetion. The seond task is detetion of edges in the image. Study of

algorithm A shows that the edges of objets an be obtained as the sum of the

shearlet transform oe�ients at the last (maximum) sale. It's proposed to use

this approah for edge detetion:

fcont =

k1∑

k=0

m1∑

m=0

shψ(f(j
∗, k,m)),

where shψ is a mapping from L2(R2) to spae of shearlet transform oe�ients,

j∗ � the last sale, k1 � number of diretions and m1 � number of translations.

Modi�ed FFST algorithm (algorithm A) tested on various types of geomon-

itoring images and ompared with lassial Sobel and Prewitt �lters. Modi�ed

algorithm is omparable in auray to the Sobel and Prewitt algorithms.

III Comparison of denoising algorithms

The omparative analysis of DST-based image denoising algorithms and algo-

rithms for �ltering (enhaning) visual data performed. Also we studied algorithm

A as method of extrating information about linear singularities of visual data

of eologial monitoring.

Researh of algorithms for solving image denoising problem performed for

algorithms B, C and D for images from various subjet areas (wild�re propagation

snapshots, medial imaging, geoeology and geodynamis). Algorithms tested for

images with various brightness and ontrast, with and without gaussian noise.

Algorithms B and C analyzed with PSNR metris and estimation of visual

quality pereption for di�erent images. Estimation of visual quality pereption

performed by three expert groups, �ve experts in eah group. Grading sale

has 10 grades. Algorithms B and C analyzed with PSNR metris in the image

denoising problem.

Conlusion

The results of this study show that:

• Image separation problem an be solved using algorithm C (ShearLab). Es-

timation of the image separation improving is 5-12% ompared to urvelets;

• Edge detetion problem an be solved with modi�ed algorithm A (FFST).

Modi�ed algorithm is omparable in auray to the Sobel and Prewitt

algorithms;

• Image denoising problem an be solved using algorithms B, C, D. Algorithm

D is the slowest (ompared to algorithms B and C). Algorithm B (Shearlet
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Toolbox) is more e�etive than algorithm C for all types of tested images

(with di�erent brightness and ontrast) by quantitative indiator (22-26%)

and by visual quality pereption. But algorithm C is 1.7-2.6 times faster

than algorithm B depending on the image size. We reommend to use

algorithm B for solving image denoising problem.
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RESEARCH OF INITIAL BOUNDARY VALUE

PROBLEMS WITH MOVING BOUNDARIES
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Southern Federal University, Rostov-on-Don, Russia

Studies of initial boundary value problems with moving and variable bound-

ary have been arried out in di�erent �elds. The orresponding models de-

sribe the phenomena of melting and solidi�ation, osillating and di�usion, et.

A brief overview of those problems and methods of their solution is given in

monograph [1℄. Methods of asymptoti and numerial integration of hyperboli,

paraboli and elliptial equations for Dirihlet, Poisson and Roben problems are

developed in [1℄ as well. The mentioned methods are applied to the problems of

longitudinal and transverse osillations of the rope of variable length [1, 2℄. In this

paper the methods of numerial and asymptoti integration are applied to the

problems whih desribe the osillations of viso-elasti rope with a rigid body

(see Fig. 1). The modi�ed �nite-di�erene, Runge-Kutta and small parameter

methods are used here. The orresponding problem may be written as follows

ρF

(
∂2u

∂t2
− d2ξ

dt2

)
= EF

∂2u

∂x2
+ µEF

∂3u

∂x2∂t
− ρFg, (1)

m
d2ξ

dt2
= −EF ∂u

∂x

∣∣∣∣
x=0

+mg,

ξ(t) = ℓ(t) + u(ℓ(t), t), u(x, t)
∣∣
x=0

= 0, u(x, t)
∣∣
x=0

= 0,

u(x, t)
∣∣
t=0

= ϕ1(x),
∂u(x, t)

∂t

∣∣∣∣
t=0

= ϕ2(x),

ℓ(t)
∣∣
t=0

= ℓ0,
dℓ

dt

[
1 +

∂u(ℓ, t)

∂ℓ

]
= εψ(t).

Here u(x, t) is a rope setion x displaement at time moment t ; ρ , F , E
are the parameters of density, setional area and a Young's modulus for the rope

respetively; g is aeleration of gravity; m is mass of a rigid body; ℓ(t) is a

length of rope at time moment t in the undeformed state; ξ(t) is an atual

distane between the run-o� point of a rope from the reel and a rigid body. We

assume that the rate of unwinding (or winding) of the rope is small relatively to

the speed of propagation of the wave in the rope (the atual speed of propagation

of the wave an be 4000�5000 m/s). Parameter ε is equal to this relation. The

given problem (1) may be redued to the following one

∂2w

∂t2
+ F1(t)ε± + F2(t)ε

2
± = a2

(
1 + µ1

∂

∂t

)
∂2w

∂x2
, (2)
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∂2w

∂t2

∣∣∣∣
x=0

+F1(t)ε± + F2(t)ε
2
± = µ2

∂w

∂x

∣∣∣∣
x=0

,

w
∣∣
t=0

= Φ1(x),
∂w

∂t

∣∣∣∣
t=0

= Φ2(x), w
∣∣
x=ℓ(t)

= 0.

Here w(x, t) is a new unknown funtion F1 , F2 , Φ1 , Φ2 � are the known

funtions. Asymptoti solution of the problem (2) has been built as the series

w(x, t) =

∞∑

k=0

wk(x, t)ε
k
±.

The solution of the given problem on the hangeable domain [0, ℓ(t)] has
been redued to the solution of initial boundary value problems on the onstant

domain [0, ℓ0] .
For the sake of numerial integration we need to use the moving grid in order

to apply the �nite-di�erene and Runge-Kutta methods (See Fig. 2). This grid

was �rstly proposed by Dr. I.M. Bermous in [3℄.

Figure 1. The model of a rope with rigid body

One may see the omparison of results of numerial and asymptoti integra-

tion on the Fig. 3 in the ase of elasti rope's winding. The given urves desribe

the deformation of the highest setion of the rope in dependene of time.

The problem of �nite-di�erene algorithm onvergene has been onsidered

in the paper in the ase of the onstant boundary.
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Figure 2. The moving grid of �nite-di�erene method

Figure 3. Comparison of numerial and asymptoti integration
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GPGPU TECHNOLOGIES FOR GENETIC

ALGORITHMS

Agibalov O.I.

Southern Federal University, Rostov-on-Don, Russia

Geneti algorithms today is the perspetive type of methods for mathematial

optimization. Based on the Darwin's theory of evolution, they perform operations

on dozens of so-alled "hromosomes", eah enoding appropriate solution of the

problem as a set of "genes" � parameters of the purpose funtion [1℄. Convenient

geneti algorithm may operate hundreds and thousands of hromosomes, that

are indepenedent from eah other and thus may be omputed onurently. The

most e�ient way for aelerating programs is using parallel tehnologies, suh

as GPGPU (General-Purpose graphis proessing units). It means that the hard-

ware whih traditionally were applied for rendering omputer graphis, today are

suitable for non-graphial omputations. Apparent advantage of GPUs is their

massive parallel arhiteture. GPUs ontain up to several thousand ores that

work independently onurently. This is why GPGPU is the perfet tehnology

for omputing independent hromosomes [2℄.

The �rst model of parallel GA was proposed many years ago and was alled

"Island Model". All the hromosomes were splitted into several "islands" that

evolved and exhanged their best individuals with other islands. Another parallel

model of GA is suggested in this researh. Using GPGPU we are able to operate

eah hromosome in independent thread. But before doing this, we have deided

to redevelop our previous GA and make it faster. First af all we have hanged

oding system - deimal values were used instead of binaries. In ouple with

other osmeti hanges we have reahed eleven times speeding up even without

parallelization. Furthermore, alterings in oding system have allowed us to redue

the ammount of data transferred between CPU and GPU [3℄.

Working with GAs on GPGPU our goal was to study possibilities and re-

straints of new hardware. Aeleration of GPU-algorithm in omparrison with

CPU-algorithm is about 30 perents � 165 ms against 211.

Figure 1 shows us omparison of total performing time for CPU ang GPU

algorithms and the time of initialization. Thus we an see that GPU-environment

requires 96 ms of 165 to be initialized. For CPU-algorithm this time will only be

5 ms of 211. Considering that 96 ms we have disovered that 93 perent of them

is behind the initialization of GPU libraries. It means that we annot optimize

this time interval.

Using these and other results we may show when the use of GPU for ael-

erating GA is reasonable.

Thus it is possible to say that for little sets of hromosomes the use of GPGPU

is une�ient. But as the hromosome number inreases as GPU beomes more

and more preferable. Only the huge number of individuals allows GPU-algorithm

to overome initialization delay and and ahead fast, but serial CPU.
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Figure 1. Total performing time and initialization time for CPU and GPU algo-

rithms

Figure 2. The performane of GPU-algorithm and CPU-algorithm in solving the

test problem
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PROPAGATION OF LONG PULSE WAVES IN AORTA

Batishhev V.A., Getman V.A., Safronenko O.I.
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Long waves in a �uid whih �lls a ylindrial tube with elasti border have

been studied by many authors sine the end of the nineteenth entury [1, 2℄. An

important ontribution to the study of the theoretial aspet was made by the

Russian physiist I.S. Gromeka [2℄. Literature review on this subjet is provid-

ed in a well - known monograph by T. Pedley "Hydrodynamis of large blood

vessels" (1983) [1℄. The alulated phase veloity of the waves in a liquid in an

elasti tube is well proved experimentally. Prof. Ustinov Yu.A. was the �rst to

investigate long helial waves in a blood vessel with the anisotropy of walls [3,

4℄. Great di�ulties arise when alulating short spiral waves in elasti tubes [5℄.

When doing the asymptoti researh of these short waves, one needs to alulate

the osillating boundary layers whih are formed on the vessels walls. Note that

the researhers named above did not use the method of a boundary layer. The

results of asymptoti and numerial alulations of long longitudinal and spiral

waves with the use of boundary layer are provided. Compared to the prominent

investigations, the experimental ase is onsidered when the pressure in an input

ross-setion of a vessel is given, taking into aount the time parameter in a

non-symmetrial way.

Long longitudinal and spiral waves were alulated on the basis of the Navier-

Stokes's system and the dynami equations of a thin elasti isotropi membrane,

taking into onsideration in�nitesimality of a visosity oe�ient. The aorta is

modelled as a ylinder that is limited by a thin membrane. Some small parameters

arise upon transition to dimensionless variables. The parameter onneted with

visosity is proportional to the thikness of the boundary layer arising by the

wall. The seond small parameter is inversely proportional to the phase speed

of the Mouensa-Kortevega wave. A well-known method to alulate long waves

with the use of a slow axial oordinate is applied. Asymptoti expansions are

presented in the form of a series based on the degrees of the seond-order small

parameter. In the main approah there is a linear problem whih serves the basis

to alulate the long waves propagating in the steady �ow. The veloity vetor of

this �ow has only one nonzero omponent (Poiseuille's parabola), direted along

the ylinder axis. The solution of the problem onsists of the sum of funtions

of two types. The �rst type of the funtions in the main approah desribes an

ideal �ow. The seond type of the funtions desribes boundary layers on vessel

walls. Note that boundary layers in large blood vessels are observed by surgeons

when performing operations on heart and vessels.

It is shown that in a �ow ore (out of the boundary layer) longitudinal om-

ponent of veloity of long waves is onstant in its ross-setion. This phenomenon

is experimentally observed. In the ase of ideal �uid the phase veloity of waves is

determined. Two waves - the wave of pressure and the quasilongitudinal wave are

obtained. It is shown that only the pressure wave is of paramount signi�ane in
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the out of the boundary layer ase. The amplitudes of both waves, however, have

an idential order inside the boundary layer. Damping derement is obtained

while alulating the funtions of a boundary layer. To de�ne the amplitude of

long waves the pressure at the entrane of a vessel taken as a time funtion is

determined. This funtion doesn't possess the property of symmetry on time.

Numerial alulations of a wave form and pressure depending on time, both in

a systole and axial oordinate, have been arried out.

It is shown that amplitude longitudinal veloity omponent at the beginning

of a systole grows in time, reahes a maximum, and further on, in the seond

half of a systole, dereases to zero. At the end of a systole there is a inverse �ow

zone, this zone being loalized in a boundary layer. The speed of a ounterurrent

tends to zero when it leaves the boundary layer, and approahes a vasular wall.
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The problem under onsideration: The goal is to selet the bank for deposit.

The problem has three riteria f1 , f2 andf3 . Where, f1 � riterion that deter-

mines the inrease of equity apital of the bank for the year. The seond riterion

is f2 � riterion that determines interest rates on deposits. The last riterion is f3
� riterion determining the rating of the bank. There are three hoies: SberBank,

Center-Invest Bank, Stella Bank respetively x1 , x2 and x3.

f1 f2 f3

x

1
13,200 6,400 67 006,000

x

2
12,200 8,250 92 060,000

x

3
10,400 8,500 84 311,000

The method assumes the following steps:

1. the reation of a hierarhial struture of the original problem with multiple

levels;

2. setting priorities (oe�ients of the importane or the weight) riteria for

the hoie of the set goal;

3. evaluation (based on these estimates) values priority for the lower level

riteria regarding the purpose of the upper level;

4. evaluation of priorities of alternatives for eah of the lower level riteria

with the help of quantitative paired omparisons;

5. aggregation of all of the estimates obtained in the integral priorities �

evaluate alternatives regarding the purpose;

6. seleting the alternative having the highest priority, as the best, or the

ranking the alternatives by the preferene aording to the alulated pri-

orities;

7. analysis sustainability of the solution obtained.
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The method used to selet the �nanial instruments: to the determination of

the bank for the deposit, to the forming of a pakage of shares, to the buying a

pakage of bonds.

The �rst step is the onstrution of the hierarhial struture of the original

problem with a few levels. The using of the hierarhial struture is very pro-

dutive beause it allows presenting the original problem with a large number

of riteria, whih as a single whole is too omplex to analyze, as a system of in-

teronneted signi�antly simpler "subtasks" with a small number of riteria [3℄.

The most often used struture has the next form: the upper level � the purpose,

the intermediate levels � the riteria, the lower level � the options [1℄.

The next step is to determine the weights for riteria and alternatives. The

matrix of pairwise omparisons is ompiled for to determine of the weights of

riteria and alternatives by using numerial methods. Two riteria or two alter-

natives are ompared and the degree of exellene in the "power" (importane

or preferene) of one of the riteria or alternatives over the other is evaluat-

ed for eah paired omparison [4℄. The �lled matries are inversely symmetrial

with positive elements. Various numerial omparison methods are used, and the

results obtained are analyzed.

The next step is the alulation of the vetor s of the loal priorities by

using method of prinipal harateristi vetor from equation As = λmax ∗ s ,
and ‖s‖ = 1, where λmax � greatest harateristi value [1℄. The values of the

harateristi vetor are evaluated by using numerial method. This method is

allows to determine the approximate assessments by using the geometri mean

of the matrix elements of the rows. Then, the values obtained are normalized for

the onveniene of further alulations. The eigenvalue λmax is alulated by the

same numerial method.

To �nd the approximate value λmax neessary:

1. Find the sum of eah of the olumns of the matrix of pairwise

omparisons

∑n
i=1 aij .

2. Multiply the values obtained

∑n
i=1 aij on the values of the normalized

harateristi vetor: the �rst sum is multiplied by the �rst value, the seond �

the seond, et.

3. Sum the results obtained. The result of the alulation will be the approx-

imate maximum eigenvalue λmax of the matrix of pairwise omparisons.

An indiator of the onsisteny of the estimates is a super-transitive ma-

trix of the pairwise omparisons A . An indiator of the onsisteny of obtained

estimates is a highly-transitive of the matrix of the pairwise omparisons A .
Therefore, if the matrix of the pairwise omparisons is not super-transitive, then

is required to assess the degree of the onsisteny of the matrix elements, or

the onsisteny of the matrix A . The method for the evaluating the degree of

onsisteny is given in [3℄ [5℄. If the onsisteny is high, then you an proeed

to the alulation of the priorities. Otherwise, you must to orret the results of

pairwise omparisons.
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Integral priorities (regarding the purpose) v(x) of alternatives x are alu-

lated by using an additive funtion of the value: v (x) =
∑m

i=1wi ∗ vi(x) , where
m � number of riteria, wi � priorities (weight) of these riteria, vi (x) � priori-
ties of the alternative to these riteria [2℄. The best alternative is the alternative

with the highest integral priority.

Cheked the exeution of the axioms of regularizing by the addition and

removal of wittingly worst alternative. Is arried out numerially experiments

and sensitivity analysis, with the help of minor hanges to the values of riteria

weights to trae the impat of these hanges on the result of regularizing. If the

ranking of the alternatives is saved, the results an be onsidered stable.

We apply the desribed method on the our task.

• the reation of a hierarhial struture of the original problem with multiple

levels;

• setting priorities (oe�ients of the importane or the weight) riteria for

the hoie of the set goal;

Bank f1 f2 f3

f 1
1,000 1,000 1,000 0,333

f 2
1,000 1,000 1,000 0,333

f 3
1,000 1,000 1,000 0,333

• evaluation of priorities of alternatives for eah of the lower level riteria

with the help of quantitative paired omparisons;

f1 x1 x2 x3

x1 1,000 4,000 9,000

x2 0,250 1,000 6,000

x3 0,111 0,167 1,000

f2 x1 x2 x3

x1 1,000 0,125 0,111

x2 8,000 1,000 0,500

x3 9,000 2,000 1,000

f3 x1 x2 x3

x1 1,000 0,11 0,143

x2 9,000 1,000 3,000

x3 7,000 0,333 1,000
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• aggregation of all of the estimates obtained in the integral priorities - eval-

uate alternatives regarding the purpose;

V f1 f2 f3

Criteria 0,333 0,333 0,333

x

1
0,540 0,143 0,143 0,275

x

2
0,297 0,429 0,429 0,385

x

3
0,163 0,429 0,429 0,340

• seleting the alternative having the highest priority, as the best, or the

ranking the alternatives by the preferene aording to the alulated pri-

orities;

1. x2 - Center-Invest Bank 0.385

2. x3 - Stella Bank 0.340

3. x1 - SberBank 0.275

• sustainability analysis of the solution obtained.

Adding knowingly worst alternative x4 :

f1 f2 f3
x4

10% 6% 60 000

T f1 f2 f3
Criteria 0,333 0,333 0,333

x

1
0,588 0,067 0,073 0,243

x

2
0,297 0,437 0,594 0,443

x

3
0,069 0,452 0,286 0,269

x

4
0,046 0,043 0,046 0,045

1. x2 - Center-Invest Bank 0.443

2. x3 - Stella Bank 0.269

3. x1 - SberBank 0.243

4. x4 0.045

Adding the worst alternative x4 on two riteria:

f1 f2 f3
x4

11% 6% 60 000

T f1 f2 f3

Criteria 0,333 0,333 0,333

x

1
0,634 0,067 0,073 0,258

x

2
0,241 0,437 0,594 0,424

x

3
0,048 0,452 0,286 0,262

x

4
0,077 0,043 0,046 0,056
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1. x2 - Center-Invest Bank 0.424

2. x3 - Stella Bank 0.262

3. x1 - SberBank 0.258

4. x4 0.056

Adding the worst alternative x4 on one riterion:

f1 f2 f3
x4

11% 7% 60 000

T f1 f2 f3

Criteria 0,333 0,333 0,333

x

1
0,634 0,041 0,073 0,25

x

2
0,241 0,349 0,594 0,395

x

3
0,048 0,528 0,286 0,287

x

4
0,077 0,082 0,046 0,068

1. x2 - Center-Invest Bank 0.395

2. x3 - Stella Bank 0.287

3. x1 - SberBank 0.25

4. x4 0.068

The numerial experiment shows the opportunity to use this method to selet

�nanial instruments. It satis�es the axiom of the hoie and streamlining of

the objets under onsideration. The values of the riteria that haraterize the

objets seleted from the developed databases that are updated with the help of

Internet resoures.
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OSCILLATORY CONVECTION IN A HORIZONTAL

LAYER OF A BINARY MIXTURE

Denisenko V.V., Morshneva I.V.

Southern Federal University, Rostov-on-Don, Russia

The present work investigates the onset of onvetion in an in�nite horizontal

layer of a binary �uid mixture onsisting of two non-reating omponents. We

suppose that the boundaries are rigid, isothermal and impermeable, with slip

allowed. A onstant temperature and onentration distribution is spei�ed on

the boundaries. In the model under onsideration the e�ets of thermal di�usion

and di�usive heat ondutivity are negleted. Let in addition assume that the

layer, as a whole, undergoes no displaement in the horizontal plane. The on-

vetive �ow of the binary mixture is governed by the Navier-Stokes equations

under Oberbek-Boussinesq approximation ([1℄):

∂v

∂t
+ v · ∇v = −∇p+∆v + (G̃rT − G̃rsS)k,

∂T

∂t
+ v · ∇T = Pr−1∆T,

∂S

∂t
+ v · ∇S = Prd

−1∆S,

divv = 0.

(1)

The orresponding boundary onditions are:

∂v1
∂x3

∣∣∣∣x3=1
x3=0

=
∂v2
∂x3

∣∣∣∣x3=1
x3=0

= v3

∣∣∣x3=1
x3=0

= 0,

T
∣∣
x3=1

= τ1, T
∣∣
x3=0

= τ0,

S
∣∣
x3=1

= σ1, S
∣∣
x3=0

= σ0,

(2)

where v = v(x1, x2, x3, t) is the veloity �eld, T = T (x1, x2, x3, t) is the tem-
perature �eld, S = S(x1, x2, x3, t) is the onentration �eld of the heavier om-
ponent of the mixture, p = p(x1, x2, x3, t) is the pressure �eld, k = (0, 0, −1)T
is the down-direted vertial vetor.

The problem (1) ontains four dimensionless parameters: Pr =
ν

χ
is the

Prandtl number, Prd =
ν

D
is the di�usion Prandtl number (the Shmidt num-

ber), G̃r =
gβh4Q

κν2
is the Grashof number, G̃rs =

gβsh
3S̄

ν2
is the Grashof number

for mass transfer, where ν is the kinemati visosity oe�ient, χ is the ther-

mal di�usivity, D is the mass di�usivity, g is aeleration due to gravity, β is
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the thermal expansion oe�ient, βs is the onentration expansion oe�ient,

κ is the thermal ondutivity oe�ient, Q is the heat �ux, S̄ is the mean

onentration of the heavier omponent of the mixture.

The problem (1) with boundary onditions (2) has the following stationary

solution orresponding to the state of rest, whih we would all in the following

the basi solution

v0 = 0,

T0(x3) = a1x3 + a0,

S0(x3) = b1x3 + b0,

p0(x3) =
1

2
(G̃ra1 − G̃rsb1)x

2
3 + (G̃ra0 − G̃rsb0)x3 + const,

(3)

where a1 = τ1 − τ0, a0 = τ0, b1 = σ1 − σ0, b0 = σ0.
This researh is devoted to the study of branhing and stability of time-

periodi �ow modes arising from osillatory stability loss of the basi regime rel-

atively to spatial perturbations. These perturbations are assumed to be 2π/α1�

periodi in x1 and 2π/α2�periodi in x2 . We seek another solution of the prob-

lem (1) with boundary onditions (2) in the form

v̌ = v0 + v, Ť = T0 − a1T, Š = S0 − b1T, p̌ = p0 + p, (4)

Inserting (4) into (1)�(2), we obtain the following system for the perturbations

v, T, S, p :

∂v

∂t
+ v · ∇v = −∇p+∆v + (GrT −Grs S)k,

∂T

∂t
− v3 + v · ∇T = Pr−1∆T,

∂S

∂t
− v3 + v · ∇S = Prd

−1∆S,

divv = 0,

(5)

where Gr = −a1 G̃r, Grs = −b1 G̃rs, with orresponding boundary onditions

∂v1
∂x3

∣∣∣∣x3=1
x3=0

=
∂v2
∂x3

∣∣∣∣x3=1
x3=0

= v3

∣∣∣x3=1
x3=0

= T
∣∣∣x3=1
x3=0

= S
∣∣∣x3=1
x3=0

= 0. (6)

The parameter Gr an be written in the form Gr = Gr∗ + δ , where Gr∗
denotes the ritial value of the Grashof number, when for Gr = Gr∗ the stability
spetrum ontains a pair of purely imaginary eigenvalues ±iω0 (ω0 6= 0). Thus
the problem (5) with boundary onditions (6) may be rewritten in the following

equivalent form

d

dt
Mu+Au = δBu+K(u,u), (7)
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where

u = (v, T, S)T ∈ H, (8)

H is the losure of a set of smooth solenoidal vetors, vanishing at the layer

boundary, in the metri

(
u1 · u2

)
H
=

∫

Ω

u1 · u∗

2 dΩ, (9)

Ω =
{
(x1, x2, x3) ∈ R : 0 6 x1 6

2π

α1
, 0 6 x2 6

2π

α2
, 0 6 x3 6 1

}
, (10)

A , B , M � linear operators, K � bilinear operator.

The onset of auto-osillations at transition of the Grashof number through

its ritial value is investigated. The auto-osillations is analyzed by the use of

the Liapunov-Shmidt method suggested by V. I. Yudovih [2℄, [3℄.

Substituting τ = ωt in (5), where ω is unknown yli frequeny, we obtain

ω
d

dτ
Mu+ Au = δBu+K(u,u), (11)

We seek a solution of (11) in the form of series in powers of the parameter

ε = s
√
|Gr−Gr∗| , (s = signδ )

u = εu1 + ε2u2 + ε3u3 + . . . , ω = ω0 + εω1 + ε2ω2 + . . . (12)

Inserting these series into (11) and equating the oe�ients of like powers of

ε in both parts of the equation, we arrive at the sequene of equations for the

unknown 2π�periodi funtions uk , and numbers ωk . Solving these equations

one after other, we will obtain

u1 = γ1(ϕe
iτ + ϕ∗e−iτ), ω1 = 0, (13)

where ϕ is the eigenfuntion of the following problem

(A + iω0M)ϕ = 0; (14)

u2 = γ2(ϕe
iτ + ϕ∗e−iτ) + γ21(ψe

2iτ +ψ∗e−2iτ + θ), (15)

where ψ and θ are the solutions of the following problems

(A + 2iω0M)ψ = K(ϕ,ϕ), (16)

Aθ = K◦(ϕ,ϕ∗). (17)
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The ondition of solvability of the equation, whih an be found by equating

the oe�ients of ε3 in both parts of the equation (11), yields γ21 and ω2

γ21 = sΓ1 = −s
Re(Bϕ ·Φ)

Re

((
K◦(ϕ, θ) + K◦(ϕ∗,ψ)

)
·Φ
) , (18)

ω2 =

s Im(Bϕ ·Φ) + γ21Im

((
K◦(ϕ, θ) + K◦(ϕ∗,ψ)

)
·Φ
)

Mϕ ·Φ , (19)

where K◦(u1,u2) = K(u1,u2) + K(u2,u1), and Φ is the eigenfuntion of the

onjugate problem

(A∗ − iω0M)Φ = 0. (20)

The type of bifuration is depends on the sign of Γ1 : in the ase for Γ1 > 0
there is a superritial bifuration, in the ase for Γ1 < 0 there is a subritial

bifuration. The results, obtained numerially at di�eren values of parameters,

show that both types of bifuration are realized.

The ondition of solvability of the equation, whih an be found by equating

the oe�ients of ε4 in both parts of the equation (11), yields γ2 = ω3 = 0 .
Hereby, �rst two terms of series (12) are found, and the solution an be

written in following form

u = γ1(ϕe
iτ + ϕ∗e−iτ)ε+ γ21(ψe

2iτ +ψ∗e−2iτ + θ)ε2 + O(ε3), (21)

ω = ω0 + ω2ε
2 +O(ε4), ε→ 0. (22)
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EVALUATION PROBLEM FOR GENERAL HIDDEN

SEMI-MARKOV ERROR SOURCE MODEL
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1. Introdution. Mathematial modeling of error soures is one of the main

problems appearing when simulating digital ommuniation hannels. Channel

simulation provides a way to analyze error-orreting apability of odes against

di�erent types of errors. The main aim of suh an analysis is to selet the appro-

priate error-orreting ode for partiular hannel. To arry out the simulation

experiments one needs to �nd an adequate representation of jamming environ-

ment in the hannel by means of mathematial error soure model, i.e. to solve

the inverse problem. The lass of hidden semi-Markov models (HSMMs) seems

onvenient for desribing error soures [1℄. These models are able to simulate

di�erent types of jamming environment and inverse problems an be solved for

them.

Let us onsider a nonbinary digital data transmission hannel C that is

supposed to be symmetri, stationary and perfetly synhronized. Channel C an

stay in one of N physial states during some period of time and then hanges the

state. The probability distribution of possible durations is spei�ed a'priori for

eah state partiularly and is never hanged. Eah hannel state emits additive

error sequenes aording to its own probability distribution.

In the paper we onsider a general hidden semi-Markov error soure model

for the hannel desribed above. For this model we provide a solution of lassial

evaluation problem in ase of error sequenes long enough. The problem we refer

to as "evaluation problem" is to alulate the probability of the fat that the

observed error sequene is generated by the given general semi-Markov error

soure model. The suggested solution is based on forward algorithm proposed by

Yu [2℄.

2. General hidden semi-Markov model. Aording to [2℄ general hidden

semi-Markov model (GHSMM) is the set

λ = {S,D, A,Π, V, B},

where S = {1, .., N} � the set of states; D = {1, .., D} � the set of possible

durations; A = {a(i,d)(i′,d′)}(i,d),(i′,d′)∈S×D � the transition matrix for generalized

states from S × D and a(i,d)(i′,d′) = 0 ; Π = {πi,d}(i,d)∈S×D � the set of initial

probabilities of generalized states; V = {v1, .., vM} � the output alphabet; B =
{bi,d(ô1, .., ôd)}(i,d)∈S×D,(ô1,..,ôd)∈V d

� the set of emission probabilities.
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Note that the model from [2℄ assumes zero self-transition probabilities

a(i,d)(i′,d′) = 0 . However, this requirement is not important for solving evalua-

tion problem. Thus, we onsider the extended model allowing self-transitions.

Moreover, we suppose that πi,d are marginal probabilities of transition matrix.

GSMM generalizes suh well-known models as expliit duration hidden

Markov model [1℄, variable duration hidden Markov model [3℄, segment hid-

den Markov models [4℄.

3. Evaluation problem. Let λ be a GSMM and O1:T be a sequene over

the alphabet V . In this setion we onsider evaluation problem for GSMM, i.e.

the problem to alulate the probability if the fat that O1:T is generated by λ .
In [2℄ Yu proposes the solution of this problem under the following assump-

tions:

1) the �rst observed state starts at t = 1 or before it,

2) the last observed state ends exatly at t = T .
Notie that 1) means that we observe only the part of symbols emitted by

the �rst state. In this ase Yu suggests replaing the probability bi,d(Ot−d+1:t)
(t− d+ 1 ≤ 1, t ≥ 1) by the marginal probability bi,d(O1:t) .

We denote by PY u[O1:T ] the probability of O1:T being generated by λ under

assumptions 1)-2).

However, for some appliations the evaluation problem should be onsidered

without any additional assumptions, i.e. the �rst state an start before or at

t = 1 and the last state an end at or after t = T . In this ase we obtain the

following solution of the evaluation problem.

Theorem. The probability that the observed sequene O1:T is generated by

general hidden semi-Markov model λ an be alulated as follows:

P [O1:T ] =
∑

(j,d)∈S×D

πj,d
d

d∑

d1=1

PY u[O1:T−d1]bj,d(OT−d1+1:T ),

where PY u[O1:T−d1] is alulated as in [2℄, p. 225.

Using this theorem the evaluation problems for hidden semi-Markov Ferguson

model and hidden semi-Markov QP-model an be solved [5℄, [6℄, [7℄. The obtained

theoretial results an be used to hoose the appropriate error soure model for

the given digital transmission hannel.
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COMPUTER MODEL OF PLANE WITH

FORWARD-SWEPT WING IN UNUSUAL

CONDITIONS

Kazakov E.A.

Faulty of Physis, Southern Federal University, Rostov-on-Don,

Russia

The report presents some spei� ways of development of airraft. At the

dawn of aviation all types of airplanes had simple linear form of wing. With

the development of the jet engine �ight speed inreased signi�antly and planes

beame like arrows. This onstrutive sheme was atual till birth the 5th gen-

eration jet �ghter (nowadays). But there is another onept of airraft's design:

when wings situated bakwards. The absurd sheme proved a very perspetive

one. Espeially in ombination with other nonstandard solution � "anard" a

on�guration in whih a small horizontal surfae, also named the anard or fore-

plane, is positioned forward of the main wing in ontrast to the onventional

position at the tail (beause of this it is sometimes desribed as "tail-�rst").

Figure 1. The panel (A) shows a realisti model of Northrop Grumman X-29A

airraft. The panel (B) shows the distribution of pressures in a plane perpendi-

ular to the diretion of �ow. The panel (C) shows streamlines of velosity of the

�ow and demonstrates advantages of FSW �ow's slipping. The panel (D) shows

di�erenes in pressure at subsoni and supersoni �ight and demonstrates the

Mah one

Swept wing has an impressive number of advantages and imposes higher

requirements for the development of the pro�le than the lassial design of wing.

Using present in the database NASA drawings I reate in ANSYS a full model of

the airraft Grumman X-29A, whih is the �rst prototype with the swept wing,

o�ially broke the sound barrier. Provided simulation of airplane moving through
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air�ow as a whole allowed me to estimate the dependene of �ight harateristis

on the on�guration elements, stability and onstrution balane.

Figure 2. Comparative analysis of the emerging fores (lift and drag), depending

on the mode of �ight and involved airplane's parts

The report disusses the features of the wing swept behavior at extreme

temperatures, in a dust storm and the threat of dry ie at subsoni and supersoni

�ight onditions.
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LONG-WAVE INSTABILITY NEAR SEMI-SELECTIVE

ION-EXCHANGE MEMBRANE

1

Khasmatulina N.Yu., Ganhenko G.S.

Kuban State University, Krasnodar, Russia

Introdution

Rapid developments in miro-, nano-, and bio-tehnology originate a lot of

interesting and omliated problems of eletrokinetis. Numerous modern appli-

ations of eletrokinetis inlude miro-pumps, desalination devies, biologial

ells, eletro-polishing of mono- and poly-rystalline aluminium, and the growth

of aluminium oxide layers for reating miro- and nano-sale regular strutures

suh as quantum dots and wires.

There is not only pratial interest in the problem, but also a fundamental

one. The study of the spae harge in an eletri double-ion layer in an eletrolyte

solution between semi-seletive ion-exhange membranes under a potential drop

is a fundamental problem of modern physis, �rst addressed by Helmholtz. Hy-

drodynamis was not involved in either of the underlimiting or limiting regimes,

and both regimes are fully desribed by one-dimensional solution.

It was �rst theoretially predited by Rubinstein and Zaltzman [1℄, [2℄ that the

transition from limiting to overlimiting urrents is onneted with a novel type

of eletro-hydrodynami instability, whih is known as eletrokineti instability.

This instability triggers a hydrodynami �ow and, in turn, intensi�es the ion �ux

whih is responsible for the overlimiting urrents. The �rst diret experimental

proof of the eletroonvetive instability that arises with an inreasing potential

drop between ion-seletive membranes was reported by Rubinstein et al. [3℄, who

managed to show the existene of small vorties near the membrane surfae. A

uni�ed theoretial desription of the linear eletrokineti instability, valid for all

three regimes (underlimiting, limiting and overlimiting urrents), was presented

by Zaltzman and Rubinstein [4℄, based on asymptoti analysis of the problem The

DNS for two-dimensional (2D) Nernst�Plank�Poisson�Stokes (NPPS) equations

were onsidered in [5, 6℄ and others. A full sale diret numerial simulation

(DNS) for the three-dimensional (3D) formulation is presented in Demekhin et

al. [7℄.

In all the aforementioned theoretial and numerial analyses, thermal e�ets

are negleted. Although, Zabolotsky and Nikonenko [8℄ have found experimen-

tally that a typial temperature di�erene between the eletrolyte inside the

membrane system and the environment an be up to several degrees. Suh a

temperature di�erene an not only have an in�uene on the eletrokineti in-

stability near a harge-seletive surfae, but an also be a driving fore for a

1
Supported, in part, by the Russian Foundation for Basi Researh (Projet Nos. 12-08-00924-a, 13-08-

96536-r_yug_a, 14-08-31260 mol-a, and 14-08-00789-a
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new kind of instability based on the spatial nonuniformity of the eletrial on-

dutivity. It an also be shown that Joule heating has a signi�ant e�et on the

voltage�urrent (VC) harateristi. These phenomena are investigated in the

present paper.

Statement

A symmetri, binary eletrolyte with a di�usivity of ations and anions D̃ ,

dynami visosity µ̃ , and eletri permittivity ε̃ , and bounded by ideal, semis-

eletive ion-exhange membrane surfaes at ỹ = 0 and ỹ = h̃ with a potential

di�erene ∆Ṽ between these surfaes, is onsidered. The Joule heating gener-

ated by the passage of a urrent through the eletrolyte is taken into aount.

Notations with tilde are used for the dimensional variables, as opposed to their

dimensionless ounterparts without a tilde. {x̃, ỹ} are the oordinates, where x̃
is direted along the membrane surfae and ỹ is normal to it.

What di�ers the present mathematial model of the phenomena from the

mathematial model in [9℄ is adding the energy equation

∂T̃

∂t̃
+ ũ · ∇T̃ = ã∇2T̃ − Ĩ · ∇Φ̃

c̃pr̃0
(1)

and appearane of the additional term, orresponding to the buoyany fore in

Boussinesq approximation, in the Stokes equation:

∇Π̃ = µ̃∇2ũ+ F̃∇Φ̃
(
c̃− − c̃+

)
+ g̃r̃0β̃(T̃ − T̃0)ey, (2)

∇ · ũ = 0,

where F̃ is Faraday's onstant, R̃ is the universal gas onstant, T̃0 is the tem-

perature of the environment, ε̃ is the eletri permittivity, g̃ is the aeleration

due to gravity, r̃0 is the density, β̃ is the thermal expansion oe�ient, c̃p is the
spei� heat apaity, and ã is the thermal di�usivity.

In the above equations, the two-dimensional ase is treated; ũ =
(
Ũ , Ṽ

)
is

the �uid veloity vetor; Π̃ is the pressure. the unit vetor ey is direted along

the y -axis. The energy equation ontains the soure term assoiated with the

Joule heating of the eletrolyte. Eletri urrent

Ĩ = −F̃
2D̃

R̃T̃
(c̃+ + c̃−)∇Φ̃− F̃ D̃∇(c̃+ − c̃−), (3)

is made up by two mehanisms: ion transport and di�usion. Note, that relation

for the full eletri urrent ontains also onvetive term, but this term isn't

signi�ant for analyze of Joule heatig' in�uene.
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The boundary onditions are the same as in [9℄, exepting the boundary

onditions for temperature

ỹ = 0 : −∂T̃
∂ỹ

+
α̃

λ̃T
(T̃ − T̃0) = 0, (4)

ỹ = h̃ :
∂T̃

∂ỹ
+

α̃

λ̃T
(T̃ − T̃0) = 0, (5)

where α is heat transfer oe�ient, λ̃D =

√
ε̃ Φ̃0

F̃ c̃∞
is the Debye length.

In order to make the system dimensionless, let us use some harateristi

values, mentioned in [9℄, and the additional one T̃ch = Φ̃0D̃F̃ c̃∞λ̃T
ãc̃pr̃0 ˜alpha

(here c̃∞ �

typial eletrolyte onentration, Φ̃0 � harateristi thermal potential)

In dimensionless formulation the system of equations is as follows,

∂c±

∂t
+ u · ∇c± = ±∇ · (c±∇Φ) +∇2c±, (6)

ν2∇2Φ = −ρ, (7)

∇Π = ∇2u− κ

ν2
∇Φ · ρ+ Ra · T ey, ∇ · u = 0, (8)

Le

(
∂T

∂t
+ u · ∇T

)
= ∇2T − I · ∇Φ, (9)

here,

I = −K · ∇Φ−∇ρ+ u · ρ, K = c+ + c−, ρ = c+ − c−, (10)

with the boundary onditions,

y = 0 : c+ = p, −c−∂Φ
∂y

+
∂c−

∂y
= 0 Φ = 0, u = 0,

∂T

∂y
−BiT = 0;

(11)

y = 1 : c+ = p, −c−∂Φ
∂y

+
∂c−

∂y
= 0 Φ = ∆V, u = 0,

∂T

∂y
+BiT = 0,

(12)

where, T = (T̃ − T̃0)/T̃ch .
Using the standard stream funtion and making some onversions, one an

redue equations (8) to one biharmoni equation, whih is onvenient for numer-

ial solving. Charateristi eletri urrent in ase of ation-exhage membrane

is determined only by ation's �ow: j = c+ ∂Phi
∂y + ∂c+

∂y Φ for y = 0 .
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From the analysis of the above mentioned dimensional values, it follows that

the dimensionless parameters vary within the range: ν = 10−6−10−2 , κ = 0.05−
0.5 , Ra = 10−6 − 100 . It is assumed that the other dimensionless parameters

an be �xed as p = 5 (see [2, 4, 5℄) and Le = 0.013 (for water). We assume

that Bi = 10−2 is taken. The problem has three parameters: ν , Ra , and κ .

This fat greatly ompliates the numerial investigation of the problem. The

�rst small parameter, the Debye number, makes the problem singular and forms

a thin EDL near the boundaries of the investigated domain, y = 0 and y = 1 .

I Numerial solution

The numerial alulations of the linear stability of the 1D quiesent so-

lution with respet to sinusoidal perturbations with wave number k , f =
f0 + f̂ exp(λ t + i k x) for f = {c±, Φ, V, T} were perfomed. The Galerkin

pseudo-spetral τ -method with Chebyshev polynomials taken as the basi fun-

tions [10℄ is employed to disretize the eigenvalue problem. The generalized

matrix eigenvalue problem is solved by the QR algorithm [10℄. The number of

Chebyshev funtions in the expansion is up to 512.

The two ompeting mehanisms of instability are determined by the param-

eters κ and Ra . The relation between these parameters determines whih of

the instability mehanisms will be deisive for the destabilization of the system.

Fig. 1 presents the numerially obtained marginal stability urves for di�erent

values of κ and Ra . For the ase without thermo-e�ets, Ra = 0 , the numeris
are ompared with the analytis of Zaltzman and Rubinstein [4℄: our numeri-

al approah is in good orrespondene with the asymptotial results. The ase

Ra = 0 separates the destabilizing and stabilizing e�ets of the Joule heating.

For Ra < 0 , with dereasing κ or inreasing |Ra| , the heat e�ets prevail
over the eletrokineti e�ets and a drasti hange of instability modes ours: the

ritial voltage ∆V∗ dereases dramatially. Moreover, the short-wave instability

hanges to a long-wave instability. Universal harater of the behavior of the

long-wave marginal stability urves near ∆V∗ an be seen from Figs. 1(a)�1(b).

For the ase without thermo-e�ets, Ra = 0 , the numeris are ompared with

k
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Figure 1. Marginal stability urves of the numerial solution, the wave number

k vs. the voltage ∆V for ν = 0.01 , (a) κ = 0.2 , Ra : 1: -50, 2: -10, 3: 0, 4: 10,
5: 50 and (b) Ra = −10 , κ : 1: 0.5, 2: 0.2, 3: 0.1, 4: 0.05.

the analytis of Zaltzman and Rubinstein [4℄: our numerial approah is in good
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orrespondene with the asymptotial results. The ase Ra = 0 separates the

destabilizing and stabilizing e�ets of the Joule heating.

Conlusion

A new long-wave kind of instability aused by Joule heating near harge se-

letive surfaes and its in�uene on the eletrokineti instability are investigated

numerially. The physial mehanism of the thermal instability is found to be

very di�erent from that of Rayleigh�B�enard onvetion, and the instability is

aused by an indued nonuniformity of the eletrial ondutivity in the ele-

trolyte. In addition, the previous disrepanies between the experiments [3℄ and

the theory [6℄ have shown, in the present study, a trend of better agreement by

taking into aount the Joule heating for the appropriate Rayleigh numbers.
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THE DISPERSION PROPERTIES OF
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The problem of propagation of waves in an in�nite transversely isotropi

ylinder with a irular ross-setion is onsidered a ≤ r ≤ b . The problem

is solved in ylindrial oordinates, the deformation is onsidered to be axially

symmetri. It is also onsidered that the physial harateristis are arbitrary

positive funtion of the r oordinate. The following notation for the omponents

of the displaement vetor are introdued by Ur(r, z, t) � radial and Uz(r, z, t)
axial. We assume that the omponents of the stress tensor and the strain tensor

omponents are related by Hooke's law for transversely isotropi inhomogeneous

body with radial inhomogeneity:

σr = C11
∂Ur
∂r

+ C12
∂Ur
r

+ C13
∂Uz
∂z

σθ = C12
∂Ur
∂r

+ C11
∂Ur
r

+ C13
∂Uz
∂z

σrz = C11

(
∂Ur
∂z

+
∂Uz
∂r

)

σz = C13

(
∂Ur
∂r

+
∂Ur
r

)
+ C33

∂Uz
∂z

where Cij � funtions of the radial oordinate.
The equations of motion in ylindrial oordinates are

∂σr
∂r

+
σr − σφ

r
+
∂σrz
∂z

= ρ
∂2Ur
∂t2

∂σrz
∂r

+
1

r
σrz +

∂σz
∂z

= ρ
∂2Uz
∂t2

We assume that the ylindrial surfaes of the ylinder subjeted to the nor-

mal load, respetively. The boundary onditions are

σrr |r=a= pei(kz−ωt), σrr |r=a= 0

A boundary value problem of wave propagation in inhomogeneous ylinder

formulated. The solution of the boundary value problem is formulated as a guided

waves along the ylinder axis.
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We have obtained �rst order anonial system of di�erential equations

dỸ

dr
= A(r, k, ω, Ỹ )

with the following boundary onditions

X(a) = p0, X(b) = 0, Z |r=a,b= 0.

the following notation options are: γ = kb � dimensionless wave number,

κ2 = ρω2b2/C0
44 � the dimensionless frequeny, ε = r/b, ε ∈ [ε0, 1], ε0 = a/b .

We have formulated the following homogeneous boundary value problem for

the operator with two spetral parameters γ, κ

C11

C0
44

= g1,
C13

C0
44

= g2,
C12

C0
44

= g3,
C44

C0
44

= g4,
C33

C0
44

= g5

Y ′1 = −a1
Y1
ξ
− γa2Y2 + a3Y3

Y ′2 = γY1 + a4Y4

Y ′3 = (a6
1

ξ2
− κ2)Y1 + a7

γ

ξ
Y2 − a5

Y3
ξ
− γY4

Y ′4 = a7
γ

ξ
Y1 + (γ2a8 − κ2)Y2 + γa2Y3 −

Y4
ξ

(1)

where:

a1 =
g3(ξ)

g1(ξ)
, a2 =

g2(ξ)

g1(ξ)
, a3 =

1

g1(ξ)
, a4 =

1

g4(ξ)
, a5 =

g1(ξ)− g3(ξ)
g1(ξ)

,

a6 =
g21(ξ)− g23(ξ)

g1(ξ)
, a7 =

g2(ξ)(g1(ξ)− g3(ξ))
g1(ξ)

, a8 =
g5(ξ)g1(ξ)− g22(ξ)

g1(ξ)

So we have built a system of dimensionless di�erential equations with bound-

ary onditions. Only numerial investigation of the problem is possible. In some

ombinations between the parameters, whih forms the set of dispersion points,

the problem is insoluble. The problem of onstruting the set of dispersion points

is very important in general theory of waveguides, however, for arbitrary hetero-

geneity funtions requires the use of numerial methods. Solving boundary value

problem we have used the shooting method.

For eah value of κ and γ , set up in the yle with some step, solves two

Cauhy problems for the system (1) with the following boundary onditions

for the �rst one:

Y
(1)
1 (ξ0) = 1, Y

(1)
2 (ξ0) = 0, Y

(1)
3 (ξ0) = 0, Y

(1)
4 (ξ0) = 0 , solutions vetor

Y (1) = (Y
(1)
1 , Y

(1)
2 , Y

(1)
3 , Y

(1)
4 ).
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for the seond Cauhy problem:

Y
(2)
1 (ξ0) = 1, Y

(2)
2 (ξ0) = 0, Y

(2)
3 (ξ0) = 0, Y

(2)
4 (ξ0) = 0 , solutions vetor

Y (2) = (Y
(2)
1 , Y

(2)
2 , Y

(2)
3 , Y

(2)
4 ).

linear ombination of these vetors

α1Y
(1) + α2Y

(2)

This ombination should meet the remaining boundary onditions Y3(1) =
Y4(1) = 0 . Obtained the linear system to determine the parameters α1, α2

α1Y
(1)
3 + α2Y

(2)
3 = 0

α1Y
(1)
4 + α2Y

(2)
4 = 0

To determine the set of dispersion points it is neessary to �nd the relation

between γ and κ , for whih system would have a nontrivial solution; then the

determinant of the system is zero.

Numerial experiments to determine the struture of the dispersion sets for

various heterogeneity funtions displayed in the following �gures. Figure 1. iden-

tify the omponents of the dispersion sets for the non-monotoni heterogeneity

funtions f(ξ), g(ξ), in Figure 2 for a layered ylinder.

Figure 1. Non-monotoni heterogeneity

Figure 2. Layered ylinder
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ON THE OCCURRENCE OF SELF-OSCILLATIONS IN

A VERTICAL LAYER OF A BINARY MIXTURE

IN THE PRESENCE OF A THERMAL DIFFUSION

EFFECT

Petrova E.I., Morshneva I.V.

Southern Federal University, Rostov-on-Don, Russia

The problem of onvetion in a binary mixture onsisting of two non-reating

omponents is onsidered. The binary mixture is plaed between two vertial in-

�nite isothermal plates. In the model under onsideration thermal di�usion e�et

is taken into aount, di�usive thermal ondutivity is negleted. The onve-

tive �ow of the binary mixture is governed by the Navier-Stokes equations under

Oberbek-Boussinesq approximation ([1℄):

∂v

∂t
+Gr(v, ∇)v = −∇p+△v + (T + C)k,

∂T

∂t
+Grv∇T =

1

Pr
△T,

∂C

∂t
+Grv∇C =

1

Prd
(△C − ε△T ),

div v = 0.

(1)

The orresponding boundary onditions are:

y = ±1 : v = 0, T = ∓1, ∂C

∂y
= ε

∂T

∂y
, (2)

where v = (vx, vy, vz) is the �ow veloity, T is the temperature, C is the light

omponent onentration, p is the pressure, k is the up-direted vertial vetor.

The problem (1), (2) ontains four dimensionless parameters: Gr =
gβ1θd

3

ν2

� the Grashof number; Pr =
ν

χ
� the Prandtl number; Prd =

ν

D
� the

di�usion Prandtl number (the Shmidt number); ε = −αβ2
β1

� the thermodi�u-

sion oe�ient; where ν is the kinemati visosity oe�ient, χ is the thermal

di�usivity, D is the di�usivity, β1 is the oe�ient of thermal expansion, β2 is

the density onentration oe�ient, α is the thermodi�usion parameter.

The motion equations (1), (2) have a steady-state (basi) solution with a

ubi veloity pro�le, onstant pressure, linear distribution of temperature and

onentration. Linear stability of the basi solution was studied by G. Gershuni,

E. Zhukhovitsky and L. Sorokin ([1℄). They found that both monotoni and

osillatory stability loss of the basi regime are possible.
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This researh is devoted to the study of branhing and stability of time-

periodi �ow regimes arising from osillatory stability loss of the basi regime

relatively plane perturbations 2π/β �periodi on a vertial variable z , where
β is wave number. The perturbation equations are invariant under the group

O(2) (invariant under inversion and vertial translation), and the Andronov-

Hopf bifuration theory in the systems with suh symmetry is suitable. This

theory has been developed by V. Yudovih and I. Morshneva ([2℄, [3℄). In our

researh we employ the Lyapunov-Shmidt method. We propose that solution is

time periodi with 2π/ω period, where ω is unknown yli frequeny. Thus the

solution is sought as follows:

v(τ) = (α0ϕ0 + α1ϕ1)e
iτ + (α∗0ϕ

∗
0 + α∗1ϕ

∗
1)e
−iτ + u(τ), (3)

where ϕ0 , ϕ1 is eigenvetors of the linear problem, whih are onneted by

inversion symmetry and orrespond to the eigenvalue −iω0 ; α0 , α1 � omplex

amplitudes; τ = ωt , ω = ω0 + µ .
The branhing equations inherit the symmetry of the original problem and

are given as

g(α0, α1) ≡ α0(−iµ+ aδ + b|α0|2 + c|α1|2 + . . . ) = 0,

g(α1, α0) ≡ α1(−iµ+ aδ + b|α1|2 + c|α0|2 + . . . ) = 0.
(4)

The expressions for a, b,  oe�ients are provided in [2℄. These oe�ients

represent funtionals, whih are expressed through eigenfuntions of the linear

and onjugate stability problem, and through the solutions of inhomogeneous

boundary-value problems with right sides that empliity dependent on the same

eigenfuntions.

Investigation of the system (4) has reveal ([2℄) that when the parameter Gr
pass through the ritial value of the osillatory stability loss Gr∗ three types of
self-osillating modes are arising: the nonlinear mixture of ouple simple waves,

two traveling simple waves moving in the opposite diretion to eah other. The

type of branhing and stability of these regimes depends on the relations between

the oe�ients a, b,  of the branhing equations.

The oe�ients of the branhing equations were found numerially for

the problem of binary mixture onvetion in the vertial layer in onsidera-

tion of thermal di�usion e�et. Computations for a wide range of parameters

Pr, Prd, ε, β showed that the following �ve branhing types of periodi modes

are realized:

I. the traveling waves are stable and branhed in superritial region, the

nonlinear mixture of waves is unstable and branhed in superritial region;

II. the traveling waves are unstable and branhed in superritial region, the

nonlinear mixture of waves is stable and branhed in superritial region;

III. the traveling waves are branhed in superritial region, the nonlinear

mixture of waves is branhed in subritial region, all regimes are unstable;
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IV. the traveling waves are branhed in subritial region, the nonlinear mix-

ture of waves is branhed in superritial region, all regimes are unstable;

V. all regimes are unstable and branhed in subritial region.

A variety of neutral stability urves of the osillatory stability loss have been

plotted for di�erent values of Pr, Prd, ε . Eah of the �ve branhing types of

periodi modes is denoted in di�erent styles. For example, Fig. 1 represents the

neutral stability urves, orresponding to the osillatory stability loss, for the

values of the Prandtl number Pr = 12, 14, 15.6 , the Shmidt number Prd = 4
and the thermodi�usion oe�ient ε = 1.214 in the parameter spae (β, ω, Gr) .
The nonlinear mixture of waves is stable at the yli frequeny below the average

value, and the traveling waves are stable at the yli frequeny near and above

the average value. On the remaining urve parts all the modes are unstable and

di�er only by the branhing type.

Figure 1. Branhing types of self-osillating modes on the neutral stability urves for

Pr = 12, 14, 15.6 , Prd = 4 , ε = 1.214 .
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MATHEMATICAL MODELS AND METHODS TO

DESCRIBE SELF-ASSEMBLY OF SPHERICAL

CRYSTALS AND TO STUDY THEIR DEFECTS

1

Roshal D.S., Myasnikova A.E.

Faulty of Physis, Southern Federal University, Rostov-on-Don,

Russia

Rapid development of experimental methods to obtain spherial rystals and

to study them auses high sientists' interest in theoretial modeling of olloidal

rystal self-assembly and defets in them. It is known, that this material is among

the �rst that were obtained by means of self-assembly. The most interesting

material from the pratial point of view is olloidosome, whih is a system

of densely paked partiles at an interfae between two liquids. Hexagonal order

dominates on its surfae, but it also ontains few topologial defets. Aording to

Euler theorem a sum of defets' topologial harges is 12. Usually triangulation

method (drawing lines onneting eah partile with its losest neighbors) is

useful to �nd defets areas. In this ase partiles related to hexagonal order have

zero topologial harge, partiles with �ve neighbors have harge +1, partiles

with seven ones have harge -1, et. Reently, we proposed a method [4℄ of rapid

determination of the extended defets' topologial harge using the ontours

surrounding them. In this ase the value of the topologial harge is 6 minus the

number of the ontour sides. So the pentagonal defet topologial harge is +1,

and an area of square order [1℄ has the harge +2. Similar topologial defets

may be alled extended topologial defets (ETDs) [2℄.

To explain the arrangement of partiles on the olloidosome surfae it is

reasonable to use Lennard-Jones potential. To simulate the olloidosome self-

assembly it is enough to plae randomly the partiles on the sphere surfae and

then to minimize the system energy by the gradient desent method.

As simulation shows [1℄ at the number of partiles on the sphere surfae

slightly less than the maximum possible, the area with the square order may

be formed (Fig.1b), whih was experimentally observed (Fig.1a). The area of

square order an be understood as the result of interation of two pentagonal

defets, and its topologial harge (+2) is the sum of topologial harges of two

dislinations (+1) [1℄. Paking density is muh lower in suh areas, whih is

important for appliations.

To study the ETD properties and interation between di�erent defets we

suggest a new method of surrounding the ETD with a ontour. The most ommon

defets in the spherial rystals are disloations and dislinations. However, in

olloidosomes and olloidal rystals with large maximum number of partiles and

high-density paking they are ombined into ETD with the topologial harge

+1. The number of them on the sphere surfae is 12, and they are loated near the

1
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Figure 1. Experimental (a) and simulated olloidosomes with the number of

partiles (b): slightly less than maximum and (): larger and maximum. Panels

(d, e) show two possible ways to deompose green extended topologial defet

(ETD) from () by the appliation of external fores.

verties of iosahedron (Fig. 1). Let's surround suh defet by salene pentagon.

It seems that the disloations enter the longer sides of the pentagonal defet area,

but it is not so. As it is shown in [2℄, inreasing the area oupied by the ETD,

we an make the surrounding ontour equilateral. Thus, the order outside the

defet doesn't display existene of disloations in any way.

Also, the interation between the topologial defets an be studied with

mathematial modeling methods. Over the last deade experimental methods

for studying 2D olloidal rystals were substantially advaned. Using new ex-

perimental methods like the optial tweezers tehnique it is possible to move

individual olloidal partiles or to shift oherently whole groups of suh parti-

les. After these enfored hanges olloidal strutures relax. This experimental

tehnique an be modeled by a virtual optial tweezers method [2℄. It onsists in

that after the hange of partiles oordinates on the sphere surfae the system

relaxation is modeled by applying a gradient desent method. Thus, we apply

the system energy minimization with the spei� initial onditions in the form

of modi�ed oordinates of partiles.

Let us use this method to onsider the ETD in the enter of the �gure 1. It

is highlighted in the green pentagon. Only after triangulation it looks like a sar

- a hain of 5- and 7-fold dislinations. Panels (d, e) present two possible ways to

deompose this ETD by the appliation of external fores (virtual optial tweez-

ers). In both enfored reations the elementary 5-fold dislination is detahed

and it arries out all the topologial harge of the ETD. The dislination region

is olored in red. Hexagons ontaining the disloations are olored in blue. The

length of the Burgers vetor of the disloation (d) is 2, while the length of the to-

tal Burgers vetor of two disloations shown in panel (e) is 2sin(?/3). Considering

the reations between ETDs and disloations, we have found that the ETDs emit

and absorb the disloations without preservation of their disloational harge.

With the spei� hoie of initial onditions it is possible not only to model
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the virtual optial tweezers, but also to �nd new solutions of Thomson problem.

Self-organization of repelling partiles retained on a spherial surfae is under

disussion for more than a entury and is alled Thomson problem after J.J.

Thomson suggested his model of atom 110 years ago. Thomson problem is in-

luded in various lists of the most important unsolved mathematial problems

of the 21st entury. Now we know that Thomson problem arises on di�erent

levels of the matter self-organization. Arrangements in multi-eletron bubbles in

super�uid helium almost perfetly orrespond to strutures formed by harged

partiles in the frame of the problem. Also the pores in the pollen grains (the

Tammes problem) and the various two-dimensional olloidal rystals inluding

olloidosomes [1, 2℄ are similar to Thomson problem solutions.

However, the lassial spherial Thomson strutures (TSs) orresponding to

the global energy minima are also very interesting. Searh of them is a hal-

lenging work sine the energies of strutures orresponding to global and loal

minima are very lose. Moreover, the di�erene between the equilibrium energies

is strongly redued and number of equilibrium strutures grows exponentially

with the number N of partiles in the struture. Usually the lowest minima or-

responding to the TS struture are searhed with numerial methods. The list

of spherial TSs with the lowest ever seen energy is onstantly updated [3℄ by

Bowik group of physiists.

Some of the TSs are similar to spherial viral apsids, whih were for the �rst

time desribed in terms of simple geometri model proposed by Caspar and Klug

(CK) half a entury ago. Unfortunately, viral apsids are not Thomson problem

solution, and besides, suh symmetri arrangements of partiles are possible only

at the partiular N values. However, it allows us to adapt and develop the initial

CK geometrial model to searh for the lowest-energy TSs.

Figure 2. The method to obtain new Thomson strutures

In my work [4℄, a new method of obtaining trial strutures for further opti-
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mization is suggested. It is based on a deformation of regular or slightly distorted

iosahedron smoothly overed with hexagonal lattie. The partiles are loated

in the nodes of this lattie. The trial struture is obtained by projeting the

partiles from the iosahedron surfae onto the sphere.

In this work [4℄ the spherial strutures with the number of partiles in the

interval of 600<N<1000 were analyzed. Thus 40 spherial rystals having energies

lower than the previously known strutures with the same number of partiles N

were obtained. It is possible that the obtained strutures are Thomson problem

solutions. Our results may be interesting for physiists working on theoretial and

experimental problems of self-assembly in various types of spherial nano- and

miro-strutures. For example, the strutures with the above onsidered simplest

distortions an be disovered in ourse of further experimental investigations of

misassembled viral apsids or fullerenes.

Thus, by means of developing new models and mathematial methods [1, 2,

4℄ we managed to explain the mehanism of unusual defets formation on the

olloidosome surfae and to study the interation between various defets. It

was proved that ETD an absorb or emit disloations without preserving their

disloation harge (the Burgers vetor). Moreover, using initial onditions with

slightly broken symmetry in the frames of the gradient desent method we �nd

40 new Thomson problem solutions.
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ONE APPROACH TO CALCULATING THE

MOVEMENT AND INTERACTION OF INDIVIDUAL

ICE FLOES1
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I Introduction

Ice cover is important component of the hydrological mode of the seas. Drift-
ing ice signi�cantly complicates shipping, coastal zone development, creates a
heavy load on the bridge supports. Simulation of ice �oes movement is an im-
portant area of research in development in areas of ice formation.

In di�erent models the ice is considered as the porous structure, in the case of
consideration of �oes as individual objects, they're described as a material point
[1, 5]. In this paper movement of �oe takes into account its con�guration, as well
as the e�ects of streams and wind loads.

II Statement of the Problem

As the object of study is considered the process of ice �oes movement with
arbitrary shape of the �oes in the pond �lled with homogeneous ideal incom-
pressible �uid. The border of the pond is vertical, and depth of water bigger
than ice �oes thickness.

The rectangular grid with information about �ow velocity is obtained.
The object in question is a resilient plate of arbitrary shape, in some approx-

imation are ice �oes. As initial conditions must be seted the density and shape
of the ice �oe. With these parameters square, mass and center of mass could be
calculated. The initial time it is assumed that the �oe is at rest, ut=0 = vt=0 = 0 .

Upon contact with the boundary of the reservoir, the movement of ice �oes
will be considered as an elastic collision with a solid surface.

III Movement modeling

The model of ice �oes moving is based on two-dimensional model of the drift
of the iceberg [6]. This model doesn't take into account the interaction with the
soil, wind waves and tilt of pond. The equation can be described by :

1Supported by The Ministry of Education and Science of Russia (grant 1420)
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M
du

dt
= FW

nx + FA
nx,M

dv

dt
= FW

ny + FA
ny (1)

where FW
nx , F

A
nx, F

W
ny , F

A
ny � projetion of radial fore omponents on the axis

x and y .
By replaing the time derivatives of the �nite-di�erene analogues, we get:

∆u

∆t
=
FW
nx + FA

nx

M
,
∆v

∆t
=
FW
ny + FA

ny

M

where ∆t � time step, ∆u and ∆v � omponents of the veloity gradients in

time (∆u = ut+1 − ut,∆v = vt+1 − vt )
For the angular veloity we take tangential omponents of the fores:

∆ω

∆t
=
FW
τ + FA

τ

I

where I � moment of inertia of the ie �oe, FW
τ , FA

τ � the tangential omponents

of the fores ating on an ie �oe.

After determining the speed of a drifting ie �oe, we �nd the oordinates of

its provisions (x, y) at the next time step:

xt+1 = xt + ut+1∆t, yt+1 = yt + vt+1∆t, ϕt+1 = ϕt + ωt+1∆t

At �rst we shall partition the entire area �oe with triangulation [4, 7℄ . We

assume that all of the mass of eah member is onentrated in the enter of mass

of the element, and the speed of the entire area of the element is equal to the

veloity of its enter of mass. Thus the resultant fore ating on an ie �oe, is

the sum of the fores ating on eah element of the partition:

Fres =

n∑

i=0

(
FW
i + FA

i

)

FW
i = cwρwSi

(
V W − V ice

i

)

FA
i = caρaSi

(
V A − V ice

i

)

where V W
� water �ow veloity, V A

� wind �ow veloity, V ice
i � rate of i �oes

element, ρw , ρa � the density of water, air, cw , cw � the frition oe�ient of

water, air, Si �Square of i �oes element in ontat with the water.

The interation between objets is redued to the problem of ollision dete-

tion and its solving [2, 9℄. Stage ollision detetion is divided into two steps:

1. Determination of the andidates for the ollision. For eah ie �oe deter-

mines the minimum radius of the irle entered at the enter of mass and
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fully ontaining this ie �oe. By omparing the distane between the en-

ters of mass of the two �oes and the amount reeived by the radius of the

irles we make a onlusion about the possibility of a ollision. If the dis-

tane is greater than the sum of the radiuses, that means that �oes don't

ollided, else a ouple of ie �oes are andidates for ollision and go to step

2.

2. Searh for ommon points ie �oes. In the simplest ase an be heked

that vertexs of the seond �oe are belong to the �rst ie �oe.

If ouple of objets has ommon points, than the value of the impulse should

be alulated. With this impulse objets interat with eah other.

r
BPB

A

P r
AP

n

Figure 1. The moment of two ie �oes ollision.

j =
− (1 + ε) vAB1 · n

n · n
(

1
MA + 1

MB

)
+

(rAP
⊥
·n)

2

IA +
(rBP

⊥
·n)

2

IB

where j � impulse, ε � oe�ient of elastiity, vAB1 � the di�erene between the

veloities of the bodies before ollision, n � the normal vetor of the point of ol-

lision, MA,MB
� mass of olliding objets, IA, IB � the moment of momentum

of the olliding objets.

IV Results

This model allows the alulation of:

1. Values of fores ating on an arbitrary area �oes.

2. Values of the resultant fore.

3. Collision fores.

4. Values of linear and angular speed and aeleration.
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As the pond to test model was hosen square shaped pond, �lled with a

uniform ideal inompressible �uid with a steady �ow. Presented in the form of a

grid of the veloity �eld, with known values at the nodes of the grid.

There was a numerial simulation of the interation of di�erent type objets

� two ie �oes with a predetermined density in the range from 0.85 to 0.94 g /

m 2 and stati body.

Figure 2. The results of alulations movement of ie �oes

Fig. 1 shows the path of the ie �oes, alulated using this model.
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THE SPECIAL BROADCAST SECURITY SCHEME

BASED ON RM-CODES AND THE PROTECTION

FROM SOME LINEAR ALGEBRAIC ATTACKS

Yevpak S.A.

Southern Federal University, Rostov-on-Don, Russia

The speial broadast seurity sheme whih is based on Reed-Muller odes

is onsidered in [1℄. The sheme allows distributors to protet digital produts

from unauthorized aess. Eah user gets from the distributor the id sequene

and the keys whih give aess to dupliated data.

However, there are possibilities to get aess to the data with help speial

linear algebrai attak [1, 2℄. For this, legal users of the sheme unite in groups

or oalitions and modify own key data for getting new pirate keys whih give

aess to dupliated data. The oalition size is not more than c users for the

onrete sheme. Besides, if the possible size of oalition members is more than

c then there are another attaks [3℄.

In this paper, it is introdued the parameters of Reed-Muller odes, whih

help to protet the distributor data.

Let Fq[X1, X2, . . . , Xm] be the ring of polynomials in m variables with oe�-

ients in the �nite �eld Fq with q elements. Let P1, P2, . . . , Pn be an enumeration
of the points of Fmq , where n=q

m
. The q -ary Reed-Muller ode RMq(r,m) of

order r in m variables is de�ned as

RM q(r,m) = {(f (P1) , f (P2) , . . . , f(Pn))|deg(f) ≤ r}.
Suppose c is the maximum size of oalition, N is the number of all users in the

sheme. Then,

r,m(∈ N) : |RMq(r,m)| = N

and

q ≥ rc2 + 1.
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MATHEMATICAL MODELING OF LASER PULSE

INTERACTION WITH PLASMA

1
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Reent years are marked with great progress of laser physis. Laser pulse

power is onstantly inreasing and reahed values of 1022W/cm2
. This fat has

led to ative theoretial and experimental researhes of ion aeleration, and is

expeted to use the high power lasers.

Plasma an be onsidered old and ollisional for the examined laser pulse.

Mehanisms of ion aeleration in the interation of ultrashort and superstrong

laser pulses with ollisional plasma based on the generation of large-sale ol-

letive eletri �elds due to hanges in the eletron density under the ation of

eletromagneti radiation.

A detailed researh of this problem requires a full-sale omputer simulations

based on the use of the so-alled method of partiles-in-ell or PIC � method.

This work is devoted to the desription of omputational experiment built

on a multiproessor platform. The experiment was onduted in the framework

of 2D3V, when the desired ion distribution funtion depends on two spatial

values and three omponents of the pulse. Plasma is examined in the Vlasov

approximation, that is a medium onsisting of eletrons and ions in whih there

is a self-onsistent �eld. Therefor it is represented with the �nite number of

eletrons and ions (up to 107 ) disposed at disrete points of spae. Partiles

move under the in�uene of external and self-onsistent �elds. The interation

of partiles is divided into two stages: the alulation of �elds, generated with

partiles, and determination of the motion of partiles under the in�uene of

fores, applied to them. Fields are alulated from Maxwell's equations, in whih

the urrents and harges are searhed out with the positions and veloities of all

partiles. Motion of the partiles is determined by the numerial solution of the

Newton-Lorentz equation with su�ient auray.

Computing yle onsists of alternate solutions to these two tasks. The vari-

able and spatial grid are put in, it satisfyies the neessary requirements of au-

ray and stability.Partiles are noted with index i , for example vi and xi . Field
values are omputed only at the nodes of the spatial grid, marked with index j ,
for example Ej . Cyle of the program work is showed on the piture.1.

The work presents a method for alulating a large number of system param-

eters based on multi-platfoma, namely parallelization is based on the "parameter

searh". This parallelization gives a great time advantage, in the onstrution of

a omputational experiment.

1
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Figure 1. PIC Methods
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SOME STEADY-STATE NUMERICAL SOLUTIONS OF

EULER EQUATION

1
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Consider a two-dimensional steady-state Euler's equation in terms of vortiity

and stream-funtion, desribing �ow of inompressible invisid �uid whih was

desribed in [1℄ : {
∂ω
∂x

∂ψ
∂y
− ∂ω

∂y
∂ψ
∂x

= 0

∆ψ = −ω (1)

With boundary onditions: ψ|x=0 = g1(y) ; ψ|x=a = g2(y) ; ψ|y=0 = const ;
ψ|y=b = const ; ω|x=0 = f1(y) ; ω|x=a = f2(y) ; ω|y=0 = const ; ω|y=b = const ;
where ψ = ψ(x, y) � stream funtion, ω = ω(x, y) � vortiity funtion.

Using �nite-di�erene method we got system of non-linear algebrai equa-

tions:

{
(ωi+1,j − ωi−1,j)(ψi,j+1 − ψi,j−1)− (ψi+1,j − ψi−1,j)(ωi,j+1 − ωi,j−1) = 0

−ωi,j = ψi+1,j−ψi,j+ψi−1,j

h2x
+

ψi,j+1−ψi,j+ψi,j−1

h2y

(2)

where i = 2..Nx − 1 ; j = 2..Ny − 1 ; hx =
a

Nx−1 ; hy =
b

Ny−1
Unfortunately it is pratially impossible to obtain analytial solution for

suh systems. However numerial methods provide aeptable results. The best

of them were obtained using Newton's method. The key problem here is how to

hoose the orret initial data.
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Figure 1. K1 = 4.5 ; K2 = 0 ; Regime with linear funtional dependeny that is

idential to analytial solution from artile [2℄

We suggest the following algorithm:

1
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• To �nd solution for the smallest possible number of ells (6 by 6) using

near-zero values as an initial data for Newton's method

• To "streth" result using interpolation methods to inrease number of ells

and use the result of interpolation as an initial data for Newton's method.

• If boundary onditions are lose to some boundary onditions for whih

solution has already been obtained, this solution is used as initial data for

Newton's method.

The reliability of results was ontrolled by the veri�ation of famous analyt-

ial fats and relations. Partiularly, the fat that there should be a funtional

dependeny ψ = F (ω) for the solution of (1).Besides, the algorithm was test-

ed for ases where analytial solution is known [2℄ The desribed algorithm was

suessfully applied for analyzing problem (1).

We onsider a square domain 1×1 with boundary onditions:f1(y) = f2(y) =
K1y + K2 sin(

πy
b
) ; g1(y) = g2(y) = y , where K1 and K2 � some numerial

parameters.
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Figure 2. K1 = 4.5 ; K2 = 1 ; Inreasing K2 makes funtional dependeny

non-linear but monotoni funtion

The main goal of the numerial experiments was to �nd a steady-state �ows

with di�erent funtional dependeny ω = F (ψ) . The linear dependeny (K2 =
0) was desribed in [2℄.

The results are presented graphially. The left piture illustrates stream-lines

of �uid partiles, the entral piture illustrates isolines of vortiity �eld and the

right graphis shows the dependeny ψ(ω) . Here, we used a solution with linear

dependeny ω = Kψ to perform reliability tests.
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