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RIGOROUS CONVERGENCE ANALYSIS OF

ALTERNATING VARIABLE MINIMIZATION WITH

MULTIPLIER METHODS FOR QUADRATIC

PROGRAMMING PROBLEMS WITH EQUALITY

CONSTRAINTS

1

Zhong-Zhi Bai

∗
, Min Tao

∗∗
∗
State Key Laboratory of S
ienti�
/Engineering Computing,

Institute of Computational Mathemati
s and S
ienti�
/Engineering

Computing, A
ademy of Mathemati
s and Systems S
ien
e,

Beijing, P.R. China,

∗∗
Department of Mathemati
s, Nanjing University, Nanjing,

China

Let R be the domain of all real numbers, Rn
be the n-dimensional real

linear spa
e equipped with the Eu
lidean inner produ
t, say, 〈·, ·〉 , and R
m×n

be

the m-by-n real matrix spa
e. Denote by (·)T and ‖ · ‖ the transpose and the

Eu
lidean norm of either a ve
tor or a matrix of suitable dimension, respe
tively.

We 
onsider numeri
al solutions of equality-
onstraint quadrati
 programming

problems of the form

{
min φ(x) + ψ(y),
s.t. Ax+ By = b,

(1)

where A ∈ R
p×n

and B ∈ R
p×m

are two matri
es, b ∈ R
p
is a known ve
tor,

and φ : Rn → R and ψ : Rm → R are two quadrati
 fun
tions de�ned by

{
φ(x) = 1

2x
TFx+ xTf,

ψ(y) = 1
2y

TGy + yTg,
(2)

with F ∈ Rn×n
, G ∈ Rm×m

being symmetri
 positive semide�nite matri
es and

f ∈ R
n
, g ∈ R

m
being given ve
tors. We assume that some standard assumptions

are imposed on the matri
es F , G and A , B as well as on the ve
tors f ,
g and b su
h that the solution set of the problem (1)-(2) is nonempty. This


lass of 
onstraint programming problems o

urs in many areas of 
omputational

s
ien
e and engineering appli
ations su
h as e
onomi
s [1℄, ele
tri
al 
ir
uits and

networks [2, 29, 7℄, ele
tromagnetism [24, 4℄, �nan
e [21, 22℄, image re
onstru
tion

[17℄, image registration [23, 15℄ and optimal 
ontrol [3℄. It also 
aptures a number

1 ∗
The work of this author is supported by The National Basi
 Resear
h Program (No. 2011CB309703),

The National Natural S
ien
e Foundation (No. 91118001) and The National Natural S
ien
e Foundation for

Creative Resear
h Groups (No. 11321061), P.R. China,

∗∗
The work of this author is supported by The National Natural S
ien
e Foundation (No. 11301280) and The

Fundamental Resear
h Funds for the Central Universities (No. 020314330019), P.R. China
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of important appli
ations arising in various areas su
h as the l1 -norm regularized

least-squares problems, the total variation image restoration and the standard

quadrati
 programming problems; see, e.g., [19, 18℄ for more details.

One of the most popular and e�e
tive iterative methods for solving the

equality-
onstraint quadrati
 programming problem (1) is the so-
alled alter-

nating dire
tion method with multipliers, or in short, the ADM method. At

ea
h iteration step, it �rst alternatively minimizes the augmented Lagrangian

fun
tion La(x, y, z) with respe
t to the variables x , y , and then update the La-

grange multiplier z a

ording to the steepest as
ent prin
iple so that violation

of the original 
onstraint Ax + By = b is penalized. More pre
isely, the ADM

method for solving the problem (1) 
an be algorithmi
ally des
ribed as follows.

Method 0.1 (ADM Method for the Problem (1))

Given initial guesses y(0) ∈ Rm
and z(0) ∈ Rp

, for k = 0, 1, 2, . . .
until the iteration sequen
es {x(k)}∞k=0 ⊂ R

n
, {y(k)}∞k=0 ⊂ R

m

and {z(k)}∞k=0 ⊂ Rp
are 
onvergent, 
ompute x(k+1)

, y(k+1)
and z(k+1)

a

ording to the following rule:





x(k+1) = argminx∈Rn

{
φ(x)− 〈Ax+By(k) − b, z(k)〉+ β

2
‖Ax+By(k) − b‖2

}
,

y(k+1) = argminy∈Rm

{
ψ(y)− 〈Ax(k+1) +By − b, z(k)〉+ β

2
‖Ax(k+1) +By − b‖2

}
,

z(k+1) = z(k) − β(Ax(k+1) +By(k+1) − b).
(3)

Intuitively, Method 0.1 is an alternating variable minimization with multiplier

(AVMM) method. The AVMM method is intended to blend the de
omposabil-

ity of dual as
ent with the superior 
onvergen
e properties of the method of

multipliers [6℄. In [12℄ Gabay illustrated this iteration s
heme as an appli
ation

of the Douglas-Ra
hford splitting method [20℄ to the dual of the problem (1),

and E
kstein and Bertsekas [9℄ showed in turn that Douglas-Ra
hford splitting

is a spe
ial 
ase of the proximal point method. Hen
e AVMM is a spe
ial 
ase

of the proximal point method; see E
kstein and Ferris [10℄ for more dis
ussions

explaining this approa
h. On the other hand, it is also a natural generalization

of the 
lassi
al Uzawa method for solving the saddle-point problems; see [1, 5, 8℄.

Many papers have analyzed the AVMM method from the perspe
tive of max-

imal monotone operators [9, 25, 26, 27, 28℄. Its global 
onvergen
e was proved

under some mild 
onditions su
h as the solution set of the problem (1) is nonemp-

ty; see [13, 11, 12℄. Also, it has been known that this method 
onverges linearly,

but an a

urate estimate about the 
onvergen
e rate is still in its infan
y; see,

e.g., [20, 14, 19, 30, 18℄.

In this paper, based on a weighted inner produ
t and the 
orresponding

weighted norm, by adopting matrix pre
onditioning strategy and utilizing pa-

rameter a

elerating te
hnique, we establish a 
lass of pre
onditioned alternating

variable minimization with multiplier (PAVMM) methods for iteratively solv-

ing the equality-
onstraint quadrati
 programming problem (1). This method

in
ludes the AVMM or the ADM method as spe
ial 
ase. By making use of

blo
kwise matrix transformation, from null spa
e relationships of the involved
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sub-matri
es we dis
uss solvability of the equality-
onstraint quadrati
 program-

ming problem (1)-(2) and give su�
ient and ne
essary 
onditions for guaran-

teeing existen
e and uniqueness of its solution. By exploring an expli
it formula

about eigenvalues of the iteration matrix, we demonstrate asymptoti
 
onver-

gen
e property and analyze asymptoti
 
onvergen
e rate of the PAVMM method.

By making use of matrix splitting, we also dis
uss an algebrai
 derivation of the

PAVMM method, whi
h shows that this method is a
tually a modi�ed blo
k

Gauss-Seidel iteration method for solving the augmented linear system resulting

from the weighted Lagrangian fun
tion with respe
t to the equality-
onstraint

quadrati
 programming problem (1)-(2).
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Many problems in s
ienti�
 
omputing and engineering appli
ations demand

to 
ompute solutions of linear 
omplementarity problems. Su
h 
lass of problems

in
ludes, for example, the 
onvex quadrati
 programming, the bimatrix game, the

free boundary problems of �uid dynami
s, the network equilibrium problems, the


onta
t problems, and so on. For given matrix A ∈ R
n×n

and ve
tor q ∈ R
n
, the

linear 
omplementarity problem, abbreviated as LCP(q , A), 
onsists of �nding
a pair of ve
tors r, z ∈ R

n
su
h that

r := Az + q ≥ 0, z ≥ 0 and zT (Az + q) = 0,

where zT denotes the transpose of the ve
tor z .
Bai proposed a 
lass of modulus-based splitting iteration methods in [1℄ for

solving the LCP(q , A). This 
lass of iteration methods is essentially based on

an equivalent transformation of the LCP(q , A) into a system of �xed-point

equations involving only absolute value of 
ertain ve
tor. It not only in
ludes

as spe
ial 
ases the modulus-based relaxation methods su
h as Ja
obi, Gauss-

Seidel, SOR and AOR, but also provides a general framework for the existing

modulus iteration methods. Theoreti
al analyses and numeri
al implementations

have shown that the modulus-based relaxation methods are often superior to the

proje
ted relaxation methods.

This talk in
ludes two parts. The one is about the syn
hronous parallel 
oun-

terpart of the modulus-based splitting iteration method by making use of multiple

splittings of the system matrix A . The other is about the two-stage multisplit-
ting iteration method by employing the modulus-based matrix splitting iteration

and its relaxed variants as inner iterations.

First, in order to suit 
omputational requirements of the modern high-speed

multipro
essor environments, we present the modulus-based syn
hronous multi-

splitting (MSM) iteration method by making use of multiple splittings of the

system matrix A . Let (Mk, Nk, Ek) (k = 1, 2, . . . , ℓ) be a multisplitting of the
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system matrix A , Ω a positive diagonal matrix and γ a positive 
onstant. Then,

the MSM iteration method 
an be des
ribed as follows:

1. Choose an initial ve
tor x(0) ∈ Rn
, and set m := 0 ;

2. For k = 1, 2, . . . , ℓ , we solve the linear subsystem

(Ω +Mk)x
(m+1,k) = Nkx

(m) + (Ω−A)|x(m)| − γq,

on the k -th pro
essor, and obtain the solution x(m+1,k)
;

3. By 
ombining the lo
al updates of ℓ pro
essors together, we get

x(m+1) =
ℓ∑

k=1

Ekx
(m+1,k)

and z(m+1) =
1

γ
(|x(m+1)|+ x(m+1));

4. If z(m+1)
satis�es a pres
ribed stopping rule, then terminate. Otherwise,

set m := m+ 1 and return to 2.

This 
lass of modulus-based syn
hronous multisplitting iteration methods

only needs to solve sub-systems of linear equations rather than linear 
omple-

mentarity sub-problems. With spe
ial 
hoi
es of the multiple splittings of the

system matrix, we 
an obtain a sequen
e of modulus-based syn
hronous mul-

tisplitting relaxation methods, in
luding Ja
obi, Gauss-Seidel, SOR and AOR,

respe
tively. When the system matrix A is an H+ -matrix, we prove the 
on-

vergen
e of the modulus-based syn
hronous multisplitting iteration methods as

well as their relaxed variants. Numeri
al results show that the modulus-based

syn
hronous multisplitting Ja
obi, Gauss-Seidel and SOR methods 
an a
hieve

high parallel 
omputing e�
ien
y in a
tual implementations.

Se
ond, in the matrix multisplitting iteration method dis
ussed by Ma
hida,

Fukushima and Ibaraki in [2℄ and by Bai in [3℄, we have to spend a vast major-

ity of time in solving the linear 
omplementarity sub-problems exa
tly at ea
h

iteration step. For saving time, inner iteration 
an be introdu
ed to solve them

approximately. Thus, we present the two-stage multisplitting iteration method

by employing the modulus-based matrix splitting iteration and its relaxed vari-

ants as inner iterations. Let (Mk : Fk, Gk;Nk;Ek) (1 ≤ k ≤ ℓ) be a two-stage

multisplitting of the matrix A . Then, the steps of the two-stage multisplitting
iteration method are listed as follows:

1. Choose an initial ve
tor x(0) and a positive 
onstant γ . Set m := 0 and

z(0) = 1
γ
(x(0) + |x(0)|) .

2. Given x(m)
and z(m)

. For ea
h k (1 ≤ k ≤ ℓ) , solve the LCP(q(m,k),Mk) ,
with q(m,k) := q−Nkz

(m)
, by employing the modulus-based matrix splitting
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iteration method:

(Ω + Fk)x
(m,k,j+1) = Gkx

(m,k,j) + (Ω−Mk)|x(m,k,j)| − γq(m,k),
j = 0, 1, . . . , l

(m)
k − 1,

(1)

with x(m,k,0) := x(m)
. Here, Ω is a positive diagonal matrix.

3. Set x(m+1) =
ℓ∑

k=1

Ekx
(m,k,l

(m)
k )

, and z(m+1) = 1
γ
(x(m+1) + |x(m+1)|) .

4. If z(m+1)
satis�es a pres
ribed stopping rule, then terminate. Otherwise,

set m := m+ 1 and return to 2.

In order to solve (1) expli
itly, we 
onsider the 
lassi
 a

elerated overrelax-

ation (AOR) splitting Mk = Fk − Gk , i.e., the matri
es Fk and Gk in (1) are

of the forms





Fk =
1

α
(DMk

− βLMk
) ,

Gk =
1

α
[(1− α)DMk

+ (α− β)LMk
+ αUMk

] ,
0 < β ≤ α,

where DMk
, LMk

and UMk
are the diagonal, the stri
tly lower-triangular and the

stri
tly upper-triangular matri
es of the matrix Mk , respe
tively. In this 
ase,

the above two-stage iteration method gives the two-stage multisplitting MAOR

(TMMAOR) iteration method. Spe
ially, if α = β , the TMMAOR iteration

method redu
es to the two-stage multisplitting MSOR (TMMSOR) iteration

method, and if α = β = 1 , it further redu
es to the two-stage multisplitting

MGS (TMMGS) iteration method. And, if α = 1 and β = 0 , it is the two-

stage multisplitting MJ (TMMJ) iteration method.

In the two-stage methods, the modulus-based matrix splitting iteration meth-

ods are used as inner iterations to solve the linear 
omplementarity sub-problems

inexa
tly. This makes the two-stage multisplitting iteration methods easier to be

programmed and more e
onomi
al in memory storage. Moreover, these two-stage

multisplitting iteration methods are 
onvergent for any number of inner itera-

tions when the system matrix is an H+ -matrix. This makes these methods more

�exible and e�e
tive than earlier similar methods in a
tual 
omputation. Numer-

i
al experiments show that the two-stage multisplitting relaxation methods are

superior to the matrix multisplitting iteration methods in 
omputing time, and


an a
hieve a satisfa
tory parallel e�
ien
y. Numeri
al experiments also show

that the 
omputing time is the least for only a few inner iterations.
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The number of 
alls to the ambulan
e servi
e in Mos
ow is equal about 5

million per year. About two thirds of the 
alls lead to ambulan
e trips. We

analyse here only su
h kind of the 
alls (NAT

1
). The fun
tion is noted as Q(t) .

We 
onsidered it as a random pro
ess. Than we approximate the fun
tion by a


ubi
 spline ΨQ(t) .

Figure 1. a. The long-term trend 
hanges NAT Q(t) . b. Cal
ulated typi
al NAT ΨQ(t) �

the 28 years periodi
 fun
tion, whi
h depends only on the time of year and day of the week. It

also shows daytime, night shifts and their sum. On the horizontal axis are marked on January

1.

We 
an use the fun
tion as a fore
ast of NAT, but the approa
h is not good;

see the 
urves 1 on the Fig.2. We 
an realise the approa
h for various subgroups

of diseases, too.

We used in the study the ar
hives of the Ambulan
e Servi
e in Mos
ow

2
as

well as meteorologi
al ar
hives of the Hydrometeorologi
al Center of Russia. We

1
The number of the ambulan
e trips.

2
The operative data about the 
alls are available on the site http://www.mos03.ru/about/about.php. We

used the depersonalized database of trips during 2009-2013.
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used an additional information about the air temperature T (t) to improve the

fore
ast of NAT, see the 
urves 2.

We use the known statisti
s of the 
alls for the 
urrent and previous days

to predi
t them for tomorrow and for the following days. We assume that this

algorithm will work operatively, will 
y
li
ally update the available information

and will move the horizon of the fore
ast.

Sure, the a

ura
y of su
h fore
asts depends on their lead time, and from

a 
hoi
e of some group of diagnoses. For 
omparison we used the error of the

inertial fore
ast (tomorrow there will be the same number of 
alls as today). Our

te
hnology has demonstrated a

ura
y that is approximately two times better


ompared to the inertial fore
ast.

We obtained the following result: the number of 
alls depends on the a
tual

weather in the 
ity as well as on its rate of 
hange. We were interested in the

a

ura
y of the fore
ast for 12-hour sum of the 
alls in real situations. We evaluate

the impa
t of the meteorologi
al errors [Bagrov 2014℄ on the fore
ast errors of

the number of Ambulan
e 
alls.

Figure 2. The RMS error of the fore
ast of the total NAT per 12 hours depending on

the lead time z (days). Data is divided into daytime shifts (solid line) and night (dashed

line). 1 � the deviation Q(t) from ΨQ(t) . 2 � the deviation Q(t) from ΨQ,Tmin,Tmax
(t) . 3

� the error of the fore
ast, whi
h uses information about NAT from several previous days,

but without separation into super-groups of diseases; the data about air temperature were

ignored. 4 � fore
ast without separation onto super-groups of diseases, but with impa
t of

the temperature. 5 � we use the separation onto super-groups A, B, C, and do not use air

temperature. 6 � we use the separation onto super-groups A, B, C, and take into a

ount the

air temperature for our fore
asting. Here the temperature was assumed to be known exa
tly

for the 
urves 2, 4, and 6. Curves 7 des
ribe the fore
ast whi
h is similar to 6, but it use

the fore
asted air temperature with 
orresponding lead time [Bagrov 2014℄ instead of real air

temperature.

The weather and the Ambulan
e 
alls number both have seasonal tenden
ies.

Therefore, if we have medi
al information from one 
ity only, we should separate
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the impa
ts of su
h predi
tors as "annual variations in the number of 
alls" and

"weather". We need to 
onsider the seasonal tenden
ies (asso
iated, e. g. with the

seasonal migration of the population and government holidays), week periodi
ity,

and the impa
t of the air temperature simultaneously, rather than sequentially.

We fore
asted separately the number of 
alls with diagnoses of 
ardiovas
ular

group, where it was demonstrated the advantage of the fore
asting method, when

we use the maximum daily air temperature as a predi
tor. We have a 
han
e to

evaluate statisti
ally the in�uen
e of meteorologi
al fa
tors on the dynami
s

of medi
al problems. In some 
ases it may be useful for understanding of the

physiology of disease and possible treatment options.

In future we are going to assimilate some personal ar
hives of medi
al param-

eters for the individuals with 
on
rete diseases and the relative meteorologi
al

ar
hive. As a result we hope to evaluate how weather 
an in�uen
e the intensi-

ty of the disease. Thus, the knowledge of the weather fore
ast for several days

will help us to predi
t a state of health. The person will be able to take some

proa
tive a
tions to avoid the anti
ipated worsening of his health.
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The Navier-Stokes equations are of interest both itself and in 
ombination

with additional equations for more 
omplex physi
al phenomena. At the same

time, e�
ient and robust numeri
al methods for its solving is extremely 
hal-

lenged up to now.

In present talk the 2D system of the Navier-Stokes equations is 
onsidered

for a vis
ous in
ompressible �uid in a 
hannel Ω with Γin , Γout and Γrigid as

inlet, outlet, and rigid sides boundary 
orresponden
e. On outlet boundary the

modi�ed �do nothing� boundary 
ondition is imposed [1℄. Its e�
ien
y is shown

by numeri
al experiments.

To 
onstru
t a dis
rete analogue, we use a semi-Lagrangian approa
h to ap-

proximation of the transport derivatives [2℄. In our 
ase the set of transport

derivatives is 
onsidered to be a (Lagrangian) �rst-order derivative along a given

dire
tion l = (1, u, v) :

∂f

∂t
+

∂

∂x
(fu) +

∂

∂y
(fv)

︸ ︷︷ ︸
+ in
ompressibility

=
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
≡ ∂f

∂l
,

whi
h may be approximated by �nite di�eren
e or inside the �nite element

method. Then we 
onsider in a 
hannel the following problem

∂U

∂l
− ν∆U+

1

ρ0
∇p = f ,

∇ ·U = 0

under the 
onditions

U(t,x) = Uin ∀(t,x) ∈ (0, T )×Γin, U(t,x) = (0, 0) ∀(t,x) ∈ (0, T )×Γrigid,

−ν∂nU+
1

ρ0
pn =

1

ρ0
pextn ∀(t,x) ∈ (0, T )× Γout.

Here U = (u, v) is a velo
ity ve
tor, p is a pressure, ν is a kinemati
 vis
osity,

ρ0 is a 
onstant density, f = (f1, f2) is a given ve
tor of body for
es.

We use 
ombination of semi-Lagrangian approa
h to approximation of the

transport derivatives and a 
onforming �nite element method to approximation

1
The work was supported by Russian Foundation of Fundamental Resear
hes (grant 14-01-00296-a)
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of other terms (namely, Stoks problem). Velo
ity 
omponents are approximated

by biquadrati
 elements and the pressure does by bilinear elements on re
tangles.

As a result of this 
ombined approa
h, the stationary problem with a self-

adjoint operator is obtained on ea
h time level. This problem is numeri
ally

solved by the multigrid method whi
h allows one to de
rease the 
omputational

time.

The theoreti
al results are 
on�rmed by numeri
al experiments.
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A variant of the global generalized Hessenberg method is presented whi
h

allows varying pre
onditioning at ea
h restart. Theoreti
al results that relate

the residual norm of this new method with its original version are developed.

As two spe
ial variants, the �exible global GMRES method and the �exible

global CMRH method are investigated both theoreti
ally and experimentally.

Numeri
al examples are 
ondu
ted to illustrate the performan
e of these two

�exible global methods in 
omparison with both the original global methods and

weighted global methods.

We 
onsider the solution of large and sparse linear systems with multiple

right-hand sides of the form

AX = B, (1)

where A ∈ R
n×n

and X,B ∈ R
n×s

with usually s≪ n .

I The matrix Krylov subspa
e

For X, Y ∈ Rn×s
, we de�ne the Frobenius s
alar produ
t (X, Y )F =

tr(XTY ) . Moreover, a system of matri
es in R
n×s

is said to be F -orthogonal if

it is orthogonal with respe
t to the produ
t (·, ·)F .
The matrix Krylov subspa
e Km(A, V ) is spanned by V , AV , · · · , Am−1V ,

or equivalently, for any W ∈ Km(A, V ) , we have

W =
m∑

i=1

αiA
i−1V, (2)

where V ∈ R
n×s

and αi ∈ R for i = 1, · · · , m . This is di�erent from the blo
k

Krylov subspa
e exploited in the usual blo
k methods. Asso
iate with the matrix

Krylov subspa
e is the produ
t ∗ de�ned by

Vm ∗ x =

m∑

i=1

(x)iVi, (3)

where Vm = [V1, · · · , Vm] ∈ R
n×ms

and x = [(x)1, · · · , (x)m]T ∈ R
m
.

1
The work is supported by Shanghai Natural S
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e Foundation (10ZR1410900), Key Dis
iplines of Shang-
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ipality (S30104) and Innovation Program of Shanghai Muni
ipal Edu
ation Commission(13ZZ068)
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II The global generalized Hessenberg methods with �xed

pre
onditioning

We now 
onsider a right pre
onditioning for the original linear system (1),

namely,

AM−1(MX) = B, (4)

where M is an appropriate pre
onditioner. It should be noted that M−1
is solved

from an equation instead of forming expli
itly.

The Gl-GH pro
ess generates a matrix basis span{V1, · · · , Vm} of the matrix
Krylov subspa
e Km(A,R0) through the relations

V1 = R0/β and (H̄m)i+1,iVi+1 = AVi −
i∑

j=1

(H̄m)j,iVj, (5)

where β and (H̄m)i+1,i are s
aling fa
tors for i = 1, · · · , m . Let Y1, · · · , Ym be

linearly independent matri
es, where Yi ∈ Rn×s
for i = 1, · · · , m . The s
alars

(H̄m)j,i in (5) are opted by imposing the orthogonality 
ondition

Vi+1 ⊥F Y1, · · · , Yi, i = 1, · · · , m. (6)

Using (5) and (6), we have

(H̄m)j,i =
(Yj, U)F
(Yj, Vj)F

=
tr(Y T

j U)

tr(Y T
j Vj)

,

where U = AVi −
∑i

j=1(H̄m)j,iVj . With the above relations, we sket
h out the

global generalized Hessenberg pro
ess with �xed pre
onditioning. Based on Al-

Algorithm 1. The Gl-GH pro
ess with �xed pre
onditioning.

1: β = ‖V ‖, V1 = V/β ;
2: for i = 1, · · · , m do

3: Zi =M−1Vi ; % inner pro
ess with a �xed pre
onditioner M
4: U = AZi ;
5: for j = 1, · · · , i do
6: (H̄m)j,i = tr(Y T

j U)/tr(Y
T
j Vj) ; U = U − (H̄m)j,iVj ;

7: end for

8: (H̄m)i+1,i = ‖U‖ ; Vi+1 = U/(H̄m)i+1,i ;

9: end for

gorithm 1, the global generalized Hessenberg method with �xed pre
onditioning

for solving (4) 
an be presented as follows.
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Algorithm 2. Gl-GH: the global generalized Hessenberg method with �xed pre-


onditioning.

1: Choose X0 and 
ompute R0 = B −AX0 . Set β = ‖R0‖, V1 = R0/β ;
2: Generate the blo
k matrix Vm = [V1, · · · , Vm] from Algorithm 1. Update

Xm = X0 + M−1
Vm ∗ ym , where ym = argminy∈Rm ‖βe1 − H̄my‖2 and

e1 = [1, 0, · · · , 0]T ∈ Rm+1
.

3: If 
onverged then stop; otherwise set X0 = Xm and goto line 2.

III The global generalized Hessenberg methods with �ex-

ible pre
onditioning

In Algorithm 2, re
all that the same pre
onditioner M is used throughout

the iterations. On the 
ontrary, if we employ �exible pre
onditioners Mi , that is,

pre
onditioner 
hanges at ea
h step, then it 
an be expe
ted the pre
onditioner

will be improved from one step to the next with the newly information. This

is the idea behind the main algorithm in this paper, i.e., the �exible global

generalized Hessenberg method (FGl-GH) whi
h is shown below. We are ready

Algorithm 3. FGl-GH: the �exible global generalized Hessenberg method.

1: Choose X0 and the restarting frequen
y m .

2: Compute R0 = B −AX0 . Set β = ‖R0‖, V1 = R0/β ;
3: for i = 1, · · · , m do

4: Zi =M−1
i Vi ; % inner pro
ess with a �exible pre
onditioner Mi

5: U = AZi ;
6: for j = 1, · · · , i do
7: (H̄m)j,i = tr(Y T

j U)/tr(Y
T
j Vj) ; U = U − (H̄m)j,iVj ;

8: end for

9: (H̄m)i+1,i = ‖U‖ ; Vk+1 = U/(H̄m)i+1,i ;

10: end for

11: Form Zm = [Z1, · · · , Zm] by solving an inner system at line 4. Update

Xm = X0 + Zm ∗ ym , where ym = argminy∈Rm ‖βe1 − H̄my‖2 .
12: If 
onverged then stop; otherwise set X0 = Xm and goto line 2.

to 
omment on Algorithm 3 in 
omparison with Algorithm 2. If Mi ≡ M , then

Algorithm 3 redu
es to Algorithm 2. Further, in Algorithm 3, we need to save an

additional blo
k matrix Zm , whi
h presents the major di�eren
e between these

two algorithms. As a result, a relation of the form holds:

AZm = Vm+1 ∗ H̄m, (7)

where Vm+1 = [V1, · · · , Vm+1] and Zm = [Z1, · · · , Zm] .



26 "Numeri
al Algebra with Appli
ations"

NUMERICAL METHODS FOR SYSTEMS WITH

COMPLEX MATRICES

Xue-Ping Guo

East China Normal University, Shanghai, China

Systems of nonlinear equations with 
omplex symmetri
 Ja
obian matri
es


an be derived in many pra
ti
al problems, su
h as nonlinear waves, 
hemi
al

os
illations, quantum me
hani
s, turbulen
e, and so on. we 
onsider an e�e
tive

and robust algorithm for solving large sparse systems of nonlinear equations

F (x) = 0, (1)

where F : D ⊂ Cn → Cn
is nonlinear and 
ontinuously di�erentiable. The

Ja
obian matrix of F (x) is large, sparse and 
omplex symmetri
, i.e.,

F
′

(x) = W (x) + iT (x)

satis�es W (x)T = W (x) , T (x)T = T (x) . Moreover, matri
es W (x) and T (x)
are real positive de�nite and real positive semi-de�nite matri
es, respe
tively.

By making use of the spe
ial stru
ture of the 
oe�
ient matrix A , Bai et

al. in [2℄ derived a modi�
ation of the well-known HSS iteration method [4℄, i.e.,

MHSS. In order to further a

elerate the 
onvergen
e rate of MHSS, Bai et al. in

[3℄ pre
onditioned the 
omplex symmetri
 linear system by 
hoosing a symmetri


positive de�nite matrix V ∈ Rn×n
. The new splitting iteration method 
an be

des
ribed as follows.

The PMHSS iteration method

Let x0 ∈ Cn
be an arbitrary initial guess. Compute xk+1 for k = 0, 1, 2, · · ·

using the following iteration s
heme until {xk} 
onverges,
{
(αI +W )xk+ 1

2
= (αI − iT )xk + b,

(αI + T )xk+1 = (αI + iW )xk+ 1
2
− ib, (2)

where α is a given positive 
onstant and V ∈ Rn×n
is a pres
ribed symmetri


positive de�nite matrix.

By making use of the pre
onditioned modi�ed Hermitian and skew-Hermitian

splitting (PMHSS) iteration as the inner solver to approximately solve the New-

ton equations, we establish the modi�ed Newton-PMHSS method.

The lo
al 
onvergen
e properties under the H�older 
ontinuous 
ondition are

analyzed and numeri
al results are given to 
on�rm the e�e
tiveness of our

method.
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The modi�ed Newton-PMHSS method(MN-PMHSS)

1. Given an initial guess x0 , positive 
onstants α and tol , and two positive

integer sequen
es {lk}∞k=0 , {mk}∞k=0 ;

2. For k = 0, 1, · · · until ‖F (xk)‖ ≤ tol‖F (x0)‖ do:

2.1. Set dk,0 = hk,0 = 0 ;
2.2. For l = 0, 1, · · · , lk − 1 , apply Algorithm PMHSS to the linear

system:

{
(αV (xk) +W (xk))dk,l+ 1

2
= (αV (xk)− iT (xk))dk,l − F (xk),

(αV (xk) + T (xk))dk,l+1 = (αV (xk) + iW (xk))dk,l+ 1
2
+ iF (xk),

and obtain dk,lk su
h that

‖F (xk) + F
′

(xk)dk,lk‖ ≤ ηk‖F (xk)‖ for some ηk ∈ [0, 1). (3)

2.3. Set yk = xk + dk,lk .
2.4. Compute F (yk) .
2.5. For m = 0, 1, · · · , mk − 1 , apply Algorithm PMHSS to the linear

system:

{
(αV (xk) +W (xk))hk,m+ 1

2
= (αV (xk)− iT (xk))hk,m − F (yk),

(αV (xk) + T (xk))hk,m+1 = (αV (xk) + iW (xk))hk,m+ 1
2
+ iF (yk),

and obtain hk,mk
su
h that

‖F (yk) + F
′

(xk)hk,mk
‖ ≤ η̃k‖F (yk)‖ for some η̃k ∈ [0, 1). (4)

2.6. Set xk+1 = yk + hk,mk
.
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ON THE COMPUTATION OF THE INVERSE

STURM-LIOUVILLE PROBLEM IN IMPEDANCE

FORM

Huang Zhengda

S
hool of Mathemati
al S
ien
e, Zhejiang University, China

This is a report of our group's work on the appli
ation of numeri
al algebra

methods in the 
omputation of the inverse Sturm-Liouville problem in impedan
e

form.

The inverse Sturm-Liouville problem in impedan
e form 
onsidered here is

to re
over the unknown impedan
e fun
tion a(x) > 0 on [0, 1] in the equation,

(a(x)y(x)′)′ + λa(x)y(x) = 0, 0 < x < 1, (1)

with Diri
hlet boundary 
onditions

y(0) = y(1) = 0. (2)

Problem 1 : Given the �rst n eigenvalues, λ1 < λ2 < · · · < λn , of (1) with
boundary 
onditions (2), we seek an approximation to the impedan
e a(x) .

Sin
e the impedan
e 
an only be determined up to a multipli
ative 
onstant,

it will be assumed in what follows that the normalization

a(ξ) = 1 (3)

for some ξ ∈ [0, 1] .
Over the mesh

0 = x0 < x1 < x2 < · · · < xK < xK+1 = 1, xi = ih, h =
1

K + 1
, (4)

where K is a undetermined positive integer, (1) is approximated by di�eren
e

equations

aiyi−1− (ai+ai+1)yi+ai+1yi+1 = −Λh2yi(ai+ai+1)/2, i = 1, 2, . . . , K (5)

with

y0 = 0, yK+1 = 0, (6)

where yi ≈ y(xi), Λ ≈ λ , and ai ≈ a(xi − h/2) for i = 1, 2, . . . , K + 1 .
The matrix form of (5) and (6) 
an be

BY = ΛDY, (7)

where Y = (y1, y2, . . . , yK)
T
, D , a diagonal matrix, and B , a tridiagonal matrix,

are determined by ai, i = 1, 2, · · · , K .



Huang ZhengdaON THE COMPUTATION OF THE INVERSE. . . 31

Two 
ases, without and with the symmetri
 assumption for the impedan
e,

are 
onsidered.

For the 
ase without the symmetri
 assumption, we 
hoose ξ = 0 and K = N
a suitable positive integer, and seek a least square approximation a(x) ∈ 1 +
span{φ1(x), φ2(x) · · · , φm(x)} , where {φi(x)}mi=1 are appropriately 
hosen basis

fun
tions. In other words, a(x) is in the form of

a(x) = 1 +
m∑

i=1

φi(x).

Let φ0(x) = 1 and c0 = 1 , then (7) is 
hanged to

( m∑

i=1

ckBk

)
Y (c) = Λ(c)

( m∑

i=1

ckDk

)
Y (c),

where c = (a1, c2, . . . , cm)
T
, Λ(c) ≈ λ and Y (c) = (y1, y2, . . . , yN)

T
, Bi and

Di are diagonal and tridiagonal matri
es i = 1, 2, · · · , N .

Now Problem 1 for the 
ase without symmetri
 assumption is transferred

to

Problem 2 : Given the �rst n eigenvalues, λ1 < λ2 < · · · < λn , we �nd

c ∈ Rm
su
h that the fun
tion

G(c) =

n∑

i=1

(Λi(c) + ε(i, h)− λi)2

is minimized, where

ε(i, h) = i2π2 − 4
sin2( iπh2 )

h2
, i = 1, 2, · · · , n

are 
orre
tions (or regular 
onditions or pre
onditioners) whi
h will improve a
-


ura
ies in numeri
al 
omputations.

Three methods are 
onstru
ted to solve Problem 2 . Firstly, by solving the

equation

dc(t)

dt
= −∇G(c)

numeri
ally with the fourth order Runge-Kutta method we get the des
ent �ow

method, where c(t) is 
alled the steepest des
ent �ow on Rm
for G(c) and t is

a 
ertain arti�
ial parameter.

Se
ondly, let P be a positive matrix. By solving the equation

dc(t)

dt
= −P∇G(c)
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numeri
ally with the fourth order Runge-Kutta method 
ombined with BFGS's

method we obtain a modi�ed des
ent �ow method.

Thirdly, by solving Problem 2 with ULM-Newton like method 
ombined with

the des
ent �ow method above, we 
onstru
t a ULM-like des
ent �ow method.

For the 
ase of the symmetri
 impedan
e, let K = 2n + 1 . Sin
e the

impedan
e fun
tion a(x) is assumed to be symmetri
, we have

ai = a2n+3−i, i = 1, 2, . . . , n+ 1,

and let an+1 = 1 for mat
hing the normalization (3). Then (7) 
an be substituted

with

B(a)Y (a) = Λ(a)D(a)Y (a), (8)

where a = (a1, a2, . . . , an)
T
, and D(a) is a positive de�nite matrix sin
e ai > 0

for all i = 1, 2, . . . , n .
Now Problem 1 is transferred to

Problem 3 : Given the �rst n eigenvalues, λ1 < λ2 < · · · < λn , we seek
based on (8) a n-ve
tor a whose i-th 
omponent, i = 1, . . . , n , is a good

approximation to a((i− 1/2)h) , where h = 1/(2n+ 2) .
De�ne f : Rn → Rn

by

(f(a))i = Λi(a) + ε(i, h)− λi, i = 1, 2, . . . , n, (9)

where

ε(i, h) := i2π2 − 2
1− cos(iπh)

h2
, i = 1, 2, · · · , n

are 
orre
tions (or regular 
onditions, pre
onditioners) too. Then Problem 3
may be solved by 
omputing the zeros of the nonlinear equation

f(a) = 0. (10)

We use the simple Newton's method

f ′(0)(ak+1 − ak) = −f(ak),

where the initial approximation a0 is 
hosen with all entries equal and f ′(0) =
is the nonsingular Ja
obian matrix of f at a = a0 with entries

[f ′(0)]ij =
2 cos((2j − 1)iπh)(1− cos(2iπh))

h
, i, j = 1, 2, . . . , n.

We have for n ∈ N if there exists a 
onstant C(n) > 0 su
h that ‖a′(x)
a(x)
‖2 <

C(n) and ak is positive for ea
h k , then the sequen
e generated by the simple

Newton's method with a0 , whi
h is 
hosen with all entries equal, 
onverges to a

solution of (10).

Numeri
al examples for smooth, non-smooth and dis
ontinuous impedan
e

fun
tions are performed to show the e�
ien
y of these methods.
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USING COMPUTER ALGEBRA SYSTEM FOR THE

STABILITY ANALYSIS OF NONLINEARLY ELASTIC

CYLINDER WITH INTERNAL STRESSES

1

Karyakin M.I., Shub
hinskaya N. Y.

Southern Federal University, Rostov-on-Don, Russia

Introdu
tion. The 
on
ept of internal, or residual, stresses existing in solids

that are free from external loads was appeared �rstly in the works of V.Volterra

[1℄ at the beginning of the XX 
entury. One parti
ular reason of su
h stresses


ould be the existen
e of isolated linear defe
ts, well known due to A.Love [2℄

terminology as Volterra dislo
ations. The idea of dislo
ation as a linear defe
t of

the 
rystal latti
e arose in physi
s mu
h later � in the thirties of the last 
entury

[3℄. The 
on
ept of dis
linations (rotational defe
ts or rotary dislo
ations) ap-

peared even later though having found pra
ti
al 
on�rmation not only in latti
es

but in di�erent various material stru
tures either [4�5℄.

Simulation of dislo
ation within the 
ontinuum des
ription is quite wide and

rapidly developing bran
h of modern me
hani
s. A signi�
ant 
ontribution to its

development was made by the Rostov-on-Don s
hool of me
hani
s, some results

of the work of whi
h had been presented in [6℄, parti
ularly in matters related

to the generalization of the theory of elasti
 dislo
ations and dis
linations to the

nonlinear 
ase.

Isolated s
rew dislo
ation was the obje
t rather �
onvenient� for the study

within the framework of the nonlinear 
ontinuum me
hani
s, sin
e the 
orre-

sponding stress-strain state is des
ribed by a fun
tion of the radial 
oordinate,

namely the fun
tion of radial displa
ement of the points of the 
ylinder. Various

aspe
ts of this problem, in
luding the elimination of singularities at the axis of

dislo
ation, the existen
e of dis
ontinuous solutions et
. for in
ompressible media

were 
onsidered, for example, in [7℄. In this paper we 
onsider the equilibrium

and stability of nonlinear elasti
 
ylinder with a s
rew dislo
ation in the 
ase of

a 
ompressible material. The in�uen
e of defe
t formation on the length of the

load-free 
ylinder was studied. Some questions of the stability of the expansion

and 
ontra
tion pro
esses were dis
ussed.

The main method used for this analysis is so-
alled �semi-inverse� method

when the nonlinear boundary value problem of equilibrium is formulated by

means of pre-determined semi-inverse representation of deformation. When appli-


able this method redu
es 3D problem to the BVP of smaller dimension. Despite

rather narrow area of usage � simple geometri
 deformations of 
anoni
-shaped

bodies � this method 
ould deliver answers for many fundamental questions of

qualitative and quantitative behavior of essentially nonlinear problems' solutions.

It is quite e�e
tive in analysis of standard experiments � stret
hing, torsion, bend-

ing et
. � whi
h are 
arried out while studying new materials and developing new

1
Supported by Russian Ministry of Edu
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h, proje
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models of nonlinear behavior for real-life materials. This method is very algorith-

mi
 but for many spe
i�
 strain energy analyti
al derivation of boundary value

problem is ex
essively hard and not always reliably.

Within the framework of 
omputer algebra system Maple an intera
tive pro-

gram pa
kage for analysis of nonlinear elasti
 problems has been developed [8℄.

This pa
kage is based upon the semi-inverse method and in
ludes set of algo-

rithms of automati
 generation of boundary-value problems of equilibrium, in

Cartesian as well as in orthogonal 
urvilinear 
o-ordinate systems. The goal of

the pa
kage is full 
omputer automation of semi-inverse method and so releasing

the resear
her from 
umbersome analyti
 derivation routine. Computer algebra

system Maple have been 
hosen as a shell due to 
ombining powerful and re-

liable analyti
 transformation tools, e�e
tive algorithms and variety of graphi


representation of results.

To analyze the stability the bifur
ation approa
h was used that based on

linearization of the equilibrium equations in the neighborhood of the obtained

solutions. The bifur
ation point was de�ned as su
h value of the "loading" pa-

rameter (Burgers ve
tor magnitude, stret
h ratio or other strain 
hara
teristi
)

for whi
h the linearized problem has a nontrivial solution. Numeri
al determina-

tion of the bifur
ation points was based on the analysis of the homogeneous linear

boundary value problem of sixth order whose 
oe�
ients expressed through the

radial displa
ement fun
tion and its derivative. The similar problem of 
ompres-

sion was used for veri�
ation purposes. Some extensions of the pa
kage [8℄ for

stability analysis were used to obtain numeri
al results presented hereafter.

The equilibrium of the 
ylinder with a s
rew dislo
ation. The ap-

pearan
e of a s
rew dislo
ation in the 
ylinder is des
ribed by the following

semi-inverse representation:

R = P (r) , Φ = ϕ + ψz, Z = γz + aϕ, (1)

where {R,Φ, Z} , {r, ϕ, z} � 
ylindri
al 
oordinates of the a
tual and referen
e


on�guration, respe
tively, stret
h ratio γ des
ribes 
hanging of the 
ylinder

length, a = |b| /2π � dislo
ation parameter, b � Burgers ve
tor, P (r) � fun
tion
of radial displa
ement of points of the 
ylinder. Sin
e the formation of dislo
ation

may be a

ompanied by twisting [9, 10℄, parameter ψ � twist angle per unit

length of the 
ylinder � was introdu
ed in the semi-inverse representation (1).

Given a semi-inverse representation (1) all tensorial 
hara
teristi
s of strain


ould be determined, namely deformation gradient C , Cau
hy-Green strain mea-

sure G , and its invariants Ik, k = 1, 2, 3 [11℄. After setting up the spe
i�
 po-

tential energy fun
tion W , the equilibrium equations for Piola stress tensor D

an be written as follows

divD = 0. (2)

We will limit our 
onsiderations by the simple boundary 
onditions on the lateral

surfa
e of the 
ylinder

er ·D = 0, (3)
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meaning no applied loads there; {er, eϕ, ez} � orthonormal basis in a 
ylindri
al


oordinate system of referen
e 
on�guration. By using (1) problem (2)�(3) is

redu
ed to a boundary value problem for an ordinary di�erential equation of

se
ond order for the fun
tion P (r) .
To des
ribe the me
hani
al properties of the 
ylinder we will use two models

of 
ompressible medium, i.e. two spe
i�
 energy fun
tions.

W = λ
1

2
I21 (U − E) + µI1

[
(U − E)2

]
, (4)

and

W = µ
1

2
(1− β)

[
I2I
−1
3 +

1

α
(Iα3 − 1)− 3

]
+ µ

1

2
β

[
I1 +

1

α

(
I−α3 − 1

)
− 3

]
(5)

Model (4) is known as harmoni
 material, while Eq. (5) presents Blatz and Ko

material. In (4)�(5) U = G1/2
� distortion tensor, λ, µ, β, α - material param-

eters. In the 
ase of small strains parameter α is asso
iated with Poisson ratio

by relation α = ν/(1− 2ν) .
Investigation of the stability of the 
ylinder under tension or 
ompression

should obviously begin with an analysis of the �proper� length of the 
ylinder,

due to the formation of dislo
ations. Following the s
heme presented in [12℄, it is


onvenient to introdu
e following representations of axial for
e Q and twisting

moment M in the form:

Q =

∫∫

S

DzZdS (6)

M =

∫∫

S

DzΦRdS. (7)

Consider �rstly the 
ase of non-twisted 
ylinder assuming ψ = 0 in (1). Then,

following the s
heme in [12℄, from the 
ondition Q = 0 we obtain the dependen
e

between the stret
h fa
tor γ and dislo
ation parameter a . For the 
ase of har-
moni
 material (4) numeri
al 
al
ulations show that the dislo
ation formation

in the 
ylinder always leads to its shortening. For the model (5) the situation is

more 
ompli
ated: the 
ylinder 
an be shortened or stret
hed depending on the

parameter β . These results are 
onsistent with the asymptoti
 formulas given in
[12℄.

To analyze the 
ylinder with free ends both parameters γ and ψ should

be 
onsidered as varying, wherein to determine these parameters it is ne
essary

to vanish the axial for
e (6) and twisting moment (7). Cal
ulations show that


hange of length is not monotoni
 for values α 
lose to 0.5 , whi
h 
orresponds

to a Poisson ratio ν = 1/4 ; the 
ylinder is shortened for all other 
onsidered

values of parameter α . Analysis of the loading diagrams show that for di�erent

values of parameter α 
orresponding 
urve has the maximum point, followed by

a de
reasing segment. Su
h segment may indi
ate a stability loss of the 
ylinder

at tension.
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Stability analysis. Let us give small displa
ements to all points of the 
ylin-

der from the known equilibrium state by 
hanging the semi-inverse representation

(1): 



R = P (r) + εU1 (r, ϕ, z) ,
Φ = ϕ + ψz + εU2 (r, ϕ, z) ,
Z = γz + aϕ + εU3 (r, ϕ, z) ,

(8)

ε � small parameter, Uk, k = 1, 2, 3 � new unknown fun
tions. The linearization

pro
ess is redu
ed to 
omputation following expressions for all strain 
hara
ter-

isti
s

◦
F =

d

dε
F (R0 + εw) |ε=0. (9)

Here R0 � the radius ve
tor of the known equilibrium position, w � ve
tor of

small displa
ements expressed in terms of the unknown fun
tions. Finally, by

linearizing Piola stress tensor we 
hange the original nonlinear problem (2)�(3)

by its linearized version:

div
◦
D = 0, (10)

er ·
◦
D = 0. (11)

Equations (10) are linear partial di�erential equations of se
ond order with

respe
t to the unknown fun
tions Uk . System (10)�(11) admits solution in the

form

U1 (r, ϕ, z) = u1 (r) cos (nϕ+ bz) ,
U2 (r, ϕ, z) = u2 (r) sin (nϕ+ bz) ,
U3 (r, ϕ, z) = u3 (r) sin (nϕ+ bz) ,

(12)

where b = πm/l ; n,m ∈ N ; l � initial length of the 
ylinder.

The substitution (12) turns the system (10)�(11) into a linear boundary val-

ue problem for a system of three ordinary di�erential equations of se
ond order

in relation to uk (r) . Detailed s
heme of analysis of the existen
e of non-trivial

solutions for su
h systems was des
ribed in [13℄. Analysis of typi
al bifur
ation


urves was performed for both material models as well as for 
ompression and

for tension. Instability of su�
iently long 
ylinder at 
ompression o

urs by the

mode (n,m) = (1, 1), at tension � by the mode (n,m) = (0, 1), i.e. by axially

symmetri
 mode. It 
an be seen in parti
ular that the e�e
t of dislo
ation on

bu
kling during 
ompression is mu
h more important than in tension. One spe-


i�
 feature of Blatz and Ko model is non-monotoni
 
hara
ter of the bifur
ation


urve at tension that appears to be 
onne
ted with the inverse Poynting e�e
t

[14℄.
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NUMERICAL SOLUTION OF STEADY

CONVECTION-DIFFUSION EQUATION IN

COMPRESSIBLE MEDIUM

1

L. A. Krukier, B. L. Krukier

Southern Federal University, Institute of MM and CS SFU,

Rostov-on-Don, Russia

Introdu
tion

The 
onve
tion-di�usion-rea
tion (CDR) equation is the base for mathemat-

i
al modeling in many �elds of s
ien
e and engineering. But up to now the main

attention of resear
hers has been 
onne
ted with 
onve
tion-di�usion (CD) prob-

lems and their numeri
al solution [11℄. The most di�
ult problems for numeri
al

solution of CD equation are [23℄:

1. di�usion is quite small whi
h means that the dimensionless parameter

Pe > 103 ,
2. the �eld of velo
ity has stagnation points,

Many di�erent approa
hes have been proposed [15℄, [19℄, [23℄ to resolve the

di�
ulties - exponential �tting, 
ompa
t di�eren
es, upwinding, streamline di�u-

sion [5℄, arti�
ial vis
osity and so on. Approximation of the �rst order derivatives

in CD is the most interesting moment of the solution for problem and very im-

portant work. It is well known [22℄, [15℄ that using for approximation �rst order

derivatives upwind s
hemes gives us linear equation systems with M-matrix [21℄,

but matrix whi
h 
an be obtained by using 
entral FD s
hemes [6℄ is positive

real. Ea
h of these s
hemes have their own advantages and de�
ien
ies whi
h

have been dis
ussed in [23℄, [15℄.

When CRD equations investigate it is ne
essary to take into a

ount the sign

of rea
tion 
oe�
ient. If it is nonnegative than there is no problem with numeri
al

solution, but if it is negative than the di�
ulties 
an arise. So if the negative


oe�
ient rea
tion exists in CDR equation it means that after approximation it

moves spe
tra of arising matrix in the left half part and matrix 
an lose property

of being positive real. So, there is one more di�
ulty added to CDR equation in

this 
ase:

3. the 
oe�
ient of rea
tion is negative.

Consider the 
onve
tion-di�usion-rea
tion equation written in symmetri


form [10℄ in bounded domain Ω = [0, 1]× [0, 1] with boundary 
ondition:

− 1
Pe∆C + 1

2

(
u∂ C∂ x + ∂ (uC)

∂ x + v ∂ C∂ y + ∂ (vC)
∂ y

)
+ αC = f(x, y), (1)

1
This work was supported by RFBR, grants N15-01-00441a, N15-51-53066 and N14-01-31076
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C| δΩ = Cgr, (2)

~divŨ = 0, (3)

where Pe is Pe
let number, Ũ = {u, v} is the �eld of velo
ity in Ω , C is un-

known fun
tion, α is rea
tion 
oe�
ient,

~divŨ = 0 (for in
ompressible medium),

f is the right part of equation, δΩ is the boundary of Ω , Cgr is the boundary

value.

Finite di�eren
e approximation of the equation

The uniform grid Ωh with step hx = hy = h has been introdu
ed in

domain Ω . Introdu
e fun
tions C(xi, yk) = Cik , xi = i ∗ 1
h , yk = k ∗ 1

h . All

unknowns are 
al
ulated in the middle of the 
ell. The boundary 
onditions on

∂Ω are interpolated on the boundary ∂Ωh with a se
ond order trun
ation error.

The standard notation originating from [17℄ is used. The boundary 
onditions,

with appropriate 
oe�
ients, are taken into a

ount on the right-hand side of the

di�eren
e equations. The 
entral di�eren
e approximation of the �rst derivatives

has been used. So, we obtain for (1)

− 1

Pe
∆hC +

1

2

(
Uik

Ci+1k − Ci−1k
2h

+
Ui+1kCi+1k − Ui−1kCi−1k

2h
+ (4)

Vik
Cik+1 − Cik−1

2h
+
Vik+1Cik+1 − Vik−1Cik−1

2h

)
+ αCik = fik.

Here ∆hC is the di�eren
e analogue of Lapla
e operator. Transform (4),

multiply both parts of equation by Peh2 . Then

(4Cik − Ci+1k − Ci−1k − Cik+1 − Cik−1) +
Peh

2

[
Uik + Ui+1k

2
Ci+1k−

−Uik + Ui−1k
2

Ci−1k +
Vik + Uik+1

2
Cik+1 −

Vik + Uik−1
2

Cik−1

]
+

+αPeh2Cik = Peh2fik

or

(4 + αPeh2)Cik +

[(
−1 + Peh

2
Ũik

)
Ci+1k +

(
−1− Peh

2
Ũi−1k

)
Ci−1k+ (5)

(
−1 + Peh

2
Ṽik

)
Cik+1 +

(
−1− Peh

2
Ṽik−1

)
Cik−1

]
= f̃ik,
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where

Ũik =
Uik + Ui+1k

2
, Ũi−1k =

Uik + Ui−1k
2

,

Ṽik =
Vik + Vik+1

2
, Ṽik−1 =

Vik + Vik−1
2

,

f̃ik = Peh2fik.

The 
oe�
ients in (5) in
lude the quantity

Reh = Peh/2 (6)

whi
h was 
alled 
ell Reynolds number or the skew-symmetry 
oe�
ient of the

problem.

System of linear algebrai
 equation

Using natural ordering of the unknowns, we transform (5) to the nonsym-

metri
 linear system of equations

Au = f,
A = A∆ + A1 +D, A0 =

1
2

(
A+ AT

)
= A∆ +D = AT

0 ,
A1 =

1
2

(
A−AT

)
= −AT

1 ,
(7)

where A is (N − 1)× (N − 1) matrix , N = 1
h , u = {u11, u12, ..., uN−1N−1}T is

the ve
tor of solution , f = {f11, f12, ..., fN−1N−1}T is the ve
tor of the right

part. Matrix A 
an be naturally expressed [6℄ in the 
ase of 
entral di�eren
e

approximation of the 
onve
tive terms in (5) as a sum of symmetri
 positive

de�nite matrix A∆, skew-symmetri
 matrix A1 and diagonal matrix D . A∆ is

a di�eren
e analogue ∆h of operator ∆ , des
ribing a di�usion pro
ess, D is

dis
rete analogue of the rea
tion term in the equation (1). A1 is a di�eren
e

analogue of the 
onve
tive terms. Thus, linear system (7) with non-symmetri


matrix A is 
onstru
ted.

If in (7)

A0 = AT
0 > 0,

then matrix A is 
alled positive real.

The linear system (7) is 
alled strongly non-symmetri
 if

‖A0‖ / ‖A1‖ ∼ O(1),

where ‖∗‖ is one of matrix norms.

It 
an be easily veri�ed that system (7) be
omes strongly nonsymmetri
 for

large values of Pe and α = 0 . As a result we have

‖A0‖∞ = 4,
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‖A1‖∞ = Rehmaxi(|v1i,j + v1i,j−1|+ |v1i,j + v1i,j+1|+
+ |v2i,j + v2i+1,j|+ |v2i,j + v2i−1,j|)/2,

Theorem 1. Let equation (1) be approximated by �nite di�eren
e s
heme

(5). Then the system (7) is positive real if α ≥ 0 .
Proof.

The symmetri
 part A0 of matrix A has the form A0 = A∆+D and doesn't

have a de�nite sign in general 
ase, but it is well known [17℄ that matrix A∆

is positive de�nite. So, if diagonal matrix D has nonnegative elements than A0

will be positive de�nite as the sum of positive de�nite and nonnegative de�nite

matri
es. The last means that A0 > 0 if α ≥ 0 and system (7) is positive real.

It is well-known [15℄, [19℄ that using upwind s
heme for equation (1) leads us

to the system (7) with A being M -matrix [20℄, but in this 
ase the obtained sys-

tem won't be essentially nonsymmetri
 be
ause matrix A has diagonal dominant.

It is ne
essary to pay our attention [10℄ that the form in whi
h we will approx-

imate 
onve
tion-di�usion equation plays a great role in su

essful numeri
al

solution.

Consider 
ase when 
oe�
ient α < 0 . If Ω = [0, 1]× [0, 1] , boundary 
on-

ditions are (2) and regular mesh is used, then eigenvalues and eigenve
tors of

Lh = − 1
Pe∆h + α are well-known [18℄, [12℄:

λmp(Lh) =
4

Peh2

(
sin2

mπh

2
+ sin2

pπh

2

)
+ α,

m = 1, 2, . . . n− 1; p = 1, 2, . . . n− 1,

2π2

Pe
+ α ≤ λi ≤

8

Peh2
+ α,

i = 1, 2, . . .N, N = (n− 1) ∗ (n− 1).

So, for α ≤ −2π2

Pe , di�eren
e operator for di�usion and rea
tion terms 
an lose

the property of being positive real then from Hirsh theorem [13℄, its spe
trum


an move to the left half plane.

Theorem 2. Matrix (7), obtained from (5) is positive real, if

αconv ≥ −
2π2

Pe
.

Two-parameters skew-symmetri
 iterative solvers

Besides important role in the mathemati
al modeling 
onve
tion-di�usion-

rea
tion equation is a good test for iterative methods. A lot of papers [1℄, [4℄,
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[23℄ have already des
ribed numeri
al experiments with CD or CDR equations

for di�erent parameters.

Di�erent basi
 iterative methods su
h as ILU [1℄, [3℄, [16℄, SOR [21℄, [22℄

have been used dire
tly for solution of arising after approximation of CD or

CDR equations by linear equation systems as well as pre
onditioners for CG or

BiCG type's methods [14℄. As it was shown in [1℄, ILU as a pre
onditioner for

GMRES(20) and BiCGStab has been broken for large Reh , α = 0 from (6) and

natural ordering of the unknowns.

We present a two parameters triangular [7℄ and produ
t triangular iterative

[2℄ methods that use the skew-symmetri
 part of the matrix as an input and

only require the matrix (7) to be positive real. Some ideas for using the splitting

of skew-symmetri
 part of the matrix to solve linear equation systems arising

after 
entral di�eren
e approximation of �rst order terms in (5) have been �rstly

proposed in [6℄.

Let us approa
h (7) by 
onsidering the iterative method of the following form:

B(ω)
yn+1 − yn

τ
+Ayn = f , n ≥ 0 , (8)

where f, y0 ∈ H ,H is an n-dimensional real Hilbert spa
e, f is the right

part of (7), A, B(ω) are matri
es)in H, A is given by equation (7) , B(ω) is

invertible, y0 is an initial guess, yk is the k -th approa
h, τ, ω > 0 are iterative

parameters, u is the solution that we obtain, ek = yk − u and rk = Aek denote

the error and the residual in the k -th iteration, respe
tively.

Here it is important to note that B(ω) is in a 
ertain sense a pre
onditioned

matrix. In general, B(ω) is supposed to be nonsymmetri
.

Method (8) may be also represented as

yn+1 = Gyn + τf,

G = B−1(ω)(B(ω)− τA) . (9)

Consider the two ways of 
hoosing matrix B . The �rst is

B(ω) = BC + ω((1 + j)KL + (1− j)KU), j = ±1, Bc = BT
c (10)

and the se
ond is

B(ω) = (BC + ωKU)B
−1
C (BC + ωKL), Bc = BT

c (11)

where KL + KU = A1, KL = −KT
U , BC = BT

C . The matri
es KL and KU

represent stri
tly upper and lower triangular parts of a skew-symmetri
 matrix

A1 from (7) and matrix BC 
an be 
hosen arbitrarily, but has to be symmetri
.

These methods are 
alled two-parameters triangular (TM) and produ
t triangu-

lar (PTM) methods respe
tively.

Matrix B is non-symmetri
 and 
an be represented as
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B = B0 +B1, B0 =
1

2

(
B + BT

)
= BT

0 , B1 =
1

2

(
B −BT

)
= −BT

1 .

We �nd the symmetri
 and the skew-symmetri
 parts of matrix B for TM

B0 = BC +
1

2
ωj (KU −KL) , j = ±1, B1 =

1

2
ωA1 (12)

and PTM

B0 = BC + ω2KUB
−1
C KL, B1 = ωA1. (13)

The iteration matrix G from (9) for these methods is

G = B−1 (B − τA) = (B0 +B1)
−1 (B0 + B1 − τA0 − τA1) . (14)

We 
onsider the norm of iteration matrix G in (14). Let us require that

matri
es (10) and (11) are positive real and de�ne matri
es

L0T = B0 −
1

2
ωA0, (15)

and

L0PT = B0 − ωA0. (16)

Using (12), (14) and (15) iterative matrix GT for TM 
an be represented as

GT =
(
B0 +

1
2ωA1

)−1 (
B0 +

1
2ωA1 − τA0 − τA1

)
=

=
(
B0 − 1

2ωA0 +
1
2ωA0 +

1
2ωA1

)−1 (
B0 − 1

2ωA0 +
1
2ωA0 +

1
2ωA1 − τA0 − τA1

)
=

=
(
L0T + 1

2ωA
)−1 (

L0T − (τ − 1
2ω)A

)

Introdu
e matri
es

P0T = L
− 1

2

0T AL
− 1

2

0T , (17)

and

P0PT = L
− 1

2

0PTAL
− 1

2

0PT . (18)

and require for TM that

L0T = B0 −
1

2
ωA0 = LT0T > 0 (19)

and for PTM

L0PT = B0 − ωA0 = LT0PT > 0 (20)

Then

GT = L
−1/2
oT (I + 1

2
ωP0T )

−1(I − (τ − 1
2
ω)P0T )L

−1/2
oT = L

−
1

2

0T GPL
1

2

0T ,
GP = (I + 1

2
ωP0T )

−1(I − (τ − 1
2
ω)P0T ).
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The last equality means that matrix L0 generates energy norm ‖GT‖L0T
and

‖GT‖L0T
=

∥∥∥∥(I +
1

2
ωP0T )

−1(I − (τ − 1

2
ω)P0T )

∥∥∥∥ (21)

Lemma 1. Let C be positive real, α ,β are positive numbers. Then inequality

−α < β ≤ α, α > 0 (22)

∥∥(I + αC)−1(I − βC)
∥∥ < 1 (23)

Proof.

First of all we point out that matri
es (I + αC)−1 and (I − βC) are 
om-

mutative. Later we 
onsider matrix

T = (I + αC)−1(I − βC)

and estimate its norm

‖T‖2 = supv 6=0
‖Tv‖2

‖v‖2 = supv 6=0
((I+αC)−1(I−βC)v,(I+αC)−1(I−βC)v)

(v,v) =

= supv 6=0
((I−βC)(I+αC)−1v,(I−βC)(I+αC)−1v)

(v,v) .

Let

u = (I + αC)−1v

then

‖T‖2 = supu 6=0
((I−βC)u,(I−βC)u)
((I+αC)u,(I+αC)u) = supu 6=0

(u,u)−2β(Cu,u)+β2(Cu,Cu)
(u,u)+2α(Cu,u)+α2(Cu,Cu) =

= 1− (α+ β) infu 6=0
2(Cu,u)+(α−β)(Cu,Cu)

(u,u)+2α(Cu,u)+α2(Cu,Cu) .

So, if 


α+ β > 0
α− β ≥ 0
α > 0



 (24)

and

(Cu, u) ≥ 0

then

‖T‖ < 1.

and (23) ful�lls. Inequalities (24) transform to (22).

✷

Lemma 2. [8℄ Let D = DT > 0 and A be positive real. Then

∥∥∥(D + σA)−1(D − σA)
∥∥∥
D
< 1 ,
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where σ > 0 is parameter.

Proof Let

T = (D + σA)−1(D − σA).
First we note that

T = D−1/2(I + σD−1/2AD−1/2)
−1×

×(I − σD−1/2AD−1/2)D1/2

and

‖T‖D =
∥∥∥T̃
∥∥∥ (25)

where

T̃ = (I + σM)−1(I − σM),
M = C−1/2AC−1/2

Then we obtain from (25) and Lemma 1 with α = β = ω result of Lemma 2.

✷

We applied Lemma 1 to matrix GT in (21) and get following Theorem.

Theorem 3.Let A in (7) be positive real. Then iterative method (8), (10)


onverges in HL0T
if (19) ful�lls and

0 < τ ≤ ω (26)

Proof of this theorem 
onsists of two step:

-show that P0T is positive real (Its the property of positive real matrix [18℄,

if A is positive real, then C = QAQT
is positive real, too). So, from (17) P0T

is positive real.

- insert in (22) α = 1
2ω, β = (τ − 1

2ω) then we've got (26).

Similar laying out we 
an repeat for PTM just repla
e (21) on

‖GT‖L0PT
=
∥∥(I + ωP0PT )

−1(I − (τ − ω)P0PT )
∥∥

using (13), (14), (16), (18) and (20).

✷

Theorem 4. Let A in (7) be positive real. Then iterative method (8), (11)


onverges in HL0PT
if (20) ful�lls and

0 < τ ≤ 2ω

The proof of this theorem is the same of the previous one.

✷
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Problem No. v1 v2
1 1 −1
2 1− 2x 2y − 1
3 x+ y x− y
4 sin 2πx −2πy cos 2πx

Table 1. Velo
ity 
oe�
ients for test problems.

Numeri
al experiments

In this se
tion we present the results of numeri
al experiments in whi
h the

te
hnique des
ribed above is used to solve nonsymmetri
 linear systems with

α < 0 and α = 0 . We 
ompare the performan
e of SSOR [14℄ and PTM [2℄ iter-

ative methods to solve linear systems arising from the standard 5-point FD ap-

proximation of the steady 
onve
tion�di�usion-rea
tion problem (1) - (3) where

F is 
hosen so that the solution of (1) is de�ned as

ũ(x, y) = exy sinπx sin πy .

Equation (1) has been dis
retized by 
entered di�eren
es on a uniform grid

with 33 × 33 . In the table 1 the used velo
ity 
oe�
ients of (1) are presented.

Note that, for ea
h model problem they are 
hosen to satisfy the 
onstraint

div~v = v1x + v2y = 0 (whi
h follows from the medium in
ompressibility for the

problem (2)). On the whole, in order to the test results to be 
omparable with

those obtained in the other adja
ent papers we take the analyti
al solution and

the velo
ity 
oe�
ients similar to those in [3℄.

The initial guess in all runs was a zero ve
tor and iterations were performed

until

‖rm‖
/
‖r0‖ ≤ 10−6 , (27)

where rm is the residual ve
tor, and ‖⋆‖ represents the Eu
lidean norm. Che
k-
ing and 
omparing iterative methods SSOR and PTM for di�erent negative α
(Table 2) we show that methods are very good for |α| > 100 . It means that ma-
trix (7) is strongly diagonal dominant. This is 
onne
ted with existen
e on main

diagonal of elements a1 = (4 + αPeh2) , whi
h we obtain after approximation

of 
oe�
ient of rea
tion. It in
ludes numbers α and Reh , grows by module α
and Reh . As we 
an see from the Table 2 the number of iteration for α = 0
grows with the in
reasing Pe
let number. In 
ontrast of this behavior of both

iterative methods, the number of iteration de
reases with grow of Pe
let number

and modula 
oe�
ient of rea
tion.
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Pe Problem 1 Problem 2 Problem 3 Problem 4

PTM SSOR PTM SSOR PTM SSOR PTM SSOR

α = 0
103 77 113 50 106 66 107 68 157

104 565 863 297 565 279 632 369 1054

105 5196 6725 1990 3531 1694 4980 2538 7416

α = −10
103 51 72 31 37 45 54 59 108

104 32 41 22 23 33 34 33 65

105 30 41 23 23 32 33 32 65

α = −100
103 7 5 9 6 9 7 12 13

104 7 5 9 6 9 7 12 13

105 7 5 9 6 9 7 12 13

α = −1000
103 5 3 6 3 5 3 7 4

104 5 3 6 3 5 3 7 4

105 5 3 6 3 5 3 7 4

α = −5000
103 5 2 4 3 4 3 6 3

104 5 2 4 3 4 3 6 3

105 5 2 4 3 4 3 6 3

α = −10000
103 4 2 4 3 4 3 5 3

104 4 2 4 3 4 3 5 3

105 4 2 4 3 4 3 5 3

Table 2. Number of iterations for di�erent α
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Con
lusions

The behavior of iterative methods to solve (7) whi
h was obtained after ap-

proximation of CD (α = 0) and CDR (α < 0) equations is quite di�erent (Table
2). The 
ase with α = 0 shows that matrix loses the property of diagonal dom-

inan
e and the methods require more iterations as Reh in
reasing. Case with

α ≤ 0 for big numbers α shows a very qui
k 
onvergen
e of both methods for

big numbers of Reh .
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ITERATIVE SOLUTION OF THE CONSTRAINED

NONLINEAR LEAST-SQUARES PROBLEMS

1

Martynova T.S.

Southern Federal University, Rostov-on-Don, Russia

Solving the nonlinear least squares problems arising in nonlinear data �tting is


onsidered. This problem holds, for example, in the simulating of the environment

pollutants by X-ray analysis.

Let x∗ a lo
al minimizer, R : Rn → Rm

ontinuously di�erentiable. Nonlin-

ear least squares problem (NLLS) 
an be written in the following form:

min
x∈Rn

F (x) =
1

2
R(x)TR(x) =

1

2

m∑

i=1

ri(x)
2,

where m > n (usually, m ≫ n), ri(x) are nonlinear fun
tions. Parameter

estimation and 
urve �tting are typi
al appli
ations for NLLS, where data sets

(ti, yi) , i = 1, ..., m should be approximate by nonlinear model M(x, t) . The ve
-
tor x ∈ R

n

ontains the n parameters to be estimated. The residual fun
tions

ri(x) =M(x, ti)−yi are the di�eren
es between the model and the observations.
Most spe
ialized algorithms for NLLS exploit the spe
ial stru
ture of the non-

linear least-squares obje
tive fun
tion. Let J(x) ∈ R
m×n

is the Ja
obian of the

R(x) , i.e. J(x)ij = ∂ri(x)/∂xj , H(x) is the Hessian and g(x) is the gradient of
the F (x) respe
tively. Then [1℄ H(x) = J(x)TJ(x)+Q(x) , g(x) = J(x)TR(x) ,
where Q(x) =

∑m
i=1 ri(x)Hi(x) . For NLLS problems we approximate the Hessian

as H ≈ JTJ , so far as Q(x)→ 0 if x→ x∗ .
For solving un
onstrained NLLS we have used trust-region algorithm. The

quadrati
 model fun
tion mk at ea
h iterate xk is

mk(d) =
1

2
‖Rk‖22 + dTJTk Rk +

1

2
dTJTk Jkd. (1)

Thus at ea
h iteration, we seek a solution dk ∈ Rn
of the subproblem based on

the (1) subje
t to some trusted region:

min
d

1

2
‖Jkd+ Rk‖22, ‖Dkd‖2 ≤ ∆k, (2)

where ∆k > 0 is the trust-region radius, Dk ∈ R
n×n

is a diagonal matrix with

positive diagonal entries. The solution of the (2) satis�es an equation of the form

(JTk Jk + λD2
k)d = −JTk Rk , λ ≥ 0 [1℄. It is the Levenberg-Marquardt method.

Many approa
hes exist for the solution of nonlinear least-squares problems,

however, most resear
h has fo
used on the NLLS without 
onstraints.

1
Supported by Ministry of Edu
ation and S
ien
e of the Russian Federation (basi
 part, proje
t N1420)

and RFBR, grant N15-01-00441-a, grant N15-51-53066 GFEN-a.



Martynova T.S.. . . CONSTRAINED NONLINEAR LEAST-SQUARES. . . 51

Let the 
onstraint fun
tion h(x) is a ve
tor-valued linear fun
tion des
ribing
any 
onstraints on the parameters. The method of Lagrange multipliers 
an

be used to solving this problem. Optimality 
onditions for the problems with

equality 
onstraints are as follows [2℄:

{
∇xL(x, λ) = ∇F (x) +∇h(x)λ = 0,
∇λL(x, λ) = h(x) = 0,

(3)

where L(x, λ) is the Lagrange fun
tion, i.e. L(x, λ) = F (x) + λTh(x) , λ ∈ Rp

is a ve
tor of Lagrange multipliers, p ≤ n is a number of the 
onstraints. Then

(x∗, λ∗) ∈ Rn+p
is a saddle point of the Lagrange fun
tion.

The Gauss-Newton (GN) method for solving (3) is [2℄:

xk+1 = xk +∆xk, λk+1 = λk +∆λk,

were (∆xk,∆λk) ∈ Rn+p

an be obtained from the following system:

∇2L(xk, λk)
[
∆xk
∆λk

]
= −∇L(xk, λk)

or

[
JTk Jk ∇h(xk)
∇h(xk)T 0

] [
∆xk
∆λk

]
= −

[
∇xL(xk, λk)

h(xk)

]
.

Let h(x) = Ex− f = 0 , the matrix E ∈ Rp×n
has full rank and f ∈ Rp

. Then

[
Mk ET

E 0

] [
∆xk
∆λk

]
= −

[
uk
vk

]
, (4)

where Mk = JTk Jk ∈ Rn×n
are positive semide�nite, (uTk , v

T
k )

T ∈ Rn+p
, and

uk = JTk Rk + ETλk , vk = Exk − f , uk ∈ R
n
, vk ∈ R

p
, k = 0, 1, .... .

We employ the augmented Lagrangian method [3℄, the matrix M will be

repla
ed by a positive de�nite matrix M̃k ≡Mk+ γkE
TE , γk > 0 and iteration

methods 
an be applied to solve the augmented linear system.

[
M̃k ET

E 0

] [
∆xk
∆λk

]
= −

[
uk + γkE

Tvk
vk

]
. (5)

Many 
omputational di�
ulties 
an be over
ome by using pre
onditioning (4)-

(5). We 
an rewrite the saddle-point linear system into non-symmetri
 form [4℄

Aw = b,

A =

[
M̃ ET

−E 0

]
, w =

[
∆x
∆λ

]
, b =

[
−ũ
v

]
,
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where ũ = u + γETv (hereinafter subs
ript of the Gauss-Newton iterations

omitted for 
onvenien
e).

Analogous to [5℄ the matrix A 
an be split into its symmetri
 and skew-

symmetri
 parts as

A = A0 +A1,

where

A0 =
1

2
(A+AT ), A1 =

1

2
(A−AT )

are the symmetri
 and the skew-symmetri
 parts of the matrix A :

A0 =

[
M̃ 0
0 0

]
, A1 =

[
0 ET

−E 0

]
.

The skew-symmetri
 part A1 
an be split into

A1 = KL +KU =

[
0 0
−E 0

]
+

[
0 ET

0 0

]
,

where 0 is a zero matrix with suitable dimension, KL and KU are the stri
tly

lower- and the stri
tly upper- triangular parts of A1 . Note that KL = −KTU .
Based on these splittings in [6℄ the authors established generalized skew-

Hermitian triangular splitting iteration method (GSTS) for solving non-

Hermitian saddle-point linear systems. Let the matrix BC be de�ned as

BC =

[
B1 0
0 B2

]
,

where B1 and B2 are symmetri
 and nonsingular matri
es. Then GSTS - pre-


onditioner is de�ned as [6℄:

B(ω1, ω2) = (BC + ω1KL)B−1C (BC + ω2KU),

or in blo
k form

B(ω1, ω2) =

[
B1 0
−ω1E B2

] [
B−11 0
0 B−12

] [
B1 ω2E

T

0 B2

]
,

where ω1 and ω2 are nonnegative a

eleration parameters and, at least, one of

them is nonzero. In a
tual implementations we 
hoose B1 = M̃ . Then

B(ω1, ω2) =

[
M̃ ω2E

T

−ω1E B2 − ω1ω2EM̃
−1ET

]
,
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and pre
onditioned blo
k-stru
tured linear system is:

B−1(ω1, ω2)Aw = B−1(ω1, ω2)b.

We 
onsider three 
ases for the GSTS a

ording to the di�erent 
hoi
es of the

matrix B2 , and obtain the GSTS-pre
onditioned GMRES iteration method.

We 
onstru
t a model of the s
attering group of 
hemi
al elements that may

be 
ontained in water. In the des
ription of the pro�le of experimental s
attering

pattern we sele
t the pro�le fun
tion for the peak shape. Clari�
ation of the line

pro�le based on the introdu
tion of the fun
tion F whi
h must be minimized

with respe
t to all parameters:

F =

∑m
i=1 |yobsi − ycalci |2∑m

i=1 |yobsi |2
,

where yobsi are experimental data set, ycalci are 
al
ulation data set and

ycalci =
k∑

j=1

IjPV (ti, x
(j)
0 ,∆x(j), η(j)) + ϕ(ti, x1, ..., xs).

Here k is the number of peaks, Ij is the integrated intensity, ϕ(ti, x1, ..., xs) is the
ba
kground. The parameter sets spe
i�es by the nonlinear least squares are peak

shape {Ij, x(j)0 ,∆x(j)} , weight 
oe�
ients {η(j)} , j = 1, ..., k and the parameters
belonging to the ϕ : {xl}, l = 1, ...., s . We approximate ϕ by a 
ubi
 spline

with natural boundary 
onditions. Equality 
onstraints in the 
onstrained NLLS

problem are I1/Ij = I1/Ij, j = 2, ..., k, η(j) = η(i),∆x(j) = ∆x(i), i, j = 1, ..., k ,
the values {Ij} , j = 1, ..., k are taken from the [7℄.

At �rst we solve un
onstrained NLLS problem by the Levenberg-Marquardt

method. Our implementation of this algorithm uses QR-de
omposition of the

Ja
obian matrix and does not require any matrix fa
torization for determination

of the parameter λ . Figure 1 shows experimental and model s
attering pat-

tern for the problem with 112 parameters. Then the equality-
onstrained large-

s
ale NLLS problem is solved by the GN method. Iterations of the Levenberg-

Marquardt algorithm and outer iterations of the GN method are terminated if the


urrent iterations satisfy ‖R‖1 ≤ ε1 , ‖xk+1 − xk‖1 ≤ ε2 , ε1 = 10−6, ε2 = 10−7 .
When the saddle-point linear system is solved by pre
onditioned GMRES at

ea
h step of the GN method then inner iterations terminated if

‖B−1b− B−1Awk‖2 ≤ 10−6‖B−1b− B−1Aw0‖2.

The iteration methods GSTS(1), GSTS(2) and GSTS(3) with di�erent 
hoi
es

of the matrix B2 (Table 1) are employed as pre
onditioners to full GMRES. In

a
tual 
al
ulations B1 = M̃ . The optimal values of the parameters are numeri
al

optimal values, ω1 = ω2 = ωexp . The 
hoi
e γk = ‖Mk‖2/‖E‖22 [3℄ has been

found to perform well in pra
ti
e.
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Figure 1. Experimental (dash-dot line) and model (
ontinuous line) of the s
at-

tering pattern for the problem with 112 parameters
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MATHEMATICAL MODELING OF NEURAL

ACTIVITY

1

Muratova G.V., Andreeva E.M., Bavin V.V., Belous M.A.

Southern Federal University, Rostov-on-Don, Russia

An important development in present s
ien
e is the in
reased use of methods

from mathemati
s, 
omputer s
ien
e and theoreti
al physi
s in the exploration

of biologi
al systems. This is due to great advan
es in the understanding of living

systems, establishment of new experimental te
hniques, methodologi
al advan
es

in mathemati
al modeling, and the 
ontinuing growth in available 
omputer pow-

er for numeri
al 
al
ulations and simulations.

Neuros
ien
e is among the biologi
al sub-dis
iplines where the use of mathe-

mati
al te
hniques are most established and re
ognized. An important reason for

this is the su

ess of Hodgkin and Huxley [1℄ more than 50 years ago of des
rib-

ing signal transport in a single neuron (nerve 
ell) as a modi�ed ele
tri
al 
ir
uit

where the 
harge 
arriers are Na+ , K+
, Ca++

, Cl− and other ions �owing

through the neuron 
ell membrane. This mathemati
al formulation, known as

Hodgkin-Huxley theory, 
ould not only a

ount for the results from experiments

used to 
onstru
t the model and �t the model parameters. From their model they


ould also predi
t the shape and velo
ity of the so 
alled a
tion potential whi
h is

a pulse-like ele
tri
al disturban
e travelling down thin outgrowths, 
alled axons,

of neurons [2℄.

Due to its obvious su

ess in des
ribing a
tion potentials, the Hodgkin-Huxley

approa
h has later been generalized to in
lude modeling of the signal pro
essing

properties of entire neurons [3℄-[4℄. Thus modelers now have a relatively �rm

starting point for mathemati
al explorations of neural a
tivity.

Mathemati
al models in neuros
ien
e 
an be distinguished by their pur-

pose [5℄.

Me
hanisti
 models aim to a

ount for the properties of neurons or neural


ir
uits on the basis of the underlying biophysi
al properties of neurons and neu-

ral networks. This 
orresponds to the traditional physi
s approa
h to modeling

nature.

Des
riptive (or statisti
al) models try to a

ount mathemati
ally for experi-

mental data without the aim to explain what aspe
ts of the neurons or neuronal


ir
uitry gives rise to the mathemati
al stru
ture. Interpretive models aims to

elu
idate the fun
tional roles of neural systems, i.e., relating neural responses to

the task of pro
essing useful information for the animal. Information theory is

typi
ally used in su
h modeling [5℄. Interpretive modeling is unique to biologi
al

systems whi
h have developed under evolutionary pressure.

So there exist the various approa
hes for modeling neural a
tivity.

On the basis of dynami
 me
hanisms of neuron various mathemati
al models

are 
onstru
ted. Among them there are relatively simple ones, su
h as �Inregrate

1
This work was supported by RFBR, N15-51-53066
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and Fire�, in whi
h a neuron is represented as a 
apa
itor 
onne
ted in parallel,


orresponding to the 
apa
itive 
urrent for the membrane, and a resistor simu-

lating the leakage of ions through ion 
hannels [6℄. More 
omplex, biologi
ally

plausible model were 
reated, for example, Hodgkin-Huxley model [1℄, whi
h is

mu
h more di�
ult 
omputationally and in terms of the analysis of its dynami
s,

but it is mu
h more a

urate to des
ribe the dynami
s of the membrane potential

of the neuron. This model belongs to the 
lass of point models. Point models do

not share a neuron into segments, not isolated parts of the dendrite and soma.

The spatial geometry of the nerve 
ells is 
omplex and diverse. Therefore,

modeling of neurons using the point model is big enough simpli�
ation. More


omplex multisegment models were 
onstru
ted for example 
able equation.

I Izhikevi
h model

We investigate Izhikevi
h model [7℄, whi
h is a 
ertain 
ompromise between


omputational 
omplexity and biophysi
al verisimilitude. Despite the 
omputa-

tional simpli
ity of the model, depending on the parameters it 
an operate in

di�erent dynami
 modes, relevant neurons present. Izhikevi
h model des
ribed

as a fast-slow system of two di�erential equations des
ribing the dynami
s of the

membrane potential of the neuron. Depending on the initial 
onditions and the

applied 
urrent model 
an be in two dynami
 modes, the movement to the rest

potential P1 , or the generation of an ele
tri
al pulse P2 [8℄.

Izhikevi
h model belongs to the 
lass of phenomenologi
al models. In these

models the dynami
s of the membrane potential is reprodu
ed as a phenomenon.

The full Izhikevi
h model is the following:





Cm
dV

dt
= k(v − vr)(v − vt)− u + Isyn + Iext

dU

dt
= a (b(v − vr)− u)

if v > Vp, B >

{
V ← c
U ← U + d

,

where b � sensitivity U to subliminal volatility of V , Cm � membrane 
apa
-

itan
e, c � potential after spike, d � growth U after spike, vr � rest potential,

vt � minimum potential of generating a
tion potential, k � 
oe�
ient inverse

membrane resistan
e.

As a result of resear
h the model of the neural ele
tri
al a
tivity based on

the Izhikevi
h model is 
onstru
ted. The algorithm of its implementation using

te
hnologies GPGPU is suggested. GPGPU te
hnology enabled the maximum

use of the pro
essing power of the 
omputer by dividing the original data stream

of neural network model into a plurality of parallel pro
essing threads in a GPU.

Some numeri
al results are presented. The ve
tor �eld and nerve impulse

form obtained by Izhikevi
h model are shown on the �gure 1.
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Figure 1. The Izhikevi
h model
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DISCRETE ANALOG OF CONJUGATE-OPERATOR

MODEL OF A PROBLEM OF HEAT CONDUCTIVITY

ON NON-MATCHING GRIDS

1

Sorokin S.B.

Institute of Computational Mathemati
s and Mathemati
al

Geophysi
s SB RAS, Novosibirsk State University, Novosibirsk,

Russia

Using a nonuniform non-mat
hing grid for variable parameters of the medium

(in parti
ular, a dis
ontinuous parameter), we 
onstru
t and numeri
ally inves-

tigated a new di�eren
e s
heme for the 
onjugate-operator model of the heat


ondu
tivity problem [1℄: in the domain Ω equations hold

R∗w = div w =
[

∂
∂x1

, ∂
∂x2

] [ w1

w2

]
= f,

w = Kq =

[
k11 k12
k21 k22

]
q,

q = Ru = −grad u = −
[ ∂

∂x1
∂
∂x2

]
u,

boundary 
onditions u|∂Ω = 0.
The di�eren
e s
heme has se
ond order a

ura
y.

Computational domain and grids used are shown in Figure 1.

Figure 1. The 
al
ulation domain and grids.

1
Supported by program 1.3 Basi
 resear
h Division of the RAS "Modern 
omputer and information te
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te
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Verti
al line Γ (dashed) divides the domain into two parts

Ω = Ω1 ∪ Ω2.

In domain Ω was set grids: grid ω for uh � dark 
ir
les, grid ω 1
2
for wh,qh

� dark and gray squares. Gray 
ir
les auxiliary and do not parti
ipate in the


al
ulation.

Hh � spa
e of grid fun
tions uh de�ned in points ω and be
omes zero at the

boundary ∂Ω. H∗h � spa
e of grid fun
tions wh
de�ned in the points ω 1

2
.

The operator R in the de�ning relations is taken as the support operator.

His approximation Rh : Hh → H∗h is determined in ea
h re
tangular 
ell of grid

area as follows [2, 3℄ (numbering points see Figure 1)

[qh]5 = (Rhu
h)5 = −

[
1
2
(u

h
4−uh1
h̃1

+ uh3−uh2
h̃1

)
1
2(
uh2−uh1
h̃2

+ uh3−uh4
h̃2

)

]

5

= (

[
R1h

R2h

]
uh)5.

Here h̃1, h̃2 grid steps in the �rst and se
ond dire
tions, respe
tively. They shall

take appropriate value for ea
h subregion. For points (x1, x2) of the Ω1 : h̃1 =
h11, h̃2 = h21, for points (x1, x2) of the Ω2 : h̃1 = h12, h̃2 = h22 = h21/2. The
�rst index indi
ates the number of 
oordinate dire
tion, the se
ond � the number

of the subregion.

For nodes ω 1
2
bla
k squares marked the a
tion of Rh is determined by the

same rule. The di�eren
es is that h̃2 = h22 and in this 
ase involved the �
titious
nodes marked gray 
ir
les are repla
ed by interpolation from the 
losest verti
al

neighboring nodes ω :
near ∂Ω from three nodes interpolation type

u(x2 +
h

2
) =

3

8
u(x2) +

6

8
u(x2 + h) +

−1
8
u(x2 + 2h) +O(h3),

otherwise from four nodes interpolation type

u(x2+
h

2
) = − 1

16
u(x2−h)+

9

16
u(x2)+

9

16
u(x2+h)− 1

16
u(x2+2h)+O(h4).

We de�ne a s
alar produ
t in the Hh and H∗h :

(uh, vh)Hh
=

∑

(x1,x2)∈ω
uh(x1, x2)v

h(x1, x2)h̃1h̃2 ∀ uh ∈ Hh, v
h ∈ Hh,

(wh, σh)H∗
h
=

∑

(x1,x2)∈ω 1
2

2∑

k=1

wh
k(x1, x2)σ

h
k(x1, x2)h̃1h̃2, ∀ wh ∈ H∗h, σh ∈ H∗h.
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For the points (x1, x2) ∈ Γ the �rst step h̃1 = h11
2 + h12

2 , the se
ond h̃2 = h22.

For nodes (x1, x2) ∈ ω 1
2
bla
k squares marked: h̃1 = h11, the se
ond h̃2 = h22.

In the approximation R∗h :H
∗
h→Hh of the operator R∗ 
hoose adjoint to Rh

[4, 3℄:

(Rhu
h,wh)H∗

h
= (uh, R∗hw

h)Hh
.

If you enter ei � orthogonal basis in Hh (in the s
alar produ
t (·, ·)Hh
) the R∗hw

h

� element of Hh 
an be represented as an expansion

R∗hw
h =

N∑

j=1

(R∗hw
h, ej)Hh

(ej, ej)Hh

ej =

N∑

j=1

(wh, Rhej)H∗
h

(ej, ej)Hh

ej .

As a basis in Hh take the system of network fun
tions e(x1,x2) , ea
h of whi
h is

equal to one in one of the grid points ω and at all other points is equal to zero:

e(x1,x2)(x̃1, x̃2) =

{
0, (x1, x2) 6= (x̃1, x̃2),
1, (x1, x2) = (x̃1, x̃2),

∀(x1, x2), (x̃1, x̃2) ∈ ω.

Then the value R∗hw
h
at the point (x1, x2) ∈ ω is represented as

R∗hw
h(x1, x2)=

∑
(x̃1,x̃2)∈ω

(wh,Rhe(x̃1,x̃2))H∗
h

(e(x̃1,x̃2),e(x̃1,x̃2))Hh

e(x̃1,x̃2)(x1, x2) =
(wh,Rhe(x1,x2))H∗

h

(e(x1,x2),e(x1,x2))Hh

e(x1,x2)(x1, x2) .

For all grid points ω , ex
ept for the points lo
ated on the verti
al nearest Γ,
latter formula gives (numbering points see Figure 1).

R∗hw
h
1 =

1
2 [

(wh
1 ) 6−(wh

1 ) 7
h̃1

+ (wh
1 ) 5−(wh

1 ) 8
h̃1

] + 1
2[

(wh
2 ) 8−(wh

2 ) 7
h̃2

+ (wh
2 ) 5−(wh

2 ) 6
h̃2

].

For the grid points lo
ated in the verti
al nearest Γ expression for R∗hw
h
more


ompli
ated.

Approximation of tensor K :H∗h→H∗h :

[wh]5 = [Khq
h]5 =

[
k11 k12
k21 k22

]

5

[qh]5.

Finally, dis
rete 
onjugate-operator model has the form of

R∗hw
h = fh,

wh = Khq
h,

qh = Rhu
h,

uh ∈ Hh, wh ∈ H∗h.

The tables 
ontains the results of test 
al
ulations, 
on�rming the se
ond

order 
onvergen
e of di�eren
e s
heme.
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The 
al
ulations were made in the domain Ω = (0, 2)× (0, 1). The area was
divided into two equal parts

Ω = Ω1 ∪ Ω2 = (0, 1)× (0, 1) ∪ (1, 2)× (0, 1).

In ea
h sub-region was set uniform grid: in Ω1 with the steps h11 = h21, in Ω1−
h12 = h22 = h21/2. Use the steps shown in the �rst two 
olumns.

The remaining 
olumns indi
ate di�erent 
hara
teristi
s of error

Zh =
[
wh, uh

]T −
[
w, u

]T
.

Here

[
w, u

]T
� a solution of the di�erential problem,

[
wh, uh

]T
� the

solution of the di�eren
e problem.

In the third 
olumn the error rate of the se
ond 
omponent

max
(x1,x2)∈ω

∣∣u(x1,x2)− uh(x1,x2)
∣∣ = maxu.

The fourth � the rate of the se
ond 
omponent of the error

max[ max
(x1,x2)∈ω 1

2

|w1(x1, x2)− wh
1(x1, x2)|, max

(x1,x2)∈ω 1
2

|w2(x1, x2)− wh
2(x1, x2)|] = maxw.

In the �fth 
olumn of the norm of the proje
tion of the se
ond 
omponent error

on interfa
e of subdomains Γ

max
(x1,x2)∈Γ

∣∣u(x1, x2)− uh(x1, x2)
∣∣ = maxΓ.

Finally, in the last � error rate

∥∥Zh
∥∥
H
=

√√√√√√√√

∑
(x1,x2)∈ω

(
u(x1, x2)− uh(x1, x2)

)2
h̃1h̃2+

+
∑

(x1,x2)∈ω 1
2

2∑
k=1

(
wk(x1, x2)− wh

k(x1, x2)
)2
h̃1h̃2

.

Table 1 
orresponds to the 
al
ulations with the thermal 
ondu
tivity tensor

K(x1, x2) =

[
1 0
0 1

]
, (x1, x2) ∈ Ω1 ∪ Ω2,

and the exa
t solution u(x1, x2) = sin3(πx1)sin
3(πx2), (x1, x2) ∈ Ω1 ∪ Ω2.

Table 2 
orresponds to the 
al
ulations with the thermal 
ondu
tivity tensor

(mixed derivatives and dis
ontinuous 
oe�
ients)

K(x1, x2)=

[
0.002 0.01
0.01 0.002

]
, (x1, x2) ∈ Ω1, K(x1, x2)=

[
2 1
1 2

]
, (x1, x2) ∈ Ω2
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h11 = h21 h12 = h22 maxu maxw maxΓ
∥∥Zh

∥∥
H

1/10 1/20 0.8802E-01 0.2137E+00 0.1043E-01 0.1158E+00

1/20 1/40 0.2069E-01 0.5404E-01 0.2492E-02 0.2765E-01

1/40 1/80 0.5096E-02 0.1348E-01 0.6164E-03 0.6837E-02

1/80 1/160 0.1266E-02 0.3371E-02 0.1534E-03 0.1705E-02

Table 1.

and the exa
t solution

u(x1, x2) = sin3(πx1)sin
3(πx2), (x1, x2) ∈ Ω1,

u(x1, x2) = sin3(10πx1)sin
3(10πx2), (x1, x2) ∈ Ω2.

h11 = h21 h12 = h22 maxu maxw maxΓ
∥∥Zh

∥∥
H

1/40 1/80 0.1514E+00 0.8146E+01 0.6161E-01 0.4028E+01

1/80 1/160 0.3462E-01 0.1944E+01 0.1453E-01 0.9287E+00

1/160 1/320 0.8446E-02 0.4831E+00 0.3501E-02 0.2281E+00

1/320 1/640 0.2065E-02 0.1199E+00 0.8270E-03 0.5677E-01

Table 2.

This study di�ers from those above by the following:

1. All 
omponents of the dis
rete analogs of ve
tors are given at the same grid

nodes. This enables us to 
orre
tly de�ne the a
tion of the dis
rete analog of the

thermal 
ondu
tivity tensor on the dis
rete analog of the temperature gradient

and, in 
onjun
tion with the approximation method for the gradient, have the

se
ond order of 
onvergen
e.

2. The se
ond order of 
onvergen
e holds not only for s
alar grid fun
tion

(approximations to temperature) but also for the grid ve
tor fun
tions (approx-

imations to the heat �ow).

3. A s
heme of the se
ond order of a

ura
y (on nonuniform non-mat
hing

grids for the variable medium parameters) is 
onstru
ted only by the approa
hes

of the theory of di�eren
e s
hemes. From a methodologi
al point of view, the

method for s
heme designing presented in this is mu
h 
learer and easier than


onstru
ting a se
ond-order s
heme with the use of proje
tional statements.
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DYNAMIC BEHAVIOUR OF HETEROGENEOUS

POROELASTIC STRUCTURES

Vatulyan A.O., Gusakov D.V.

Southern Federal University, Rostov-on-Don, Russia

We 
onsider the steady os
illations of heterogeneous poroelasti
 transversely

isotropi
 layer under the a
tion of harmoni
 load applied to the upper fa
e in the

framework of the plane deformation. All me
hani
al 
hara
teristi
s 
onsidered

to be the fun
tions of transverse 
oordinate. We follow the Biot [1℄ theory for

modeling poroelasti
 media.

The dimensionless equations of motion, 
onstitutive equations and the equa-

tion of pressure in the pores are:

σ̄11,1 + σ̄13,3 + κ2ū1 = 0,
σ̄13,1 + σ̄33,3 + κ2ū3 = 0,
σ̄11 = γ1ū1,1 + γ7ū3,3 − β1p̄,
σ̄33 = γ7ū1,1 + γ4ū3,3 − β3p̄,
σ̄13 = γ5 (ū1,3 + ū3,1) ,
µ1p̄,11 + (µ3p̄,3),3 + iκ (η1ū1,1 + η3ū3,3) + iκδp̄ = 0.

(1)

where the following dimensionless parameters and fun
tions are introdu
ed: ūi �
displa
ement ve
tor elements, p̄ � pore pressure, σ̄ij � stress tensor elements,

γ̄j � elasti
 tensor elements, β̄j � Biot e�e
tive stress 
oe�
ients, µ̄j � intrinsi

permeability 
oe�
ients, κ � frequen
y.

It is important to note that order of the material 
onstants and the values

of the fun
tions in original equations several orders of magnitude di�erent from

ea
h other. In this 
ase dimensionless equations (1) are employed. The symbol ē
is dropped below.

The Fourier transform along the longitudinal 
oordinate is applied to the

equations (1). The transformed equations are se
ond order di�erential equations

on fun
tions uk and p with variable 
oe�
ients. For solving this equations shoot-
ing method [2℄ is employed. Main idea of this method is representing solutions as

the linear 
ombinations of the solutions for several Cau
hy problems. Note that

with the growth of the transformation parameter |α| system takes the form of

"sti�" system of di�erential equations, whi
h is equivalent to the presen
e of a

small parameter at the highest derivative. To solve su
h a system we use Gear

method [3℄, with the boundary 
onditions repla
ed by:

I : ξ3 = 0 : u1 = 0, u3 = 0, p′ = 0 σ33 = e−|Sα|, σ13 = 0, p = 0
II : ξ3 = 0 : u1 = 0, u3 = 0, p′ = 0 σ33 = 0, σ13 = e−|Sα|, p = 0
III : ξ3 = 0 : u1 = 0, u3 = 0, p′ = 0 σ33 = 0, σ13 = 0, p = e−|Sα|

where S is the normalization parameter [4℄.
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To obtain values for the parameter S all variable 
oe�
ients in (1) repla
ed

by their top estimates γ̂i ≥ |γi| . The 
hara
teristi
 equation takes the form:

∣∣∣∣∣∣

γ̂5λ
2 + (κ2 − α2γ̂1) −iα(γ̂7 + γ̂5)λ iαβ̂3
−iα(γ̂7 + γ̂5)λ γ̂4λ

2 + (κ2 − α2γ̂5) −β̂3λ
καη̂1 iκη̂3λ µ̂3λ

2 + (iκδ̂ − α2µ̂1)

∣∣∣∣∣∣
= 0 (2)

We introdu
e repla
ement λ = S|α| , and α→∞ . In this 
ase equation (2)

splits into two equations:

µ̂3S
2 − µ̂1 = 0

γ̂5γ̂4S
4 − ((γ̂7 + γ̂5)

2 + γ̂25 + γ̂1γ̂4)S
2 + γ̂1γ̂5 = 0

Obtained S values for 
an
ellous bone [5℄ are: S1 = −S4 = 1 , S2 = −S5 =
0.497 , S3 = −S6 = 1.463 .

Solution of the original problem in general has the form:

uj(ξ1, ξ3) =
1

2π

∫ ∞

−∞

Dj(α, κ, ξ3)

D0(α, κ)
e−iαξ1dα, (3)

where Dj, D0 � is analyti
al fun
tions of their arguments.

It 
an be shown that for the α ∈ R1, D0 6= 0 this representation of the

solution is 
orre
t. At the same time, due to de
reasing integrands when |α| →
∞ , it is possible to 
al
ulate the integral (3) within �nite limits, the 
hoi
e the

parameter R allows 
ontroling a

ura
y.

uj(ξ1, ξ3) ≈
1

2π

∫ R

−R

Dj(α, κ, ξ3)

D0(α, κ)
e−iαξ1dα

It should be noted that with the in
rease of parameter α solutions in trans-

formants tend to 0 a

ording to the law 1/|α| . Consequently, it seems reasonable
to repla
e trasformants for large α values with approximation of the form G/|α| ,
where G is 
omplex 
onstant determined separately for ea
h of the transformants

at |α| > R . Experimentally found that in most 
ases values of R = 20 is enough

to build solutions with an a

ura
y more than 10−3 . This fa
t allows redu
ing
the number of the α parameter values, whi
h are ne
essary to build a solution

in transformants, and signi�
antly redu
es the running time.

To �nd the original solutions we use "Filon" quadrature formulas from [6℄.

We have obtained numeri
al data for displa
ement �eld for di�erent laws of

variation of the elasti
 moduli. Figure 1 represents results of 
al
ulating displa
e-

ment �elds on the upper layer fa
e for the load 
on
entrated at ξ1 = 0 in the 
ase

of various inhomogeneities γ̂j = γj ∗ f(ξ3) . As shown in Figure 1 displa
ements

have a logarithmi
 singularity at ξ1 = 0 . And with the growth of the 
oordinates
have the form of attenuating wave.

Finally, we note that numeri
al solutions were obtained of the problem for

various 
hara
teristi
s of the layer irregularities laws. Based on the analysis of

the solutions we have revealed the in�uen
e of these 
hara
teristi
s on the dis-

pla
ement �eld at the upper layer fa
e.
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Figure 1. Displa
ements Re(u3) for various inhomogeneities of γj , 
on
entrated
load at ξ1 = 0
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TWO NEW SPLITTINGS AND PRECONDITIONER

FOR ITERATIVELY SOLVING NON-HERMITIAN

POSITIVE DEFINITE SYSTEMS
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Taiyuan, China

Consider a large sparse system of linear equations

Ax = b, (1)

where the 
oe�
ient matrix A = (aij) ∈ Rn×n
is a non-Hermitian positive

de�nite matrix and b ∈ R
n
.

Based on the Hermitian/skew-Hermitian (HS) splitting

A = H + S, (2)

where

H =
1

2
(A+A∗), S =

1

2
(A− A∗)

with A∗ being the 
onjugate transpose of A , of the 
oe�
ient matrix A . In
arti
les [1-3℄ Bai et al. derived some alternative methods named HSS and PSS

iteration methods. It is proven that for a non-Hermitian positive de�nite lin-

ear systems, the HSS and PSS iteration methods both 
onverge un
onditionally

to the unique solution of the system (1). However, both HSS and PSS iter-

ation s
hemes are variants of an alterative iteration method. The Hermitian

or the skew-Hermitian system needs to be solved at ea
h iteration step. The re-

sear
h into a skew-Hermitian system of linear equations is also 
ondu
ted in [4-6℄.

In this talk, a new iteration method for solving a linear system with 
oef-

�
ient matrix being non-Hermitian positive de�nite is presented as follows; An

a

elerated method is proposed, whi
h will �nd the optimal solution in hyper-

plane generated by {xk, · · · , xk+m} .

Our new method is just presented in view of the splitting (2). Let

H = M −N,

P =M + αS,

Q = N + (α− 1)S,
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where α is a parameter. Then

A = P −Q,

and the iteration matrix is given by

T = P−1Q.

Method 1.

Step 0. Give an initial point x0 and a toleran
e ǫ > 0 , for k = 0, 1, 2, . . .
until the iteration 
onverges.

Step 1. Solve the system of linear equations for xk

Pxk = Qxk−1 + b

Step 2. If ‖Axk − b‖ < ǫ, stop; Otherwise, k ⇐ k + 1 and go ba
k to Step

1.

Method 2.

Step 0. Given an initial point x(0,0) , the pre
ision ε > 0 , for k = 0, 1, 2, · · ·
until the pro
ess 
onverges.

Step 1. For l = 0, 1, 2, · · · , m, 
omputing

Px(k,l+1) = Qx(k,l) + b.

Step 2. Let

r(k,l) = Ax(k,l) − b,

r =
m∑

l=1

α
(k)
l r(k,l),

min
α
r∗H−11 r

s.t.
m∑

l=1

α
(k)
l = 1.

Step 3.

x(k+1,0) =
m∑

l=1

α
(k)
l x(k,l).

Step 4. If ‖r‖2 < ε , stop; Otherwise, goto Step 1.
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Remark In fa
t, the method 2 is the a

eleration of method 1. If m = 2 , it

an be straightly shown in the following:

x(k+1,0) = α(k)x(k,1) + (1− α(k))x(k,2).

We study the spe
tral radius and 
ontra
tion properties of the iteration

matri
es and then analyze the best possible 
hoi
e of the parameters. With the re-

sults obtained, we show that the new methods are 
onvergent for a non-Hermitian

positive de�nite linear system. Furthermore, a pre
onditioner generated by the

splitting is proposed, the 
ondition number of pre
onditioned matrix is dis
ussed.

The numeri
al examples show these methods are e�e
tive.
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TWO-STAGE ITERATION METHODS FOR SADDLE

POINT PROBLEMS

Guo-Feng Zhang, Mu-Zheng Zhu, Jing-Yu Zhao

S
hool of Mathemati
s and Statisti
s, Lanzhou University,

Lanzhou, P.R.China

In this talk, we will fo
us on the solution of large sparse saddle point problems

A u ≡
[
A B∗

B 0

] [
x
y

]
=

[
f
g

]
≡ b (1)

with Case 1 or Case 2.

Case 1: A ∈ Rn×n
is a symmetri
 positive de�nite (SPD) matrix, B ∈ Rm×n

is

of full rank, x, f ∈ R
n, y, g ∈ R

m
and m ≤ n .

Case 2: A ∈ Cn×n
is a non-Hermitian matrix and its Hermitian part

H = 1
2
(A + A∗) is positive de�nite (Non-HPD), B ∈ Cm×n

is of full rank,

x, f ∈ C
n, y, g ∈ C

m
and m ≤ n .

Linear systems of the form (0.1) arises in a variety of s
ienti�
 
omputing

and engineering appli
ations, in
luding 
omputational �uid dynami
s[8, 11℄, 
on-

strained and weighted least squares optimization[8, 13℄, image re
onstru
tion and

registration[14, 15℄, mixed �nite element approximations of ellipti
 PDEs and

Navier-Stokes problems[7, 12, 10℄ and so on; see [2, 7, 8℄ and referen
e therein.

In re
ent years, there has been a surge of interest in linear systems of the

form (1) and a large numeri
al solution methods for (0.1) have been proposed.

For examples, dire
t solves, stationary iteration methods [9, 4, 1, 3, 6℄, null spa
e

methods and pre
onditioned Krylov subspa
e methods[8, 10, 5℄ and so on on.

Iteration methods and pre
onditioned Krylov methods are interested be
ause

of their preservation of sparsity and lower requirement for storage. We refer to

some 
omprehensive surveys [8, 7, 13℄ and the referen
es therein for algebrai


properties and solving methods for saddle point problems.

We de�ne a matrix P (α) as

P (α) :=

[
In −B∗(BB∗)−1

0 Im

] [
In 0
B −αBB∗

]
=

[
In − B∗(BB∗)−1B αB∗

B −αBB∗

]
,

where α is a positive 
onstant. By pre
onditioning the saddle point problem (1)

from the left with P (α) , we 
an get the following pre
onditioned linear system:

P (α)A = P (α)

[
f
g

]
⇐⇒

[
(I −B∗(BB∗)−1B)A+ αB∗B 0

BA− α(BB∗)B BB∗

] [
x
y

]
=

[
f −B∗(BB∗)−1Bf + αB∗g

Bf − αBB∗g

]

⇐⇒
[
A1 0
A3 A2

] [
x
y

]
=

[
b1
b2

]
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with

A1 := (I−B∗(BB∗)−1B)A+αB∗B, A2 := BB∗, A3 := BA−α(BB∗)B, (2)

b1 = f − B∗(BB∗)−1Bf + αB∗g, b2 = Bf − αBB∗g.
We 
an get the solution of the system (0.1) by solving the 
oupled linear

systems of the form

A1x ≡
(
(I −B∗(BB∗)−1B)A+ αB∗B

)
x = b1,

A2y ≡ (BB∗)y = b2 − A3x.

Thus it 
an be solved by �rst 
omputing x from

A1x = b1 (3)

and then 
omputing y from

A2y = b2 −A3x. (4)

Theorem 1 Let A de�ned in (0.1) be nonsingular and B be of full rank. Then

the matrix A1 de�ned in (0.2) is nonsingular for any iteration parameter α 6= 0 .
Sin
e the system (0.4) is SPD, any solver for SPD systems 
an be applied.

This 
ould be a Cholesky fa
torization, or a pre
onditioned 
onjugate gradient

(PCG) method, or some spe
ialized solvers.

Generally, the 
oe�
ient matrix A1 in (0.3) is large and dense, so dire
t


omputations are very 
ostly and impra
ti
al in a
tual implementations. Then

we will solve the linear system (0.3) iteratively by splitting te
hnology.

Algorithm 1: (A ∈ R
n×n

being a SPD matrix)

Stage 1: solve the linear system (0.3) iteratively by PCG or Cholesky fa
toriza-

tion:

M1(α)x
(k+1) = N1x

(k) + b1 (5)

with M1(α) := A+ αB∗B and N1 := B∗(BB∗)−1BA .
Stage 2: solve the system (0.4) by using Cholesky fa
torization, or PCG method.

Theorem 2 Let A ∈ R
m×m

be SPD, and B ∈ R
m×n

be of full 
olumn rank.

Then, the iteration (0.5) is 
onvergent when α > α∗ , where α∗ = λ2max

µminλmin
.

Furthermore, we have limα→∞ ρ(T (α)) = 0 . Here, T (α) = M−1(α)N is the

iteration matrix. λ2max and λmin are the maximum and minimum eigenvalues of

T (α) , µmin is the minimum eigenvalue of BTB .

Algorithm 2: (A being large and non-Hermitian matrix)

Stage 1: solve the linear system (0.3) iteratively by PCG or Cholesky fa
toriza-

tion:

M2(α)x
(k+1) = N2x

(k) + b1 (6)
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with M2 := H + αB∗B and N2 := B∗(BB∗)−1BA− S , where H = 1
2(A+A∗)

and S = 1
2(A− A∗) .

Stage 2: solve the system (0.4) by using Cholesky fa
torization, or PCG

method[5, ?℄.

Theorem 3 Let A ∈ C
n×n

be a non-Hermitian matrix and its Hermitian part

H = 1
2(A+ A∗) is positive de�nite (Non-HPD) and B ∈ Cm×n

be of full rank.

Then the iterative method (0.6) is 
onvergent if the following 
ondition is satis-

�ed:

α > max

{√
η21 + (β − η2)2 − γ

τ
, 0

}
.

Here,

η1 + iη2 =
x∗B∗(BB∗)−1BAx

x∗x
, iβ =

x∗Sx

x∗x
, γ =

x∗Hx

x∗x
, τ =

x∗B∗Bx

x∗x
,

and x is an eigenve
tor of the iterative matrix M−1N in stage I. Furthermore,

we have ρ(M−1
2 N2) monotoni
ally de
reases and tends to 0 as α→ +∞ .
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Many important physi
al pro
esses in nature are governed by di�erential

equations. Nonlinearity and the presen
e of a large number of variables in the

initial equations are sour
es of signi�
ant mathemati
al di�
ulties in the analysis

of the solutions of these equations. Frequently, it is virtually impossible to give

expli
it solutions, and while a multitude of numeri
al methods has been devel-

oped to obtain approximate solutions, there remains intense interest in �nding

exa
t solutions. Ea
h solution has value, �rst, as the exa
t des
ription of the

real pro
ess in the framework of a given model; se
ondly, as a model to 
ompare

various numeri
al methods; thirdly, as a basis to improve the models used. One

of methods for 
onstru
ting exa
t solutions is group analysis.

The group analysis method, besides 
onstru
ting exa
t solutions, provides a

regular pro
edure for mathemati
al modeling by 
lassifying di�erential equations

with respe
t to arbitrary elements.Wemention here that modeling a given system

of di�erential equations with the use of di�eren
e equations and meshes 
an also

be based on symmetries [1℄.

The 
lassi
al Lie group theory provides a universal tool for 
al
ulating ad-

mitted Lie group for a system of di�erential equations. However, appli
ations

of the group analysis method to integro-di�erential equations presents some dif-

�
ulties. The main di�
ulty 
omes from their nonlo
al terms (integral terms).

Sin
e the de�nition of an admitted Lie group given of partial di�erential equa-

tions 
annot be applied to integro-di�erential equations, this 
on
ept requires

further investigation. A regular method for 
al
ulating an admitted Lie group

of integro-di�erential equations was re
ently introdu
ed in [2, 3, 4℄. A Lie group

admitted by integro-di�erential equations is also de�ned as a Lie group satis-

fying determining equations. The way of obtaining determining equations for

integro- di�erential equations is similar (and not more di�
ult) to the way

used for di�erential equations. The main di�
ulty in obtaining an admitted

Lie group of integro-di�erential equations 
onsists of solving the determining

equations. Noti
e that the determining equations of integro-di�erential equa-

tions are integro-di�erential.

In the present work we fo
us on the appli
ation of the group analysis method

to the one-dimensional equations des
ribing behaviour of vis
oelasti
 materials
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vt = σx, et = vx, ϕ(σ) = e+

∫ t

0

H(t, τ)e(τ)dτ, ϕ′(σ) 6= 0. (1)

Here time t and distan
e x are independent variables, the stress σ , the
velo
ity v , and the strain e are dependent variables, H(t, τ) is the kernel of

relaxation, ϕ(σ) is a smooth fun
tion of the stress. If ϕ(σ) is a linear fun
tion,
then system (1) des
ribes linear behavior of a vis
oelasti
 material. Noti
e that

system (1) is a system of integro-di�erential equations. The admitted Lie group

of (1) is found. Invariant solutions of this system of equations are also dis
ussed

in this study.
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MULTIGRID METHOD WITH SPECIAL
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I Introdu
tion

We propose some approa
h for solving the two-dimensional Navier-Stokes

equations for a vis
ous in
ompressible �uid. In this paper we 
onstru
t spe
ial

FEM basis fun
tions for these equations. They are of the usual form at the time

level where an approximate solution is sought, and they have useful properties

for the approximation of transport derivatives between time levels. As a result, at

ea
h time level a stationary problem of a simpler form with a self-adjoint operator

is obtained. To solve this problem, we apply the 
onforming �nite element method

with the bilinear elements for velo
ities and pie
ewise-
onstant elements for the

pressure on re
tangles [1℄, [2℄.

II Problem formulation

Consider 
lassi
al formulation of the Navier-Stokes equations in domain Ω =
(0, 1)× (0, 1) with boundary ∂Ω

∂V

∂t
+ (∇ ·V)V − 1

Re
∆V +∇p = F, (1)

divV = 0, (2)

where Re is Reynolds's number, and V = (u(x, y, t), v(x, y, t)) is the velo
ity,
p is the pressure.

To provide uniqueness of the pressure, we use the 
ondition

∫

Ω

p, dΩ = 0, ∀t ∈ [0, T ]. (3)

The initial 
onditions are as follows:

u(0, x, y) = u0(x, y),
v(0, x, y) = v0(x, y), (x, y) ∈ Ω.

(4)

1
This work was supported by RFBR, N15-51-53066
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The boundaries 
onditions are as follows:

u(t, x, y) = ug(t, x, y),
v(t, x, y) = vg(t, x, y), (t, x, y) ∈ (0, T )× ∂Ω. (5)

To approximate the time derivative and inertial �rst spa
e derivatives a

method of 
hara
teristi
s is used. The method of 
hara
teristi
s was suggest-

ed by the he Fren
h and Ameri
an s
ientists for approximating the equations of

vis
ous in
ompressible liquid with the �rst order of approximation. It has spe-


ial theoreti
al and pra
ti
al development in Pirrono's work for mass transfer

equation [4℄.

Spa
e dis
retization is 
arried out by �nite element method. It's used a mixed

formulation in the �nite element method, when a 
ombination of simple �nite el-

ements � bilinear for velo
ities and 
onstant elements for pressure is applied. This


ombination provides stability of pressure 
al
ulation with additional appli
ation

of a numeri
al �ltration.

Consider the following basis fun
tions for the velo
ity 
omponents (i =
0, ..., n1, j = 0, ..., n2) :

ϕi,j(x, y) =

{ (
1−|x−xi|

h1

)(
1−|y−yj|

h2

)
, if(x, y) ∈ [xi−1, xi+1]× [yj−1, yj+1],

0, otherwise.
(6)

The basis fun
tions for the pressure are of a more simple form (i = 0, ..., n1−
1, j = 0, ..., n2 − 1) :

ψi+ 1
2
(x, y) =

{
1, if(x, y) ∈ [xi, xi+1)× [yj, yj+1),
0, otherwise.

(7)

An approximate solution at level t = tk has the following form:

uh(x, y) =
∑

0≤i≤n1,1≤j≤n2−1
αi,jϕi,j(x, y), (8)

vh(x, y) =
∑

0≤i≤n1,1≤j≤n2−1
βi,jϕi,j(x, y), (9)

ph(x, y) =
∑

0≤i≤n1−1,0≤j≤n2−1
γi,jψi+ 1

2 ,j+
1
2
(x, y). (10)

As a result of the approximation we get the blo
k system of algebrai
 equa-

tions at level tk :

Au ≡



A11 O A13

O A22 A23

AT
13 AT

23 O





u
v
p


 =



f1
f2
f3


 ≡ f . (11)
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whi
h is solved by multigrid method. Here, O denotes a zero matrix of the


orresponding dimension. Note that matri
es A11 and A22 are self-adjoint and

positive de�nite.

III Multigrid method

The multigrid method (MGM) is one of the e�e
tive and enough univer-

sal iterative methods for solving the systems of the linear algebrai
 equations.

The multigrid method belongs to a 
lass of qui
kly 
onverging iterative meth-

ods [3℄, [5℄.

The multigrid idea is based on two prin
iples: error smoothing and 
oarse

grid 
orre
tion. Some iterative methods have a smoothing e�e
t on the error

of approximation. This property is fundamental for the multigrid idea and is


onne
ted with fast damping high-frequen
y Fourier 
omponents of an initial

error in de
omposition on the basis from eigenve
tors.

The multigrid algorithm allows to in
rease 
onsiderably e�
ien
y of the main

iterative method, 
ombining usual iterative pro
ess with the 
oarse-grid 
or-

re
tion. One of the MGM 
omponents is basi
 iterative method or smoothing

pro
edure. This is the most sensitive part of the method of the problem under


onsideration.

There are some 
lassi
al iterative methods for saddle point problems whi
h


an be used as the smoothers in MGM:

• The generalized minimal residual (GMRES) method, whi
h, in exa
t arith-

meti
, 
onverges within m iterations for any non-singular matrix K ∈
Rm×m

.

• The Uzawa method. The rate of 
onvergen
e of iterative methods depends

on the type Uzawa resampling on time and with a de
rease in the value of

this step falls. Therefore, iterative methods su
h as pre
onditioners Uzawa

are used for multigrid methods.

• The semi-impli
it method for pressure-linked equations (SIMPLE) method.

SIMPLE is based on �nite-volume dis
retization of the Navier-Stokes equa-

tions. One of the important properties of �nite volume method is the exa
t

preservation of the integral quantities su
h as mass, momentum and energy

for any group of 
ontrol volumes and, 
onsequently, the entire 
omputa-

tional domain.

• Braess-Sarazin smoother. In 
ontrast to the exa
t Uzawa and the SIMPLE

methods, the Braess-Sarazin smoother 
omputes the iterates ut+1
and pt+1

from the old velo
ity iterate ut .

• Vanka Smoothers were �rst introdu
ed within the 
ontext of a multigrid

method for staggered mesh dis
retizations of the Navier-Stokes equations.
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This smoother 
an be 
onstru
ted without knowledge of the geometry

or the dis
retization of the underlying PDE. The additive version of this

smoother 
an be interpreted as an inexa
t Uzawa relaxation s
heme.

On the �rst stage of our investigation we use simple iteration method as

the smoother be
ause after dis
retization we obtain a linear algebrai
 equation

system with a symmetri
 matrix whi
h has a spe
trum with alternating signs.

un+1
h = unh − τAT

h (Ahu
n
h − fh).

The se
ond 
omponent of a multigrid method is the 
oarse grid 
orre
tion

determined by restri
tion operator R2h
h and prolongation operator P h

2h , whi
h

are realized for velo
ity 
omponents by templates:

R2h
h = 1

16




1 2 1
2 4 2
1 2 1



2h

h

and P h
2h =

1
4




1 2 1
2 4 2
1 2 1



h

2h

.

The operators of restri
tion R2h
h and prolongation P h

2h are realized for pres-

sure 
omponents by other templates:

R2h
h = 1

4

[
1 1
1 1

]2h

h

and P h
2h =

[
1 1
1 1

]h

2h

.

The results of some numeri
al experiments allow to 
on
lude the e�
ien
y of

the suggested approa
h for solving the Navier-Stokes equations.

IV Numeri
al results

We 
onsider the equation (1)-(2) with initial and boundary 
onditions (3)-(5)

and the exa
t solution:

u(x, y, t) = x ∗ (1− x) ∗ y ∗ (1− y) ∗ (t+ 2)
v(x, y, t) = sin(x) ∗ (1− x) ∗ y ∗ (1− y) ∗ (t+ 1)
p(x, y, t) = (x− 1/2) ∗ (y − 1/2) ∗ t

(12)

Table 1 presents a 
omparison of the numbers iterations and times 
al
ulation

of the multigrid method with a di�erent numbers of levels MGM and simple

iteration method. Pe
let numbers is 1000, number of smoothing iteration is 5.

Table 2 presents a 
omparison of the multigrid method for solving the problem

with a di�erent number of smoothing iterations. Pe
let numbers is 1000, mesh

size is 65× 65 .

V Con
lusion

For the the Navier-Stokes equations it has been shown that by mixing the

method of 
hara
teristi
s and the �nite element method we are able to derive

�rst and se
ond order a

urate 
onservative s
hemes of the upwinding type.
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Mesh grid Sample MGM MGM MGM MGM MGM

iteration l=2 l=3 l=4 l=5 l=6

33× 33 76306 4362 5452 4884

12se
 11se
 11se
 11se


65× 65 787942 98376 72425 55989 43307

5min 8min 4min 4min 3min

129× 129 5857643 868407 639641 464102 325721 226555

87min 108min 105min 78min 58min 30min

Table 1. Multigrid method with a di�erent number of levels

Smoothing MGM MGM MGM

iterations l=5 l=4 l=3

5 43307 55989 72425

3min 4min 4min

10 31131 37341 44069

3min 3min 3min

15 24347 28054 31715

2min 3min 3min

Table 2. Multigrid method with a di�erent number of smoothing iterations

Appli
ation of a 
ombination of the method of 
hara
teristi
s and the �nite

element method allows building the e�e
tive numeri
al algorithm. These s
hemes

are numeri
ally better than the usual upwinding s
hemes be
ause they require

numeri
al solution of symmetri
 systems only. After dis
retization we obtain a

linear algebrai
 equation system with a symmetri
 matrix whi
h has a spe
trum

with alternating signs. We use multigrid method with simple iteration method

as the smoother for solving this system.

The results of some numeri
al experiments allow to 
on
lude the e�
ien
y of

the suggested approa
h for solving the Navier-Stokes equations.
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WITHIN AN INDUSTRIAL SITE

Blagodatskykh D.V.

∗
, Dzama D.V.

∗
, Sorokovikova O.S.
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This paper 
on
erns some pra
ti
al aspe
ts of the appli
ation of a 3D hydro-

dynami
 
ode [1℄ to modelling of radioa
tive 
ontamination within an industrial

site. The 3D 
ode is intended to simulate the propagation of 
ontamination tak-

ing into a

ount the a
tual geometry of obsta
les and to 
al
ulate doses from

various external sour
es and via di�erent paths of exposure (
louds of arbitrary

shape, inhomogeneous surfa
e deposition, inhalation). The CFD model allows for


al
ulating doses re
eived by the personnel for the whole territory of a fa
ility in

the 
ase of a non-uniform wind �eld and non-isotropi
 turbulen
e.

An essential feature of Gaussian models still widely used in safety assess-

ment analysis is their poor adaptation to real urban 
onditions. A 
omparison

of 
on
entrations 
al
ulated via a Gaussian model and obtained by experiment

for the same weather 
onditions demonstrates that Gaussian models fail even in

quantitative estimation of the distribution of 
on
entrations. They are not able

to reprodu
e the 
omplexity of �ows around an obsta
le of realisti
 geometry.

This gives a reason for using a CFD 
ode whi
h 
ould in prin
iple to predi
t the

a
tual distribution of velo
ities.

The main goal of our resear
h is to make estimations of doses in a more

realisti
 and a

urate fashion. Known analyti
al solutions su
h as the point or

linear sour
e approximation are not su�
iently a

urate for our purposes. To

attain this obje
tive we take into a

ount the radiation emitted by all points of

a radioa
tive 
loud

ḋvol (~r0, n) =

∫∫∫

Ω

I (~r, ~r0) · ρvol (~r) · σ (~r, n) · dV

or a 
ontaminated surfa
e

ḋsurf (~r0, n) =

∫∫

∂S

I (~r, ~r0) · ρsurf (~r) · σ (~r, n) · dS

where σ (~r, n) is the dose rate [Sv/ (s · Bq)] from the point sour
e of radiation

of the nu
lide n on the distan
e r , I (~r, ~r0) is the visibility (
an be only 0

or 1) of the point with radius-ve
tor ~r from the point with radius-ve
tor ~r0 ,
ρvol (~r) , ρsurf (~r) - volume and surfa
e 
on
entration, ḋvol (~r0, n) , ḋsurf (~r0, n) -

volume and surfa
e dose rate at the point with radius-ve
tor ~r0 . Thus, the whole
sour
e is divided into a set of point sour
es. The dose of radiation re
eived by

the exposed obje
t from a point sour
e is determined by whether or not there
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is any obsta
le in the straight line 
onne
ting the sour
e and the re
ipient. If

there is, we leave out the amount of radiation delivered by the sour
e. Su
h an

integral method 
alls for a huge amount of 
al
ulations to be performed. A way

to a

elerate 
al
ulations is the appli
ation of a parallel algorithm.

In this paper we present a des
ription of a 3D CFD 
ode 
apable of making

estimations of doses in a more realisti
 and a

urate fashion for the needs of

emergen
y analysis. As a result, a robust CFD model is implemented on the

base of the Navie-Stokes equations. The 
onversation laws of mass

∂ρ

∂t
+ div(ρ~u) = 0

impulse

ρ
∂~u

∂t
+ ρ
(
~u~∇
)
~u = −~∇δP + ~∇

(
ρνT ~∇

)
~u+ ρ~g

δθ

θ
+ ~f

an equation for potential temperature to better a

ount for pressure drop with

height due to a signi�
ant verti
al s
ale

dθ

dt
=
∂θ

∂t
+ ~u~∇θ = ~∇

(
χ~∇θ

)

and equations for dispersion of around 20 radionu
lides taking into a

ount their

de
ay rates

∂Cn
∂t

+ (u+ wn)~∇Cn = ~∇
(
DT

~∇Cn
)
+QCn

are applied. Due to the fa
t that an essentially subsoni
 �ow is 
onsidered, the

surrounding medium approximates to an in
ompressible one. Sin
e the little dif-

feren
e between a
tual and dry-adiabati
 temperature is assumed, perturbations

of potential temperature are supposed to be small.Moreover, for the given range

of hydrodynami
 parameters the Boussinesque approximation is justi�able, hen
e

ρ (θ) = ρ (θ0) +
∂ρ

∂θ

∣∣∣
θ=θ0

(θ − θ0)

The e�e
t of turbulen
e is modelled via a RANS approa
h. A modi�ed ver-

sion of k − ǫ model is applied to avoid mesh re�nement near solid surfa
es,

thereby signi�
antly de
reasing 
omputational 
osts. To avoid small dimensions

of boundary 
ells, adapted boundary 
onditions on solid surfa
es for k and ǫ are
utilized on the base of Monin-Obukhov theory. An assumption is made that a

velo
ity pro�le in a boundary 
ell is given by the formula

u (△) =
u∗
κ

[
ln

(△
r

)
+ φ(p)

]

derived in Monin-Obukhov theory. Then we substitute the fri
tion velo
ity in

formulas

k =
u2∗

C
1/2
µ

ε =
u3∗
κ△
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thereby a
hieving for the turbulent 
oe�
ient a formula identi
al to that in

Prandtl theory for the 
ase of neutral strati�
ation, as far as other types of

strati�
ations are 
on
erned the modi�ed 
oe�
ient is used. A positive feature is

that we do not have to re�ne mesh signi�
antly near solid surfa
es, but the size

of the boundary 
ells should be from 10 to 15 times larger than the roughness

length.

There is a 
onventional pra
ti
e [2℄ to reprodu
e the 
onditions of a �eld

experiment in a wind-tunnel to augment the amount of data obtained in the

�eld test. We tested our 
ode with a �eld data of the experiment 
arried out in

Oklahoma-
ity [3℄. A 
omparison of measured and 
al
ulated 
on
entrations are

shown in �g. 1 only for surfa
e points, where squares represent 
al
ulated values

and triangles denote measured values.

the number of a point of measurement

c
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n
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Figure 1. A 
omparison of measured and 
al
ulated 
on
entrations

As 
an be seen, our predi
tion of the maximum value of surfa
e 
on
entration

is 
lose to the measured value with an a

ura
y of 5%.Taking into a

ount that

it is a 
ru
ial point for our 
ode to predi
t maximum 
on
entrations fairly well

due to the fa
t that it 
on
erns safety analysis issue, we 
an 
onsider the result

as a good one.Nevertheless, our 
ode su�
iently underestimates the value of


on
entration measured at the point 13. It 
an be explained by an existen
e of

steep gradients of 
on
entration in the vi
inity of the point.

A
tually, a thorough examination of the site of station 13 disposition distin
t-

ly reveals a presen
e of several trees down the street, whi
h 
ould be a signi�
ant

obsta
le for the �ow and may dramati
ally 
hange the 
hara
ter of 
on
entration

iso-lines. Sin
e it is di�
ult to embed in geometry su
h 
omplex obje
ts as trees,

the simulated and experimentally measured �ow may di�er 
onsiderably. There-

fore, to make reasonable judgements about simulated results one should 
arry
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out a sensitivity analysis of the results obtained. As 
an be seen from �g. 2,

whi
h demonstrates a sharp growth of 
on
entration along the street, the results

strongly depends on the sele
tion of the measurement point.
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Figure 2. A sensitivity analysis of 
on
entration distribution

Despite of the, so-
alled engineering problems, the issues 
onsidered in our

report 
an not be solved rigorously. It is required,in a sense, a simplisti
 approa
h

to be applied to all the aspe
ts of su
h a problem, in
luding the geometry of

obje
ts, initial and boundary 
onditions. All in all, our approa
h provides a

su�
ient degree of a

ura
y in 
omparison with more sophisti
ated models su
h

as FEM3MP (USA,LLNL) [4℄.
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Introdu
tion

For the des
ription of pro
esses of impurity distribution in the atmosphere

(domain ) it is used three-dimensional linear turbulent di�usion equation [1℄

∂q

∂t
+ ~v · grad q = div( ~K · grad q) + f(M) · g(t), (1)

at following 
onditions q
∣∣∣
t=0

= q0 , q
∣∣∣
∂D×[0,H ]

= 0 , ∂q
∂z

∣∣∣
z=0

= 0 , q
∣∣∣
z=H

= 0 ,

where q = q(M, t) � 
on
entration of an pollution impurity, M = (x, y, z) �

spatial 
oordinates of a point, ~v = (vx, vy, vz) � ve
tor of speeds of a wind,

~K =
(Kx, Ky, Kz) � ve
tor of 
oe�
ients of turbulent di�usion, f(M) � fun
tion

des
ribing spatial arrangement of a pollution sour
e, g(t) � a
tion intensity of

sour
e.

In present study a spe
ial 
ase of the identi�
ation problem for intensity

of the sour
e is studied in appli
ation to the modelling of the transport of air

pollution [2℄. The 
onsidered approa
h uses as input parameters the set of known

sensitivity 
oe�
ients and 
orresponding pollution measured in given lo
ations

Mj = (xj, yj, zj) :

cji, j = 1, . . . , J, i = 1, . . . , N,

where cji � 
on
entration measured by jth sensor at the moment of time ti , J
is the number of sensors, N is the number of time steps.

Measurements are taken in time intervals ∆t .
Let's 
onsider, that an error of 
on
entration measurements is additive

cji = q(Mj, ti) + δ · γ,

where δ � root-mean-square error of sensor measurements, γ � standardized

Gaussian random variable (Average(γ) = 0 , V ariance(γ) = 1) .
The identi�
ation problem for a sour
e is 
hara
terized by solution insta-

bility to errors of 
on
entration measurements also demands spe
ial methods

of the solution [3, 4, 5℄. To solve the problem were used methods step-by-step

regularization and sequential fun
tion spe
i�
ation.
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Sequential fun
tion spe
i�
ation method

Linearity of the problem (1) allows to use the superposition prin
iple and

numeri
al analogue of Duhamel's theorem

qji = q0 +
i∑

n=1

gn ·∆φj(i−n), (2)

where qji = q(Mj, ti) , ∆φj(i−n) = φj(i−n+1) − φj(i−n) , φji = Q(Mj, ti) , Q(M, t) �

solution of the dire
t problem (1) at g(t) = 1 and q
∣∣∣
t=0

= 0 .

The value φji is 
alled step sensitivity 
oe�
ient, and the value ∆φji � pulse

sensitivity 
oe�
ient.

We shall estimate gi , 
onsidering g1, g2, . . . , gi−1 are known values, 
al
ulated
on the previous steps. For giving stability to the solution of the inverse problem

we shall 
onsider g(t) on several (r ) time intervals at on
e. At r = 1 the

method step-by-step regularization turns out. r is dis
rete parameter of regular-
ization. Let's 
onsider, that gi, gi+1, . . . , gi+r−1 are 
onne
ted by some fun
tional
dependen
e.

Using (2) for the moments of time ti, ti+1, . . . , ti+r−1 let's write down the

matrix equation

Φ · g = Q− q0 −Q|g=0, (3)

where Φ ∈ Rr·J×r
, g ∈ Rr

, Q,Q
∣∣
g=0
∈ Rr·J

, Φk, Qk, Qk|g=0 ∈ RJ
,

Φ =




Φ0 0 · · · 0
Φ1 Φ0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

Φr−1 Φr−2 · · · Φ0


 , Q =




Q0

Q1
.

.

.

Qr−1


 , Q|g=0 =




Q0|g=0

Q1|g=0
.

.

.

Qr−1|g=0

,

g =




gi
gi+1
.

.

.

gi+r−1


 , Φk =




∆φ1(i+k)
∆φ2(i+k)

.

.

.

∆φJ(i+k)


 , Qk =




q1(i+k)
q2(i+k)

.

.

.

qJ(i+k)


 , Qk|g=0 =




q1(i+k)|g=0

q2(i+k)|g=0
.

.

.

qJ(i+k)|g=0


 ,

qj(i+k)|g=0 =
i−1∑
n=1

gn ·∆φj(i+k−n) . The Φ is the low triangular blo
k matrix of

Toeplitz type.

The equation (3) 
an be solved exa
tly only for the 
ase r = 1 and J = 1
(Stolz solution) [5℄. In this 
ase the solution of the inverse problem frequently

instably. In 
ase using of several time steps (r > 1) or several sensors (J > 1)
the equation 
an be solved only approximately by means of the least-squares

method.

We minimize the sum of squares of di�eren
es between measured C and


al
ulated Q values of 
on
entration

S = (C−Q)T · (C−Q)→ min, (4)
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where C =



C0

C1

· · ·
Cr−1


 , Ck =



c1(i+k)
c2(i+k)
· · ·
cJ(i+k)


 .

It is possible to approa
h the solution of the equation (??) in two ways:

• to solve equations set with r unknown values gi, gi+1, . . . , gi+r−1 ;

• to redu
e number of unknown values 
onsidering,

that gi+1, gi+2, . . . , gi+r−1 is expressed by mean of some fun
tional depen-

den
e from gi and from the previous values gi−1, gi−2, . . . , gi−p .

In the �rst 
ase values gi, gi+1, . . . , gi+r−1 
an turn out unrelated values them-

selves, though in pra
ti
e of values of intensity g(t) 
annot vary at arbitrarily.

In the se
ond 
ase the 
hosen fun
tional dependen
e provides improvement of

smoothness and stability of solution. The fun
tional dependen
e is a regulariza-

tion fa
tor.

Then the sequential estimation algorithm will look like

1. for the 
hosen fun
tional dependen
e gi+1, gi+2, . . . , gi+r−1 from gi and

gi−1 we shall estimate the unique unknown value gi ;

2. we shall pass to a following step, temporarily assuming dependen
e

g(i+1)+1, g(i+1)+2, . . . , g(i+1)+r−1 from g(i+1) and g(i+1)−1 .

Let this fun
tional dependen
e looks like

g = A · gi +B · gi−1,

where A,B ∈ Rr
.

We 
onsider the elementary 
ase of fun
tional dependen
e � the assumption

of a 
onstan
y g(t) during r the sequential intervals of time

gi = gi+1 = · · · = gi+r−1,

and also a 
ase of linear dependen
e between gi, gi+1, . . . , gi+r−1

gi+k = gi + k · (gi − gi−1) = (k + 1) · gi − k · gi−1, k = 0, 1, . . . , r − 1.

We shall �nd the estimation of intensity gi

ĝi =
(
(Φ · A)T · (Φ ·A)−1 · (Φ ·A)T · (C− q0 −Q|g=0 −Φ · B · gi−1 (5)
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Results of 
omputing experiments

Using number of methodi
al problems numerous 
al
ulation experiments

are lead. Stability numeri
al approximation to desired value intensity are


onstru
ted, in
luding at presen
e of measurement errors in measurements

(δ = 0÷ 0, 03 · qmax ). Sensors are settled down outside of an operative range

of a sour
e (f(M) = 0) and in an operative range of a sour
e (f(M) 6= 0).
The root-mean-square error was used for the a

ount of a

ura
y of intensity

estimation g(t)

σg =

√√√√ 1

N

N∑

n=1

(
g((n− 1/2) ·∆t)− gn

)2
.

For ea
h sensor there is the 
riti
al step ∆tst[1] , su
h, that as ea
h step of

the solution of the inverse problem ∆t > ∆tst[1] the solution is stability, i.e. the

step-by-step regularization e�e
t takes pla
e.

The desire to in
rease the a

ura
y of intensity estimation, redu
ing a step on

time, leads to instability of the solution of inverse problem. Using several sensors

(J > 1) the sensor with smaller ∆tst[1] has prevailing in�uen
e. In this 
ase it

is possible to use fun
tion spe
i�
ation method with several (r > 1) sequential
steps on time.

The analysis of results of numeri
al experiments allows to draw a 
on
lusion,

that for pair numbers (∆t/∆tst[1], δ) , ∆t/∆tst[1] ∈ [0, 1; 1] , δ ∈ [0; 0, 03 ·qmax] it
is possible to pi
k up r and in this 
ase errors of estimation g(t) will be minimal.

The information of 
on
entration measurements from sensors is understand-

ing sequentially in the 
onsidered method, that allows to organize the on-line

monitoring over emissions of pollution in the atmosphere.
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A VERIFICATION OF THE BLOCKS FOR 3D

AEROTHERMODYNAMICS MODELLING AND

DOSES CALCULATION FROM A CLOUD OF

ARBITRARY GEOMETRY AS PARTS OF A

SOFTWARE PACKAGE FOR ESTIMATION OF THE

RADIATION SITUATION WITHIN AN INDUSTRIAL

SITE AT RADIATION RISK
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Due to the drasti
 growth of 
omputer performan
e in the last de
ades, urban

emission simulations 
an provide a su�
ient resolution of �ows around buildings

and other obsta
les. Despite of the promising prospe
ts a 
ross-veri�
ation of

di�erent numeri
al models applied to the same problem 
learly demonstrated

a substantial dis
repan
y of the results. Taking into a

ount that su
h models

are intended for dealing with many 
ru
ial problems (e.g. a safety analysis of

nu
lear obje
ts, the estimation of terroristi
 threats, urban planning), a thorough

experimental validation of obtained results is needed.

To �ll the gap between 
al
ulated results and experimental data an initia-

tive [1℄, 
alled COST 732, in the frame of COST (European Cooperation in

S
ien
e and Te
hnology) a
tivity was proposed. The main goals of the initiative

were to establish a 
ommonly a

epted quality assuran
e pro
edure for the mod-

els in question and provide resear
hers with data sets that are quality 
he
ked

and 
ommonly a

epted as a standard for model validation purposes .

To attain these obje
tives the resear
hers from 22 European 
ountries 
ar-

ried out a set of numeri
al simulations using 12 CFD models and 
ompared

the 
al
ulated results with two �eld experiments sele
ted as su�
iently 
omplex

test 
ases: the Mo
k Urban Setting Test (MUST) and the Joint Urban 2003

Oklahoma City (OKC) Atmospheri
 Dispersion Study.This work is dedi
ated to


ross-veri�
ation of a programm blo
k for aerothermodynami
s modelling in 
ase

of a real 3D obje
t 
omprising numerous obsta
les(the MUST experiment) and

a blo
k for 
al
ulation of the radiation situation in the vi
inity of an obje
t of


omplex geometry.

MUST presents a regular array of 120 
ontainers situated in a �at desert

in the state of Utah. The �eld data was supplemented with data measured in

a wind-tunnel experiment [2℄. The data are 
olle
ted in form of Ex
el sheets

free-available from Internet.

1
The work of this author is supported by GK �H.4x.44.9Á.14.1037
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The CFD models involved in veri�
ation in
lude general purpose 
odes (e.g.

CFX, FLUENT, STAR_CD) as well as spe
ially developed 
odes for urban emis-

sion simulations (M2UE, MISKAM, VADIS). Table 1 presents the some results of

the statisti
s pro
essing of the measured and 
al
ulated values of two wind 
om-

ponents based on 
onventional 
riteria for a quantitative analysis of aerothermo-

dynami
s modelling in 
ase of industrial and urban buildings.The total amount

of the measurement points is 566.

MISCAM Length

(Number

of grid

points

per

obsta
le)

Width

(Number

of grid

points

per

obsta
le)

Height

(Number

of grid

points

per

obsta
le)

U,

hit

rate

%

W,

hit

rate

%

U,

FAC2

%

W,

FAC2

%

Standard k−ǫ 24 6 5 73 16 93 14

Standard k−ǫ 12 3 5 77 21 92 27

Standard k−ǫ 12 3 5 75 21 90 29

Modi�ed k− ǫ 12 3 5 81 15 89 12

Modi�ed k− ǫ 15 3 5 79 14 91 12

Modi�ed k− ǫ 24 5 5 75 20 90 31

CFX

Standard k−ǫ ≈ 13 ≈ 5 ≈ 4 82 18 94 23

Standard k−ǫ 13 5 4 76 15 86 16

Shear Stress

Transport

(SST) k − ω

13 5 4 1 11 1 11

SSG Reynold

Stress turbu-

len
e model

13 5 4 60 20 73 27

Our model 24 5 5 71 20 86 27

Table 1. Models 
ross-veri�
ation

The �rst 
riterion, 
alled hit rate q , spe
i�es the fra
tion of model results that
di�er within an allowed range D or W from the 
omparison data. D a

ounts

for the relative un
ertainty of the 
omparison data. W des
ribes the repeatability

of the 
omparison data.

q =
N

n
=

1

n

n∑

i=1

Ni with Ni =

{
1 for

∣∣∣Pi−Oi

Oi

∣∣∣ ≤ D or |Pi − Oi| ≤ W

0

where Pi and Oi are modelled and experimental results respe
tively.The se
ond


riterion is the fa
tor of two observations (FAC2) de�ned in a similar fashion.
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FAC2 =
N

n
=

1

n

n∑

i=1

Ni with Ni =





1 for 0.5 ≤ Pi

Oi
≤ 2

1 for |Pi| ≤W or |Oi| ≤W

0

The results of our model is 
ompared against the results obtained by two mod-

els(spe
ialized MISCAM and general purpose CFX) on grids of approximately

the same resolution as ours.The resear
hers 
ondu
ted series of 
al
ulations vary-

ing the type of wall fun
tions and grid resolution of the obsta
les. Parameters

W and D are taken to be equal to 0.034 and 0.25 respe
tively.

Our model a
hieves 
omparable results without using wall-fun
tions and for

pra
ti
ally the same grid resolution

To 
al
ulate doses in 
ase of 
omplex geometry of the obje
t and an arbitrary

shape of the 
loud one should de�ne the visibility fun
tion for all the points of

the air spa
e and then integrate exposure in
omes from all visible elementary vol-

umes. Due to a large amount of 
al
ulations to be performed a parallel algorithm

is proposed.

To verify the proposed algorithm a program is written for 
al
ulation of dose

rates from the 
loud in the vi
inity of a 
ube or hemisphere, as well as dose rates

from the surfa
e in the vi
inity of a hemisphere taking into a

ount the surfa
e

of the hemisphere itself.The visibility fun
tion of arbitrary points is derived from

the analyti
al equation of the surfa
e of the obje
t. The s
attering and absorbtion

e�e
ts are also taken into a

ount.

The tests were 
arried out in a domain with dimensions : x =
[−500; 500], y = [−500; 500], z = [0; 500], and the size of 
ells equal to 10 m.

This size is 
on�rmed as a relevant one on the base of 
al
ulations on �ner

meshes. As test obje
ts a hemisphere and a 
ube were taken with radius and

edge equal to 200 m. Volume and surfa
e 
on
entration was 
onsidered to be 1

Bq/m3
in all the spa
e and 1 Bq/m2

on all surfa
es respe
tively. The �gures

below demonstrate the dependen
y of dose rate relative error along a straight

line on the distan
e from an arbitrary point of this line. Fig.1 presents the rel-

ative error 
hange along a straight line lying at a height of 245 m and parallel

to the horizontal plane. The 
on�guration of the segment of the line is shown in

�g. 2.

In �g. 3 and 4 the 
ase with a 
ube is presented

An example of more realisti
 distribution of 
on
entration is shown in �g. 5

and 6. The dimensions of the domain were 100 m in ea
h dire
tion.The 
ompu-

tational grid was homogeneous and the mesh size was equal to 1 m.There were

two pairs of parallelepipeds with dimensions 16×16×70 and 21×21×50 . The
geometri
 
enters of the �rst pair were in the points with 
oordinates (37,5; 37.5;

35) and (62,5; 62,5; 35), of the se
ond - in (70; 30; 25) and (30; 70; 25). A sour
e

with intensity 0.2 GBq/s and duration of 500 
 was situated in point(39; 20; 7).

The velo
ity of dry deposition no horizontal and verti
al surfa
es was taken as
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Figure 1. Relative error

Figure 2. The 
on�guration of the segment

Figure 3. Relative error

Figure 4. The 
on�guration of the segment

0.02 m/s . it is worth mentioning that in �g. 5 and 6 the distributions of dose

rates from the 
loud and the surfa
e are demonstrated on the moment the release

is �nished.Moreover all values are normalized in referen
e to the maximum value
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of dose rates from the 
loud and the surfa
e respe
tively.

Figure 5. Isolines of dose rate from the 
loud

Figure 6. Isolines of dose rate from the 
ontaminated surfa
es (buildings and

ground)
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COMPARISON ANALYSIS AND PARALLEL

IMPLEMENTATIONS OF TWO SEMI-LAGRANGIAN

TECHNOLOGIES FOR AN ADVECTION PROBLEM

1

Efremov A.A., Karepova E.D., Vyatkin A.V.

Institute of Computational Modeling SB RAS, Krasnoyarsk, Russia

Nowadays there is a lot of algorithms of the family of semi-Lagrangian meth-

ods. This approa
h provides un
onditional stability and allows one to use large

time steps.

The method presented in [1℄ is based on a square grid only, it takes into a
-


ount the boundary 
onditions, and it has theoreti
al justi�
ation of 
onvergen
e

with the �rst order of a

ura
y. Moreover, a dis
rete analogue of the balan
e equa-

tion holds when going from an a
tual time layer to the next one. However, this

algorithm is both 
ompute-intensive and resour
e-intensive, therefore its parallel

implementation is an urgent and preferable task. Notwithstanding the algorithm

is well-parallelizable (it is expli
it with respe
t to time and data independen
e

in the general spa
e loop) our �rst attempts to use CUDA te
hnology [1℄ fa
ed

severe restri
tions of general-purpose GPU ar
hite
ture.

We have s
rutinized the bottlene
k of our sequential algorithm and its parallel

versions and the primary 
auses of poor CUDA performan
e have been dete
ted.

In our algorithm the biggest part of 
omputation is o

upied by integration

stage. The pro
edure of determining the mutual arrangement of a 
urvilinear

quadrangle and a grid on a previous time level is espe
ially resour
e-intensive.

This 
ode has many �ow 
ontrol instru
tions (�if� statements, mainly) and a

deep nesting level of fun
tions.

We have revised the integration stage at the previous time level in order to

improve an e�
ien
y of the parallel implementation of our algorithm. In this

regard, in [2℄ another algorithm of integration over a 
urvilinear quadrangle at

the previous temporal level was proposed. The algorithm is based on an inte-

gral transformation and its Ja
obian approximation. We have developed this

approa
h in su
h a way that now it allows to es
ape deep nesting level of fun
-

tions and to solve e�e
tively the problem under the �ne grids. However, we

sa
ri�
ed a 
onservatism of the dis
rete analogue and a theoreti
al justi�
ation

of 
onvergen
e.

Numeri
al experiments 
orroborate a good CUDA performan
e of the new

version of the algorithm.

1
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ON NUMERICAL CALCULATION OF SHAPES OF

CYLINDRICAL INCLUSIONS MIGRATING

THROUGH A CRYSTAL FOR PARTICULAR CASE OF

INTERFACIAL ENERGY ANISOTROPY

Garmashov S.I., Prikhodko Y.V.

Southern Federal University, Rostov-on-Don, Russia

The migration of liquid in
lusions through a non-uniformly heated 
rystal

[1-3℄ o

urs be
ause of the thermodynami
 disequilibrium originating along the

solid-liquid interfa
e under the a
tion of temperature gradient. The tenden
y of

the system to restore the equilibrium state leads to the dissolution of the 
rystal

substan
e at the hotter parts of the solid-liquid interfa
e, the 
rystallization at

the 
older parts of the interfa
e, and mass transfer in the liquid in
lusion. As a

result of this mass transfer, the liquid in
lusion moves through the 
rystal. Ex-

perimental data on the in
lusion migration in 
rystals under di�erent 
onditions

and, in parti
ular, on the non-equilibrium in
lusion shape, 
ontain information

on kineti
s of the 
rystallization and dissolution pro
esses, the interfa
ial energy

and its anisotropy, and other parameters. In order to extra
t this information

from the experimental data it is ne
essary to have a mathemati
al model of the

in
lusion shape.

One of su
h models (for the 
ase of 
ylindri
al in
lusions) has been proposed

in [4℄. The advantage of this model is in opportunity of 
al
ulating the in
lusion

shape and velo
ity for arbitrary anisotropy of both the interfa
ial energy and the

interfa
e kineti
s, and for arbitrary orientation of the temperature gradient. It is

possible due to an approximation (proposed in [2℄) of the solid-liquid interfa
e by

a set of �at fa
ets, ea
h of whi
h is 
hara
terized by both the pres
ribed me
h-

anism of growth (dissolution) and the value of spe
i�
 interfa
ial energy γi in
a

ordan
e with a �xed dependen
e γ(ϕi) , where ϕi is the angle determining the
orientation of the ith fa
et. The 
al
ulation of the in
lusion shape and velo
ity

in a

ordan
e with model [4℄ is based on numeri
al solving a system nonlinear

algebrai
 equations for the fa
et sizes. But be
ause the 
omputational time in-


reases 
onsiderably with in
reasing the number of fa
ets, it makes sense to use

the model [4℄ in the 
ase if the anisotropies of interfa
e kineti
s and interfa
ial

energy are des
ribed by rather 
ompli
ated fun
tions.

In the present paper we 
onsider a parti
ular 
ase of the interfa
ial energy

anisotropy des
ribed by the fun
tion γ(ϕ) in the form:

γ(ϕ) = γmin + (γmax − γmin)| sin(ϕ)|, (1)

where γmin , γmax are the minimal and maximal values of the interfa
ial energy.

The dependen
e (1) (see Fig. 1(a)) 
orresponds to the 
ase when the in
lusion

is 
on�ned by two atomi
ally-�at (singular) parts of the solid-liquid interfa
e

with the interfa
ial energy γmin (at ϕ = 0, π ) and by two atomi
ally-rough
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urvilinear (non-singular) parts with the interfa
ial energy γmin < γ ≤ γmax .
The equilibrium 
ross-se
tional shape of a 
ylindri
al in
lusion for γ(ϕ) in the

form [1℄ is plotted in Fig. 1(b).

Figure 1. The dependen
e γ(ϕ) in the form (1) (a) and the 
orresponding 
ross-

se
tional shape of 
ylindri
al in
lusion in equilibrium (b) ( the in
lusion boundary

parts I are the singular interfa
es with the width of ws0 and the in
lusion bound-
ary parts II are the non-singular interfa
es)

A similar problem have been 
onsidered in [3℄ with an assumption that the

interfa
ial energy anisotropy is des
ribed by the fun
tion

γ(ϕ) =

{
γmin, ϕ = 0, π
γmax, ϕ 6= 0, ϕ 6= π.

(2)

However, the fun
tion γ(ϕ) in the form (1) is more adequate to the real situ-

ation and, therefore, the 
onstru
tion of the in
lusion shape model is of interest

for this 
ase. In the present work, similar to the model [3℄, we 
onsider the 
ase

when the temperature gradient is dire
ted normally to the singular parts of the

in
lusion boundary.

The 
omplexity of 
al
ulating the in
lusion 
ross-se
tional shape for γ(ϕ) in
the form (1) (in 
ontrast to the problem 
onsidered in [3℄) is 
aused by that the

fun
tion y(x) des
ribing the in
lusion shape is the improper integral as follows:

y(x) =
wc
2

+

∫ x

0

−aξ2/2− bξ + 1√
1− (−aξ2/2− bξ + 1)2

dξ, (3)
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where a , b are the 
oe�
ients 
al
ulated from the migration pro
ess parameters;

wc is the width of the 
older singular part of the interfa
e (at x = 0). The x -
values 
hange from 0 to ℓ , where ℓ is the thi
kness of the 
ylindri
al in
lusion;
the value 2y(ℓ) 
orresponds to the width (wd ) of the hotter singular part of the
interfa
e (at x = ℓ).

The integrand from (3) and the numeri
ally 
al
ulated fun
tion y(x) are

plotted in Fig. 2. As follows from Fig. 2(a), the integrand is an unbounded

fun
tion at x = 0 and x = ℓ . These singularities of the integrand restri
t the

appli
ation of Simpson's rule [5℄ for 
al
ulating the fun
tion y(x) be
ause the


al
ulation error of this method for the 
onsidered 
ase be
omes rather high near

the bounds of integration.

Figure 2. A plot of the integrand (a) and the 
orresponding 
al
ulated 
ross-

se
tional shape of the 
ylindri
al in
lusion (b), migrating in the dire
tion of the

temperature gradient G

Fig. 3 shows the rather slow 
onvergen
e of Simpson's rule (the dush-dotted


urve). Aitken's pro
ess [5℄ allows to de
rease the 
al
ulation error of Simpson's

rule, but the 
onvergen
e remains slow (see the dushed 
urve in Fig. 3).

To solve the problem we used a te
hnique des
ribed in [5℄, the essen
e of

that is in separating out the singularities and using spe
ial quadrature formulas

taking into a

ount the 
hara
ter of these singularities. Besides, Aitken's pro
ess

[5℄ was used to rise the a

ura
y of the numeri
al integration with using the

dedu
ed quadrature formulas. As follows from both Fig. 3 and the inset in it

(see the solid 
urve), the proposed te
hnique for 
al
ulating the in
lusion shapes

possesses the high 
onvergen
e and, therefore, provides the small 
omputational

time.
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Figure 3. The 
onvergen
e of numeri
al integration in the 
ase of using Simpson's

rule (dush-dotted 
urve), Aitken's pro
ess for Simpson's rule (dushed 
urve), and

the method of separating singularities (with Aitken's pro
ess) (solid 
urve) (n
is the number of nodes)

Figure 4. The 
omputer program developed for 
al
ulating the velo
ity and 
ross-

se
tional shape of the migrating in
lusion in the 
ase of the interfa
ial energy

anisotropy des
ribed by the fun
tion (1)
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On the base of this te
hnique, the 
omputer program for 
al
ulating the 
ross-

se
tion shape and velo
ity of 
ylindri
al in
lusions migrating through a 
rystal

has been developed. The program interfa
e is presented in Fig.4.

The in
lusion shape and velo
ity are 
al
ulated with assumptions that: (i) the

interfa
ial energy anisotropy is des
ribed by the fun
tion (1); (ii) the temperature

gradient is normal to the singular (�at) parts of the solid-liquid interfa
e with the

orientation angles ϕ = 0, ϕ = π . The program allows 
al
ulating and plotting the

dependen
es of the in
lusion velo
ity and geometri
 parameters of the in
lusion

shapes on various parameters of the migration pro
ess, su
h as the 
ross-se
tional

area, the temperature gradient, the ratio γmax/γmin , and so on.
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IMPULSION IN MODELS OF CONCORDANCE OF

PUBLIC AND PRIVATE INTERESTS

Gorbaneva O.I.

Southern Federal University, Rostov-on-Don, Russia

The present work is devoted to the system 
ompatibility with feedba
k (im-

pulsion me
hanism) in models of 
on
ordan
e of publi
 and private interests

(CPPI-models) and, in parti
ular, to investigation of e
onomi
 and administra-

tive 
orruption if the 
orruption fun
tions are given. These fun
tions des
ribe

the in�uen
e of bribe on e
onomi
 and administrative 
ontrol.

A two-level system 
onsisting of the supervisor and several agents subordinated

to him is 
onsidered [1℄-[2℄. The models of 
on
ordan
e of publi
 and private

interests have the form

gi(u) = pi(ri − ui) + sic(u)→ max, 0 ≤ ui ≤ ri, i ∈ N ; (1)

g0(u) =
∑

j∈I
gj(u)→ max, 0 ≤ si ≤ 1,

∑

j∈I
sj =

{
1, ∃i : si > 0,
0, otherwise,

(2)

where ri is a resour
e of the i-th agent; ui is a share of the resour
e assigned

by him for the publi
 purposes; c(u) is the publi
 payo� fun
tion; si is the i-th
agent's share of publi
 payo�; pi(ri− ui) is a private payo� fun
tion of the i-th
agent, gi(u) is the agent's total payo�, g0(u) is the supervisor's payo�, N is

the set of agents. Fun
tions are 
ontinuously di�erentiable and 
on
ave on all

variables.

In the 
ase of e
onomi
 impulsion, si = si(ui) or si = si(u) . Using the �rst order

ondition we obtain that the system 
ompatibility inside the area of admissible


ontrols is possible only if

∂si(u)

∂ui
c(u) = [1− si(u)]

∂c(u)

∂ui
, i ∈ N ; (3)

For farther analysis it is possible to use two approa
hes: empiri
al and theo-

reti
al ones [3℄. Within empiri
al approa
h the widespread pra
ti
al methods of

publi
 payo� allo
ation are investigated. For example, proportional allo
ation

me
hanism

si(u) =

{ ui∑
j∈N uj

, ∃m : um > 0,

0, otherwise,

In this 
ase (3) has the form

∑

j 6=i
uj[

∂c(u)

∂ui

∑

j∈N
uj − c(u)] = 0, i ∈ N.
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The expression in square bra
kets is equal to zero only if c(u) is linear, hen
e

the proportional allo
ation me
hanism is system 
ompatible in CPPI-models in

whi
h the publi
 payo� fun
tion is linear.

Theoreti
al approa
h is based on the Germeyer theorem.

In the 
ase of administrative impulsion, the most natural interpretation of feed-

ba
k is 
orruption, and an additional 
ontrol level level is appeared.

As far as 
orruption in CPPI-models is 
on
erned it is reasonable to distinguish

administrative and e
onomi
 
orruption a

ording to the authors' approa
h. The

prin
ipal e�e
ts on the set of admissible strategies or on purpose fun
tions of the

agents and performs administrative and/or e
onomi
 
ontrol of agents' a
tivi-

ty respe
tively. The prin
ipal is assumed to be non-
orruptive, but real 
ontrol

fun
tions on behalf of him are performed by a supervisor who 
an weak adminis-

trative or e
onomi
 demands in ex
hange for a bribe. Respe
tively, administrative

and/or e
onomi
 
orruption, i.e. feedba
k on bribes of these 
ontrols o

urs.

We assume that if there is no 
orruption the publi
 payo� in model (1) - (2) is

allo
ated among prin
ipal, supervisor and agents in ratio p0 , r0 ,
∑n

j=1 s
0
j , where

p0 + r0 +
∑n

j=1 s
0
j = 1 .

This s
heme 
an be des
ribed by the relation

p = p0 −
n∑

j=1

δj, r = r0 +
n∑

j=1

bjδj, si = s0i + (1− bi)δi, i ∈ N. (4)

where the new shares (4) also satisfy p+ r+
∑n

j=1 sj = 1 . Here δi is in
rease of
the i-th agent's share of publi
 payo� in ex
hange for a "ki
kba
k", bi is a share
of the i-th agent "ki
kba
k" to the supervisor. Taking into a

ount e
onomi



orruption the CPPI-model (1) - (2) takes the form

gS(b, δ, u) = [r0 +
n∑

j=1

bjδj]c(u)→ max, 0 ≤ δi ≤ 1, (5)

gi(bi, δi, u) = pi(ri−ui)+[s0i+(1−bi)δi]c(u)→ max, 0 ≤ bi ≤ 1, 0 ≤ ui ≤ ri, i ∈ N,
(6)

where gS, gi are payo� fun
tions of supervisor and the i-th agent 
orrespond-
ingly. The summand r0c(u) in fun
tion (5) des
ribes o�
ial supervisor payo�,

and the summand c(u)
∑n

j=1 bjδj des
ribes his 
orruption payo�.

The model (5) - (6) 
an be investigated by two methods: des
riptive and nor-

mative ones. In the 
ase of des
riptive approa
h the 
orruption fun
tion δi(bi)
is assumed to be known. Then for agents the game in normal form o

urs in

whi
h agent strategies are the pair (bi, ui) . In the 
ase of normative approa
h

fun
tion δi(bi) is de�ned as an optimal guaranteeing supervisor strategy (
ontrol
me
hanism).

So, in this work the impulsion me
hanism in models of 
on
ordan
e of publi


and private interests is investigated, in parti
ular, me
hanisms of administrative
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and e
onomi
 
orruption. To investigate impulsion me
hanism theoreti
al and

empiri
al methods are applied. Within empiri
al methods proportional and uni-

form allo
ations are 
onsidered. To des
ribe 
orruption two methods: des
riptive

and normative, are applied.
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MESHLESS ALGORITHM FOR VORTICES

DYNAMICS ANALYSIS

1

Govorukhin V.N.

Southern Federal University, Rostov-on-Don, Russia

In this talk the algorithm based on variant of vortex-in-
ells method is de-

veloped. The governing equations are the geophysi
al models of the atmosphere

formulated in terms of stream fun
tion and potential vorti
ity. It is a system of

two PDE equations:

Dω

Dt
≡ ωt + ψyωx − ψxωy = 0, (1)

ω = −∆ψ + Λ2ψ − 1

2
γr2. (2)

where ω is a vorti
ity, ψ is a stream fun
tion and D/Dt denotes the material
derivative. Here ψx = ∂ψ/∂x , ψy = ∂ψ/∂y , ψxx = ∂2ψ/∂x2 , et
. γ = const ,

r =
√
x2 + y2 is the polar radius, Λ2 = f 2

0/gh = const , g is the a

eleration

due to gravity, and h is the thi
kness of the �uid layer. The velo
ity of the �uid

v = (v1, v2) is expressed via the stream fun
tion ψ as

v1 = ψy, v2 = −ψx, (3)

The developed algorithm in
ludes 
al
ulating the dynami
s of vortex 
on�g-

uration using a variant of the vorti
es-in-
ells method, the 
al
ulation heuristi



hara
teristi
s of vortex stru
ture and 
onstru
tion of the �eld of lo
al Lyapunov

exponents in ea
h moment.

The variant of the vorti
es-in-
ells method was presented in [1, 2, 3℄. The

method is based on vorti
ity �eld approximation by its values at a set of N �uid

parti
les and the stream fun
tion 
omputation using the Galerkin method. The

�ow domain is divided into re
tangular 
ells. Vorti
ity in every 
ell is interpolated

by a third order polynomial. The resultant pie
ewise 
ontinuous polynomial ap-

proximation of vorti
ity is employed to derive analyti
ally Galerkin's 
oe�
ients

of stream fun
tion expansion. Computed velo
ity �eld is used for �uid parti
les

traje
tories 
al
ulation as a solution of ODE system of hight dimension

ẋi = ψy(xi, yi), ẏi = −ψx(xi, yi) = v2, i = 1..N (4)

Analysis of heuristi
 
hara
teristi
s of stru
tures is based on 
al
ulation of


oordinates of 
enters of vorti
ity of pat
hes

x(k) =
1

Ω(k)

∫

S(k)

xω(k)(x, y)dS, y(k) =
1

Ω(k)

∫

S(k)

y ω(k)(x, y)dS. (5)

1
Supported by RFBR Grant N 14-01-00470
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Figure 1. Vorti
ity �eld (top line), mixing map (se
ond line), streamline and


enters of vorti
ity (third line) and FTLE �eld (bottom line) for di�erent time

moments.

were in summation uses parti
les wi
h was in
luded in vorti
e with number k
in initial state. The topology of vortex stru
tures 
an be studied using (5) and

two heuristi
 
hara
teristi
s: the distan
es di,j between pat
hes and orientation

of triangles

θi,j,k =

∣∣∣∣∣∣

x(i) y(i) 1
x(j) y(j) 1
x(k) y(k) 1

∣∣∣∣∣∣
(6)

The evolution of parti
les through the �ow is tra
ked using a �ow map, whose

spatial gradients are subsequently used to setup a Cau
hy Green deformation ten-

sor for quantifying the amount by whi
h the neighboring parti
les have diverged

over the length of the integration. The maximum eigenvalue of the tensor is used

to 
onstru
t a Finite Time Lyapunov Exponent (FTLE) �eld. The FTLE stru
-
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tures divide �ow into regions of qualitatively di�erent dynami
s and are used to

lo
ate boundaries of the �ow segments. Any 
hange in the number of �ow seg-

ments over time is regarded as an instability, whi
h is dete
ted by establishing


orresponden
es between �ow segments over time.

The e�e
tiveness of the algorithm was studied in a number of test 
ases the

intera
tion known vortex 
on�gurations. We 
onsidered the vortex 
on�guration

at the initial time of two or three vortex pat
hes with the following distribution

of vorti
ity

ωI(xc, yc) =

{
K e−5((x−xc)

2+(y−yc)2),
√
(x− xc)2 + (y − yc)2 ≤ 9

10

0,
√
(x− xc)2 + (y − yc)2 > 9

10

(7)

were K ≈ 1.6195 . . .
The �gure shows the 
al
ulation results for the initial 
on�guration

ω0(x, y) = ωI

(
−1− d

2
, 0

)
+ ωI

(
1 +

d

2
, 0

)
(8)

Cal
ulations fully reprodu
e the results of physi
al experiments presented in


iteGov5.
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COMPACT DIFFERENCE SCHEMES FOR ROD
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Introdu
tion

We 
onsider �nite-di�eren
e approximations for the rod lateral vibrations

equation

ρ
∂2u

∂t2
− ∂

∂x

[
R2ρ

∂3u

∂x∂t2

]
+

∂2

∂x2

[
ER2∂

2u

∂x2

]
= f, (1)

where ρ is rod's density, R � radius, � Young module; x ∈ [0, L], f = f(t, x)
� for
ing. The equation in partial derivatives is not resolved with respe
t to

higher temporal derivative, i. e. it has not Cau
hy-Kovalevsky type, but Poin
are-

Sobolev one. However, it is not an obsta
le for its high-order approximation.

We have investigated here the both 
ases: R = const , and R = R(x) .
We 
ompare high-order di�eren
e 
ompa
t and Crank-Ni
olson-type s
hemes.

We 
ompare the following properties: order of approximation, stability, ener-

gy 
onservation law (for homogeneous 
ase f = 0). The 
ase of the variable


oe�
ients of the di�erential equation is mu
h more di�
ult for a good approx-

imation. High-order 
ompa
t approximation for a set of boundary 
onditions is

also dis
ussed.

Compa
t di�eren
e s
heme

We use the following 3-5-3-point sten
il, see Fig.1, for a 
ompa
t di�eren
e

s
heme, whi
h 
an be expressed as a linear algebrai
 equations for the values of

the grid fun
tions u and f in sten
il's knots:

a∗(un+1
0 + un−10 ) + aleft(u

n+1
−h + un−1−h ) + aright(u

n+1
h + un−1h ) + bun0+

+cleftu
n
−h + crightu

n
h + dleftu

n
−2h + drightu

n
2h =

= p0,left(f
n+1
−2h,j + fn−1−2h,j) + p0,right(f

n+1
2h,j + fn−12h,j )+ (2)

+q0,left(f
n+1
−h,j + fn−1−h,j) + q0,right(f

n+1
h,j + fn−1h,j ) + r0(f

n+1
0,j + fn−10,j )+

+p1,leftf
n
−2h,j + p1,rightf

n
2h,j + q1,leftf

n
−h,j + q1,rightf

n
h,j + r1f

n
0,j

Here n is a temporal step number, and the lower index shows spatial position

of sten
il points over the sten
il's 
enter. These seventeen 
onstants are 
al
ulated
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for every spatial grid point xj by substituting the following test monomials

uk(t, x) (see Fig. 1) and the 
orresponding right-hand sides, were 
al
ulated

a

ording to (1), see for details (Gordin, Tsymbalov, 2014):

fkj(t, x) =
∂2uk
∂t2
−R2

j

∂4uk
∂x2∂t2

− 2Rj(R
′

j)
∂3uk
∂x∂t2

+ 2Eρ−1(R
′

j)
2∂

2uk
∂t2

+

+E R2
jρ
−1∂

4uk
∂x4

+ 4E Rj(R
′

j)ρ
−1∂

3uk
∂x3

+ 2ERjρ
−1∂

2uk
∂x2

(R
′′

j).

Here Rj, R
′

j, R
′′

j are values of R(x), ∂R(x)
∂x

, ∂
2R(x)
∂x2

at xj . The derivatives may
be evaluated either analyti
ally or numeri
ally (the high-order 
ompa
t relations

for the �rst and se
ond derivatives, see (Patterson, 1983)).

Figure 1. Sten
il and Newton's diagram of test monomials uk(t, x) for 
ompa
t
di�eren
e s
heme (2).

Crank-Ni
olson-type s
heme

The Crank-Ni
olson-type s
heme 
an be written as:

a∗(un+1
0 + un−10 ) + aleft(u

n+1
−h + un−1−h ) + aright(u

n+1
h + un−1h )+

+eleft(u
n+1
−2h + un−1−2h) + eright(u

n+1
2h + un−12h ) + bun0 + cleftu

n
−h + crightu

n
h =

= p0,left(f
n+1
−2h,j + fn−1−2h,j) + p0,right(f

n+1
2h,j + fn−12h,j )+ (3)

+q0,left(f
n+1
−h,j + fn−1−h,j) + q0,right(f

n+1
h,j + fn−1h,j ) + r0(f

n+1
0,j + fn−10,j )+

+p1,leftf
n
−2h,j + p1,rightf

n
2h,j + q1,leftf

n
−h,j + q1,rightf

n
h,j + r1f

n
0,j

We need to inverse on every temporal step of CN-s
heme a �ve-diagonal

matrix (see Fig.2) against three-diagonal one for the 
ompa
t s
heme (2).

Stability

Our numeri
al experiments demonstrated:
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Figure 2. Sten
il and Newton's diagram of test monomials uk(t, x) for Crank-

Ni
olson-type s
heme (3).

• The 
onditional stability of the 
ompa
t di�eren
e s
heme (2) if ν∗ <
µ∗ + 1/12 ; here and after µ∗ = (R∗)2h−2, ν∗ = (R∗τ)2Eρ−1h−4, R∗ =
maxjR(xj) .

• The absolute stability of Crank-Ni
olson s
heme (3).

We have also dis
overed stability issues for a small number of spatial grid

points N in 
ase of low smoothness order of rod's radius fun
tion R(x) .

Numeri
al experiments

For s
hemes' errors evaluation, we use mesh norms C and L2 as well as the

mesh energy norm

√
R(x)2 ‖(∂tuanal − δtudiff)2 + E R(x)2ρ−1(∂xuanal − δxudiff)2‖L2

‖R(x)2(∂tuanal)2 + E R(x)2ρ−1(∂xuanal)2‖L2

(4)

Here uanal is analyti
al solution, udiff is a di�eren
e one. Usage of norm (3)

allows us to a

ount the kineti
 part of solution, while standard C and L2 mesh

norms ignore it.

Table 1. Errors and orders of a

ura
y of the solution of (1) with 
ompa
t di�eren
e s
heme

(2) (left) and Crank-Ni
onsol-type s
heme (3) (right). Orders of a

ura
y ex
eed fourth for

both s
hemes in energy norm, se
ond order for norms C and L2 . S
heme (2) is more a

urate

than (3). L = 4π, ρ = 7000, E = 2.1∗108, utest = sin(x)sin(t)+2, R(x) = 0.4+0.01cos2(x), T =
0.2, ν∗ = 0.05

Norm N = 12 N = 24 N = 48 N = 96 RMS

C 1.99-3 6.72-4 1.75-4 4.42-5 1.84

L2 1.62-3 4.75-4 1.24-4 3.13-5 1.90

(4) 3.59-5 9.67-7 4.41-8 2.52-9 4.62

N = 12 N = 24 N = 48 N = 96 RMS

C 3.70-2 9.30-3 2.24-3 5.56-4 2.02

L2 3.02-2 6.57-3 1.59-3 3.93-4 2.09

(4) 3.91-2 1.80-3 1.04-4 6.38-6 4.20
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Con
lusion

We 
on�rmed high a

ura
y order for the 
ompa
t s
heme (2) and for the

Crank-Ni
olson-type s
heme (3). The CS is more exa
t and e
onomi
al. CN is

absolutely stable and more e�e
tive when the right-hand side or 
oe�
ients of

the equation (1) are not su�
iently smooth.
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At the present time, a signi�
ant attention is given to the analysis of nonlin-

ear paraboli
 systems, 
alled rea
tion-di�usion systems. These partial di�erential

equations have found a wide range of of pra
ti
al appli
ations in theoreti
al biol-

ogy, 
hemistry, physiology, et
. In this paper we 
onsider well-known FitzhHugh-

Nagumo model, a two-
omponent rea
tion-di�usion system with 
ubi
 nonlinear

rea
tion term, whi
h was initially developed as nerve impulse propagation model

and has be
ome a 
lassi
al example of exitable media:

vt = ν1∆v + ε(w − αv − β)
wt = ν2∆w − v + µw − w3 (1)

Here v = v(x, t) , w = w(x, t) , x ∈ D , t > 0 , D = [0, 1] or D = [0, 1]× [0, 1] ,
µ ∈ R is a varying 
ontrol parameter, α > 0, β > 0, ε > 0, ν1 > 0, ν2 > 0 are

�xed model parameters. By setting α = 0, β = 0, ε = 1 in (1) and assuming

di�usion 
oe�
ient equal to ea
h other (ν1 = ν2 = ν ), we arrive at Rayleigh

rea
tion-di�usion system:

vt = ν∆v + w
wt = ν∆w − v + µw − w3 (2)

When no spatial dependen
e is assumed, i.e. by setting y1(t) = v(t) , y2(t) =
w(t) , we arrive at 
lassi
al Rayleigh ODE system:

ẏ1 = y2; ẏ2 = −y1 + µy2 − y32 (3)

This system 
ould be transformed to Van-der-Pol system by variable 
hange.

Both are well-known models, des
ribing nonlinear relaxation os
illations.

The main purpose of the present work is to 
onstru
t an asymptoti
 approx-

imation of se
ondary time-periodi
 solutions of system (2), whi
h bran
h from

zero stationary solution as 
ontrol parameter µ varies. It is a well-known fa
t

that di�usion does not a�e
t the behaviour of auto-os
illations when zero-�ux

(Neumann) boundary 
onditions are set on the boundary of domain D , so here

we 
onsider homogeneous Diri
hlet and Neumann boundary 
onditions, taking

into a

ount the mixed 
ase. For more details, see [5℄. Coe�
ients of asymptoti


series are 
omputed by using standard numeri
al algebra pa
kages. We also study

numeri
ally the bifur
ations, taking pla
e in the system, and the destru
tion of

periodi
 regime, whi
h o

urs as 
ontrol parameter µ varies.
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We employ Lyapunov-S
hmidt method in the form, developed by V.I. Yu-

dovi
h [1℄ for 
onstru
ting asymptoti
 expansions. The method is appli
able to

ODEs and PDEs, in
luding Navier-Stokes equation [2, 3, 4℄.

We 
ould rewrite system (2) as ODE in fun
tional spa
e H :

u̇ = A(µ)u−K(u,u,u); u ∈H. (4)

Here H = L2(D) × L2(D) , u = (v, w) . Linear operator A(µ) : H → H a
ts

on ve
tor fun
tion u = (v, w) , v, w ∈ W 2
2 (D) by the following rule:

A(µ)u = ν∆u+Bu+ µCu.

where ∆ is Lapla
e operator, B =

(
0 1
−1 0

)
, C =

(
0 0
0 1

)
. Boundary 
on-

ditions of the system are taken into a

ount by 
hoosing the domain of opera-

tor A . Hereinafter we assume that homogeneous Diri
hlet boundary 
onditions

(u|∂D = 0) or mixed boundary 
onditions (u|S1
= 0; ∂u∂n |S1

= 0; S1 ∪ S2 = ∂D )

are set on the boundary of D . Trilinear operator K(a, b, c) : H3 → H3
is

de�ned by:

K(a, b, c) = (0, a2b2c2) .

Let us �nd 
riti
al value of 
ontrol parameter µ (i.e. su
h value µcr that

some eigenvalues of linear operator A(µcr) are lo
ated on the imaginary axis

and other eigenvalues are lo
ated on the left-hand half plane).

µ

r

=
1

νλ1
+ νλ1 if ν ≥ 1

λ1
; µ


r

= 2νλ1 if ν <
1

λ1
.

If ν ≥ 1

λ1
then monotonous instability takes pla
e in the system, otherwise

os
illatory instability is observed. Hereinafter we assume that ν <
1

λ1
, restri
ting

our attention to the 
ase of os
illatory instability.

To �nd

2π

ω
-periodi
 in time solution of (2), where ω -unknown 
y
li
 fre-

quen
y of os
illations, we set τ = ωt and ε2 = µ − µcr in (4) and arrive

at:

ωu̇− A(µcr)u = ε2Cu−K(u,u,u), (5)

where di�erentiation by τ is denoted by dot symbol. We seek nontrivial 2π -
periodi
 by τ solution of (5) and unknown 
y
li
 frequen
y ω in the form of

series:

u =
∞∑

i=1

εiui, ω =
∞∑

i=0

εiωi (6)

Inserting these series into (5) and equating the 
oe�
ients of like powers of ε
in both parts of the equation, we arrive at the sequen
e of equations for the
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unknown 2π -periodi
 fun
tions ui and numbers ωi . By solving these equations
one after the other, we �nd �rst terms of the series (6). We showed that soft

loss of stability o

urs in Rayleigh rea
tion-di�usion system (2). When ε << 1
a stable limit 
y
le exists in the system. First three terms of the series for 
y
li


frequen
y ω are equal to zero: ω1 = ω2 = ω3 = 0 , ω4 6= 0 . The expressions for
�rst terms of the series for 2π -periodi
 by τ solution of (2) are given by:

{
u = εα1(e

iωtϕ+ e−iωtϕ∗) + ε3(α3(e
iωtϕ+ e−iωtϕ∗) + up3(ωt)) +O(ε4)

ω =
√

1− ν2λ21 + ε4ω4 + O(ε5)
(7)

Expressions for α1 , u
p
3 , α3 , ω4 are found expli
itly.

We found out that in 
ase where x ∈ [0, 1] derived formulas have a mu
h

simpler form. It was shown that for Diri
hlet boundary 
onditions or Neumann

boundary 
onditions with additional requirement of zero average, expressions for

n-th term of series for 2π -periodi
 solution 
ontains only �nite linear 
ombina-

tions of basis fun
tions ψk , where k = 2 ∗ n + 1, n ∈ N, k ≤ n . For mixed
boundary 
onditions, expressions for n-th term of series also 
ontains linear


ombinations of basis fun
tions ψk , but k = 2 ∗ n+ 1, n ∈ N, k ≤ n+ 1

2
.

For Diri
hlet boundary 
onditions we have:

µcr = 2νπ2, ω0 =
√
1− ν2π4 ϕ =

i

2ω0

(
1

νπ2 + iω0

)
sin(πx)

u
p
3 = w13(x)e

iτ +w33(x)e
3iτ + 
.
.

w13(x) =
i
√
2

9
(νπ2 + iω0)P

3
1 sin(3πx)

w33(x) = −
i
√
2

9
(νπ2 + iω0)

3[P 1
3 sin(πx)−

1

3
P 3

3 sin(3πx)]

Figure 1. Asymptoti
al (A) and numeri
al (B) solution of system (2) in the 
ase

of Diri
hlet boundary 
onditions (�rst 
omponent). System parameters are set

to: ν = 0.1, µ = µcr + 0.01
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System (2) was also studied numeri
ally in 
ases where x ∈ [0, 1] . Di�usion

oe�
ient ν was set to ν = 0.1 and values for 
ontrol parameter µ were taken

su
h that µ >> µcr . Several numeri
al methods were used for numeri
al integra-
tion of the system: grid method, method of lines, Galerkin method. The results

of all numeri
al experiments were fully 
onsistent with ea
h other.

For the 
ase of Diri
hlet boundary 
onditions, the destru
tion of self-

os
illating mode was studied numeri
ally. Criti
al value µcr , 
orresponding to

di�usion 
oe�
ent ν = 0.1 was equal to µcr = 1.9739 in this 
ase. For values

of 
ontrol parameter, less than µcr + 0.01 , self-os
illating mode was observed in

the system. Self-os
illations were repla
ed by dual-frequen
y quasi-periodi
 os-


illations as values of 
ontrol parameter were in
reasing. When µ > µcr + 0.05 ,
an inhomogeneous stationary solution was observed in the simulations.

Figure 2. Numeri
al solution of system (2) (�rst 
omponent) for three values of


ontrol parameter µ : µ = µcr+0.03 (A), µ = µcr+0.06 (B), µ = µcr+0.1(C).
Di�usion 
oe�
ient ν is set to: ν = 0.1

For the 
ase of Neumann boundary 
onditions, numeri
al simulations revealed

a set of spatially inhomogeneous stationary solutions. Simulations for fun
tions

u0(x) = v0(x) = cos(πnx), n ∈ N as initial 
onditions 
onverged to stationary

solutions, while simulations for all other initial 
onditions 
onverged to spatially

homogeneous periodi
 os
illations.

We also studied numeri
ally a generalized version of Rayleigh rea
tion-

di�usion system:

vt = ν1∆v + ε(w − αu)
wt = ν2∆w − v + µw − w3 (8)

where x ∈ [0, 1] × [0, 1] . We used Odeint C++ library together with NVidia

CUDA v. 7.0 to improve performan
e of the simulations. Numeri
al integration

of the system was 
arried out by the method of lines. We 
onsidered the 
ase of

mixed boundary 
onditions and set the following values of system parameters:

ν1 = 0.05, ν2 = 0.00028, µ = 1, ε = 10 . Parameter α was varied. Noisy initial


onditions were 
onsidered. We observed for α < 0.01 a stable periodi
 mode in

the system. Starting from α = 0.04 , periodi
 os
illations are repla
ed by spot

patterns during the evolution of the system. When α > 0.4 , os
illations are
no longer observed in the system and it demonstrates the fast 
onvergen
e to
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spot patterns. We noted that the �nal 
on�guration of spots strongly depends

on initial 
onditions of the system.

Figure 3. Numeri
al solution of system (8) for di�erent values of parameter α
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Summary: The results of analyti
al and numeri
al study of the redu
ed 3D

mathemati
al models of free water �ows in non-deformable beds are present-

ed. Full hydrodynami
 models were simulated in �nite-element software pa
kage

Comsol Multiphysi
s to verify the redu
ed model. These results suggest that

the proposed 3D redu
ed model of the longitudial slightly sinuous 
hannel �ow

adequately des
ribes its hydrodynami
s.

Keywords: shallow stream, vis
ous �uid, free surfa
e, mathemati
al mod-

elling, numeri
al study.

Introdu
tion. Di�erent types of mathemati
al models are used to simulate

hydrologi
al 
hara
teristi
s of the water streams. The most a

urate of them are

based on the full 3D hydrodynami
 equations of turbulent �ows. However, the

data of the real hydrologi
al measurements don't have the required pre
ision of

the values of the hydrophysi
al parameters to obtain a

urate solution in pra
ti
e,

as well as exa
t formulation of the initial and boundary 
onditions for the three-

dimensional partial di�erential equations. This work is devoted to analyti
al and

numeri
al study of one of the proposed in [1℄ redu
ed mathemati
al models of

an longitudial shallow stream. The model is veri�ed by 
omparing the data of

dire
t numeri
al simulation based on the original equations for a vis
ous �uid

and the results obtained on the basis of the redu
ed model.

Redu
ed model equations. Let's 
onsider slow water �ow in a non-

deformable 
hannel. We introdu
e re
tangular Cartesian 
oordinates, where the

plane xy lies on the �ow surfa
e and the axis z points to riverbed. Assume that

the axis x denote the dire
tion of the �ow and the axis y goes from the left bank

to the right one. The origin of the 
oordinate system is lo
ated at the middle

of the inlet se
tion (see Fig. 1). Let's assume that free surfa
e of the stream is

weakly deformable and is de�ned as z = ξ(x, y, t) , where ξ(x, y, t) � unknown

fun
tion. The form of 
hannel is known and des
ribed as z = h(x, y) . Riverbanks

an be identi�ed by fun
tions y = l(x, t) and y = r(x, t) impli
itly through the

equation

h(x, y)− ξ(x, y, t) = 0 (1)

The te
hnique of deriving the redu
ed 3D mathemati
al models of the �ow is

based on small parameter te
hnique, whi
h has been applied to Reynolds equa-

tions (
oupled with the Boussinesq turbulen
e hypothesis [2℄) written in the

spe
ial dimensionless form. This te
hnique was presented in details in [1℄.



120 "Numeri
al Algebra with Appli
ations"

Figure 1. Flow layout and 
oordinate system and �ow 
ross-se
tion

Redu
ed equations in dimensionless form for shallow and longitudial stream

are

p = G(z − ξ)
u = ReGI(J2 − ξJ1) + Fx(h− z)

v = ReG
∂ξ

∂y
(J2 − ξJ1) + Fy(h− z)

w = ReG

(
I
∂

∂x
(J4 − ξJ3) +

∂

∂y

(
(J4 − ξJ3)

∂ξ

∂y

))
+

+(h− z)
(
Fx
∂h

∂x
+ Fy

∂h

∂y

)

∂ξ

∂t
= ReG

(
I

(
∂

∂x
(J4 − ξJ3)− (J2 − ξJ1)

∂ξ

∂x

)
+ (J4 − ξJ3)

∂2ξ

∂y2
+

+
∂ξ

∂y

∂

∂y
(J4 − ξJ3)− (J2 − ξJ1)

(
∂ξ

∂y

)2
)
+

+(h− ξ)
(
Fx

(
∂h

∂x
− ∂ξ

∂x

)
+ Fy

(
∂h

∂y
− ∂ξ

∂y

))

where

J1 =

∫ h

z

dτ

ν
, J2 =

∫ h

z

τdτ

ν
,

J3 =

∫ h

z

J1(x, y, τ)dτ, J4 =

∫ h

z

J2(x, y, τ)dτ

Here u, v, w � longitudinal, transverse and verti
al 
omponents of the �ow ve-

lo
ity, respe
tively; p � pressure; h � riverbed fun
tion; ξ � free surfa
e fun
tion;

Re � Reynolds number; G � gravity parameter; I � slope parameter; Fx and Fy
� parameters, that denote values and dire
tion of the external for
es; ν � dimen-

sionless fun
tion parameter, that determines vis
osity of the stream turbulen
e.
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Redu
ed model analysys. The hypothesis of Boussinesq 
an be su

ess-

fully used to take into a

ount the turbulen
e in longitudial 
hannel �ow with

the redu
ed hydrodynami
 models. In this 
ase, it is assuming that the vis
osity

of the liquid at a given point of the �ow does not depend on the �ow velo
ity,

but it depends of the 
oordinates that determine the distan
e to the bottom of

the rigid bed.

To sele
t 
orre
tly the fun
tional dependen
e of ν(x, y, z) , it should be iden-
ti�ed as O(1) at the stream's free surfa
e (z = ξ ) be
ause of the 
hoi
e of the
Reynolds number [1℄. On the other hand, in the boundary layer (z = h) vis
os-
ity is de�ned by the mole
ular properties of the liquid, so values of the vis
osity

fun
tion parameter should be very small.

Let's 
onsider the simplest 
ase of des
ribing the vis
osity fun
tion ν(x, y, z)
as the linear dependen
e of z-axis

ν = h2 −
(
h− νh

h

)
z (∗)

where parameter νh is de�ned as

νh = µ

(
Sx
S0

)a

Here µ is determined by mole
ular vis
osity of the liquid; S0 and Sx � areas of

the stream 
ross-se
tions at x = 0 and at the 
urrent point x ; a � adjustment

parameter that de�nes the sensitivity of the model to the riverbed deformations.

Formula (∗) has been tested numeri
ally and provides good 
orrelation with

the solutions of the full equations of hydrodynami
s.

Computational experiments. To verify the redu
ed model we 
ompare

results of the simulation with the data, obtained by solution of the full Navier-

Stokes equations in laminar �ow and the Reynolds equations for the turbulent

stream (k−ǫ turbulen
e model). For that numeri
al simulation the CFD module

of the �nite-element pa
kage Comsol Multiphysi
s was used [3℄.

For the 
omparison of the models the form of riverbed was taken as

h(y) =
√
1− (0.2y)2 , I = 0.0001 and aspe
t ratio of the �ow is 1:10:100

(depth:width:lenght). The longitudinal velo
ity of the �ow is depi
ted on the

Fig.2.

The form of the 
hannel h(x, y) = (1+ 0.1 sin 0.1x)(1− (0.2y)2) was 
hosen
to 
ompare models in the 
ase of 
urvilinear riverbed (see Fig.3).
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a)

b)

Figure 2. The longitudinal velo
ity of the �ow: (a) � due to the depth on the

fairway's line; (b) � due to the width on the surfa
e;I � laminar �ow; II � the

k−ǫ model turbulent �ow (1 � 
oarse mesh, 2 � �ne mesh); III � the 3D redu
ed

model

a)

b)

Figure 3. The longitudinal velo
ity of turbulent �ow in the 
urvilinear 
hannel:

(a) � due to the depth on the fairway's line; (b) � due to the width on the

free surfa
e; I � 3D redu
ed model; II � k − ǫ turbulen
e model; 1 � at the


ross-se
tion of minimum depth; 2 � at the 
ross-se
tion of maximum depth
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On Fig.4 the results of the simulation of permanent tail and adverse wind are

presented.

a)

b)

Figure 4. The longitudinal velo
ity of the turbulent �ow under external for
e Fx :
(a) � due to the depth on the fairway; (b) � due to the width on the free surfa
e;

I � 3D redu
ed model; II � k− ǫ turbulen
e model; 1 � Fx = 0 ; 2 � Fx = 0.5 ;
3 � Fx = −0.5 ; 4 � Fx = −1.5

Con
lusion. To test proposed mathemati
al models numeri
al simulations

were made. The results show that redu
ed 3D models adequately des
ribe the hy-

drodynami
s of the natural shallow and longitudial streams. The proposed model

are quite simple and allows us to analyse the in�uen
e of the shape of the 
hannel

bed and the e�e
t of some external for
es (e.g. wind) to the 
hara
teristi
s of the

�ow.
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Motivation

When solving modern problems for partial di�erential equations with nu-

meri
al methods, typi
ally there is a number of requirements for the solution

algorithm, su
h as the following:

1. Su�
ient a

ura
y of the solution of the problems in
luding those in 
om-

plex domains must be provided;

2. The algorithm of the numeri
al solution must allow e�
ient implementa-

tion for multipro
essor systems;

One of the most popular methods of numeri
al solution of di�erential equa-

tions is the method of grids. The solving of the di�erential equations on un-

stru
tured grids allows des
ribing the geometry of the domain more a

urately,

however, these grids have a number of disadvantages:

1. Derivation of a grid equation from the di�erential one requires more e�ort

on unstru
tured grids 
ompared with stru
tured;

2. A grid generator is required for 
reating unstru
tured grid ea
h time the


omputational domain 
hanges;

3. The working with unstru
tured grids requires more operations with RAM;

4. Parallel implementation of numeri
al algorithms on unstru
tured grids

with domain de
omposition method requires splitting the nodes of the


omputational grids by pro
essors.

The algorithms of solving di�erential equations on stru
tured grids don't

have the former drawba
ks, but they have another signi�
ant disadvantage � low

pre
ision of the approximation of the 
omputational domain boundary. Besides,

the dis
rete boundary of the domain doesn't 
onverge to the 
ontinuous one as

the spatial step tends to zero; moreover, the limit of the dis
rete boundary is

nowhere smooth fun
tion. Therefore, the dis
rete problem doesn't 
onverge to

the 
ontinuous one and instead it tends to an ill-posed problem.

Modi�
ation of the �nite-volume method with partial "fullness"

The proposed �nite volume method with partial "fullness" allows 
reating

grid equation on uniform re
tangular grid su
h that the obtained dis
rete problem

1
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onverges to the 
ontinuous one with �rst order on the boundary and with se
ond

order in the inner nodes. We assume that the 
omputational domain Ω is de�ned

with the indi
ator fun
tion q that we also 
all 
ontinuous fullness fun
tion. The

grid fullness fun
tion is de�ned a

ording to the following formula:

qi+ 1
2 ,j+

1
2 ,k+

1
2
=

1

hxhyhz

∫∫∫

Ω1,1,1
i,j,k

dω =
1

hxhyhz

∫∫∫

D1,1,1
i,j,k

qdω,

where D1,1,1
i,j,k is a 
ell of the 
omputational grid and Ω1,1,1

i,j,k = D1,1,1
i,j,k ∩Ω is a 
ontrol

volume. We assume that the grid fullness fun
tion is set in the 
enters of the 
ells

and the rest grid fun
tions are set in the nodes. Formulas for approximation the

�rst and the se
ond derivatives with the proposed method are derived in [1, 2℄.

Here we give only �nal formulas:

∫∫∫
Ω1,1,1

i,j,k

aϕ′xdω ≃ qi+1,j+ 1
2 ,k+

1
2
ai+ 1

2 ,j,k
ϕi+1,j,k−ϕi,j,k

2 hyhz+

+qi,j+ 1
2 ,k+

1
2
ai− 1

2 ,j,k
ϕi+1,j,k−ϕi,j,k

2 hyhz,
(1)

∫∫∫
Ω1,1,1

i,j,k

(ηφ′x)
′
xdω ≃ qi+1,j+ 1

2 ,k+
1
2
ηi+ 1

2 ,j,k
ϕi+1,j,k−ϕi,j,k

hx
hyhz−

−qi,j+ 1
2 ,k+

1
2
ηi− 1

2 ,j,k
ϕi,j,k−ϕi−1,j,k

hx
hyhz+

+(qi,j+ 1
2 ,k+

1
2
− qi+1,j+ 1

2 ,k+
1
2
)ηi,j,kϕ

′
xi,j,khyhz.

(2)

The formulas (1) and (2) 
oin
ide with the 
lassi
al ones if the grid fullness

fun
tion take only values zero and one.

Comparison of the approximation order of the 
lassi
al and pro-

posed method

When estimating order of the grid equation approximation the errors of the

boundary approximation are usually not taken into a

ount. The �nite volume

method is based on approximation of integrals of di�erential operators, so esti-

mating the errors of approximation of integrals will take into a

ount errors of

the domain approximation. The �nite volume method utilizes two formulas for

approximating integrals: Newton-Leibniz formula and mean value theorem. The

former is pre
ise formula and the latter is approximate, so error that it introdu
es

is an error of approximation. The error of averaging is de�ned as follows:

ψ = 1
hxhyhz

( ∫∫∫
Ω1,1,1

i,j,k

ϕ(x)dω − qi+ 1
2 ,j+

1
2 ,k+

1
2

∫∫∫
D1,1,1

i,j,k

ϕ(x)dω
)

(3)

In the work we have showed that error (3) has the se
ond order by spatial

steps in the inner nodes and the �rst order in the boundary nodes for propose

modi�ed �nite-volume method with partial "fullness". In 
ase of using 
lassi
al

�nite-volume method, the error of approximation in inner nodes is the se
ond as

well, but in boundary nodes the approximation error is 
onstant and the dis
rete
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problem doesn't approximate the 
ontinuous one. Comparison of the proposed

modi�
ation of the �nite-volume method with partial fullness and the 
lassi
al

method is performed for the model of vis
id �ow in the sloped reservoir. In 
ase

of using 
lassi
al �nite-volume method, the �ow near the sloped boundary is

signi�
antly redu
ed due to the stair-stepping of the boundary 
ompared to the

proposed method. Besides, pressure �eld values are di�erent even in the inner

nodes.

Con
lusion

Modi�
ation of the �nite volume method with partial "fullness" for approxi-

mation di�erential equations on stru
tured re
tangular grids is proposed. Inves-

tigation of the order approximation with respe
t to the errors of the boundary

approximation has shown that the proposed method has the �rst order of approx-

imation in the boundary nodes while the 
lassi
al one introdu
e 
onstant error.

Although both methods have se
ond order of approximation in the inner nodes,

in 
ase of the usage of the 
lassi
al �nite-volume method, the errors in bound-

ary nodes noti
eably 
hange the entire solution that is 
on�rmed by numeri
al

experiments.
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SIMULATION OF OIL POLLUTION IN THE KERCH
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Oil pollution is the imminent danger arising during the oil transport by water

from the pla
e of its extra
tion to pla
es of pro
essing. That's one example. On

the 11-th of November in 2007 during a severe storm in the Ker
h Strait four

ships sank, six ships stranded, two tankers were damaged. About 2 million tons

of fuel oil spilled into the sea be
ause of tanker "Volgoneft-139" faults.

Oil entering the water basin has a negative in�uen
e on all physi
al, 
hemi
al

and biologi
al pro
esses. Therefore, it is ne
essary to predi
t the behavior of the

oil trapped in the water area for rapid de
ision-making in 
ase of liquidation of

negative 
onsequen
es. Mathemati
al modeling the oil pollution spread on the

water surfa
e, as well as its thi
kness and on its borders, is one of the important

ways of this predi
tion.

The obje
t of the resear
h is the behavior of oil spills in the Ker
h Strait. The

spread of oil in the water basin is a 
omplex pro
ess. It's ne
essary to 
onsider

a wide variety of fa
tors in the simulation. Physi
al and 
hemi
al properties of

oil (boiling point fra
tions, density, vis
osity) have an impa
t on the behavior of

pollutionis and external environmental 
onditions (wind �eld, the air tempera-

ture, the water temperature, the presen
e of oil-oxidizing ba
teria in the water,

salinity, solar radiation et
). Pro
esses of spreading oil spill dominate on the �rst

stage of the oil spread.

The inevitable degradation of the oil 
omes under the in�uen
e of external

environmental fa
tors in parallel with these pro
esses. Besides that, the move-

ment of the oil sli
k o

urs under the in�uen
e of winds and 
urrents in the water.

Three modes of [1, 2℄: inertial, gravitational, and vis
ous regime of surfa
e tension

exist at the stage of oil spreading on the the water basin surfa
e.

For spills of less than 2000 m3
the most important phase of proliferation

is the phase under the a
tion of surfa
e tension for
es. In the works of [2℄-[4℄

semi-empiri
al formula simulation ellipse des
ribing asymmetri
 shape oil sli
k

stret
hed along the dire
tion of the wind is proposed. A

ording to these formula,

the spot diameter in a dire
tion perpendi
ular to the dire
tion of the wind is


al
ulated as follows:

lmin = 53.76(
∆ρ

ρoil
)1/3V

1/3
oil t

1/4,

1
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and the spot diameter in the dire
tion of the wind:

lmax = lmin + 0.95U
4/3
windt

3/4,

ó�õ ∆ρ = ρw − ρoil , ρw ø ρoil � density of water and oil, respe
tively, Voil �
the amount of the original oil spill, Uwind � wind speed, t � after the spill.

It is obvious that the area of the ellipse will be As = frac pi4lmaxlmin(m
2) .

Drift spots under the in�uen
e of 
urrents and wind is des
ribed by the


onve
tion-di�usion equation [4℄:

∂h

∂t
+∇(hv)−∇(D∇h) = Rh,

v =

(
ux +

τwx
Cf
, uy +

τwy
Cf

)
, (1)

D =
g · h2(ρw − ρOil)

ρwCf
,

where h � the thi
kness of the oil, ∂v � drift velo
ity of the �lm,

τwx
Cf

� shear

stress due to wind, D � fun
tion of the di�usion spread Spot 
rude oil, Cf
� 
oe�
ient of fri
tion between the oil �lm and surfa
e water (0.02kg / m2c),
Rh � the sour
es (Sto
k) fun
tion, g � a

eleration of gravity, ∇ = (∂/∂x, ∂/∂y).
Initial thi
kness of spots is 
al
ulated as follows: h = Voil

As
.

The boundary and initial 
onditions [5℄ are added to the equation (1) . It

is assumed that the velo
ity �eld is known at every time step. The resulting

system of equations is solved by �nite di�eren
e method using impli
it s
hemes.

The 
omputational domain is 
onstru
ted as re
tangular uniform in all dire
tions

of the grid. To approximate equations upwind s
heme for the 
onve
tive terms

is used. As a result of the �nite-di�eren
e approximation we obtain a system of

linear algebrai
 equations with �ve-diagonal matrix.

The mathemati
al model was implemented as a set of programs. The solution

is 
arried out on high-performan
e 
omputing systems with distributed memory

parallel programming environment MPI. The Parallel Library program Azte
 is

used for solving the linear algebrai
 equation system with sparse matrix. Azte
 in-


ludes pro
edures that realizing iterative methods from Krylov's subspa
e � 
on-

jugate gradient method (CG), generalized method of minimal residual (GMRES),

quadrati
 
onjugate gradient method (CGS), a method quasiminimal residuals

(TFQMR), bi
onjugate gradient method (BiCGSTAB) with stabilization. All

methods are used with various pre
onditioners (polynomial method and domain

de
omposition using both the dire
t method LU, and in
omplete LU de
om-

position in subdomains). A

ording to resear
h results [6℄ bi
onjugate gradient

(BiCGSTAB) method was 
hosen for solving this system.

The numeri
al experiments to simulate an emergen
y situation in the Ker
h

Strait in November 2007 were made using 
onstru
ted 
omputer system [7℄.
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Sin
e an
ient times 
ultural 
odes of di�erent 
ountries, ethni
 groups and

nation were formed during the evolution depending on the evolution paths that

were traversed and the problem of �nd- ing formation paths and laws of these


odes is posed. It is hypothesized that the ma
rodes
ription of evolution routes is

e�e
tive if a set of the most highly aggregated 
ategories to des
ribe way of life of

various 
ommunities of the so
iety is used: the assignment, work, ex
hange, dis-

tribution and 
onsumption. As a subje
t of 
onsideration of the author 
hose the

primitive 
lan 
ommunity epo
h of mesolite, lo
ated in the neighbors ' relations

we-they with the same 
ommunity. As models of these relations, he applies the

group of permutations, re�e
ting possible the reprodu
tive 
y
les of the graphs

with 4, 6 and 8 verti
es.

Ea
h graph puts the ma
ro-level system of so
ial reprodu
tion, in whi
h a

set of n � verti
es is the set of reprodu
tion kernels, 
overed by the range of

reprodu
tive 
y
les � RC. In this 
ase the evolution of an ar
hai
 so
iety is

modeled sequen
e of nested subgroups � Hn for whi
h removed law of 
hanges,

whi
h de�nes the 
omplexity of the so
iety at the mastering of the mass of its

representatives of dis
overies and inventions:

... ⊂ Hn ⊂ Hm ⊂ Hp ⊂ ..., n < m < p

First members of this sequen
e are guaranteed by sele
t of subgroups with

ne
essary devisors for group S4 . Next members of this sequen
e are subgroups

of o
tahedrons symmetries S6 , and group of tetrahedron S4 is subgroup of S6

group.

Dis
overies and inventions are displayed on graphs by addition of new orient-

ed edges, permitting a new reprodu
tion 
y
les, or new verti
es (reprodu
tion

kernels) � eviden
e of the emergen
e of new so
ial institutions that are ordered

by the 
omplexity level.

At formation of the 
riterion for the sele
tion of the evolutionary traje
to-

ries of so
iety on the group latti
es there arises need to 
larify the 
al
ulated

entropy estimates of the 
omplexity of ea
h traje
tory. It is obtained an initial

ma
roestimate of 
ompound H(n) for 
ompounding spe
trum RC:

(n− 1) ∗ lnn− lnln(n− 1)−n < H(n) < lnL+(n− 1) ∗ lnn− lnln(n− 1)−n,
1
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where n degree of group Sn for system of so
ial reprodu
tion, and L � const . [2℄

Based on the evaluation of the 
omplexity of the spe
trum of reprodu
tive


y
les of the 
olle
tive e
onomy of the ar
hai
 so
iety, the autor 
al
ulated the

number of so
ial 
onstants L for the phase transition from the Mesolithi
 to

Neolithi
 age. The author used the idea that fundamental 
hanges in so
iety

o

ur throught new inventions and dis
overies that end up in the development of

new e�e
tive te
hnologies (Behterev's Law of Changes) that signi�
antly 
hange

the lifestyle of so
iety and 
ompli
ate relations in it.

Re
eived 
onstants will allow us to spe
ify a road map of the evolution of

the most an
ient slav so
iety and some other so
ieties in order to justify the

formation of a so
ial heredity of its di�erent groups, manifesting the 
ultural


ode of 
ondu
t on di�erent subsequent histori
al periods.

The problem of �nding all subgroups in a group was proved to be NP-


omplete problem by mapping groups on the Cayley graph therefore there is

no e�
ient algorith of solving it. Computation algoritm is based on Lagrange's

theorem and shows satisfa
tory 
omputational time in theory and in pra
ti
e

in relation to �nding subgroups in permutation group of order eight whi
h is

equivalent to 8-vertex ordered graph. Estimated time of the algorithm is:

T (k) = O(k!2) ∗ Sn ∼ O(2πk(
k

e
)2k) ∗ Sn

Sn =
n−1∑

i=1

C i
nSn−i.

Subgroups 
omplexity was evaluated with Uemov 
riterium of oriented graph


omplexity whi
h is based on the number of hierar
hi
al relationships of di�erent

types.[1℄

U(m, r) = −
n∑

j=1

k∑

i=1

lj,i
n− 1

ln(
lj,i
n− 1

)

m � set of verti
es and r is a set of all possible types of relationships between

these verti
es. This approa
h allows us to use median probability 
riterium:

0.5− ǫ ≤ P (ξi,j) ≤ 0.5 + ǫ

ξi,j � dis
ontinuous variate on the set of 
omplexities of transitions from level i to

level j and to make suggestions about preferable(optimal) evolution routes. Due

to 
onstant overall 
omplexity for ea
h route, too 
omplex or too simple routes

were dropped from evolution tree. Finally the evolution latti
e or evolution tree

was introdu
ed. Example of 
ounted nested groups:

T0 = {1, 2, 3, 4, 5, 6, 7, 8}
T1 = {2, 1, 3, 4, 5, 6, 7, 8}
T2 = {1, 3, 2, 4, 5, 6, 7, 8}
... ...
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H2 = {T0, T1}
H18 = {T0, T1, T14, T15, T20, T21, T174, T175, T180, T181, T186, T187, T366, T367, T372,
T373, T378, T379}
H36 = {T0, T1, T14, T15, T20, T21, T54, T55, T60, T61, T66, T67, T120, T121, T134, T135, T140,
T141, T174, T175, T180, T181, T186, T187, T366, T367, T372, T373, T378, T379, T390, T391, T396,
T397, T402, T403}

|H144| = 144

|H576| = 576

|H1152| = 1152

|H40320| = 40320

H2 ⊂ H18 ⊂ H36 ⊂ H144 ⊂ H576 ⊂ H1152 ⊂ H40320

Complexities:

U2→18 = 4.591761, U18→36 = 2.983394, U36→144 = 37.935890, U144→576 =
195.189507, U576→1152 = 627.671115, U1152→40320 = 37863.326155

Every nation in the beginning of it's evolution in this 
an be spe
i�ed with a

set of restri
tions that a�e
ts it's development and formation of it's 
ultural 
ode.

For example poor soil fertility in China for
ed an
ient tribes to 
ooperate in order

to survive. Agri
ulture strategy in China was based on manpower surplus and

was aimed on in
reasing the fertility by 
hemi
al fertilizers while the European

strategy was based on high soil fertility and la
k of manpower therefore aimed

on the invention of e�e
tive agri
ultural tools. These 
onditions 
an be re�e
ted

in two kernel graphs that initiate the evolution pro
ess.

(a) W : West (b) E :East

In the terms of 
omputation te
hnology we 
an say that there are two types

of initial graphs: the Eastern and the Western graph. Relationships between

upper and lower kernels 
an be 
onsidered ad hierar
hi
al. Relationships between

kernels on the same level 
an be 
onsidered as ex
hange or 
ooperate relations.

Considering full groups on these graphs that appear in the end of evolution routes

and 
ounting the relative values of hierar
hy and ex
hange relations in both

groups we 
an see that there are 1.8 times more hierar
hi
al and 2 time more


ooperation relations in the Eastern groups. This explains the emergen
e and

the development of traditionalist 
ultural values in the East and indivisualisti


values in the West.[3℄

As a result:
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1. So
ial 
onstants that des
ribe 
omplexity level of so
iety at ea
h stage of

it's development level were re
ieved.

2. The pro
ess of 
ultural values priority formation in East and West so
ietes

was des
ribed by means of group-latti
e approa
h.
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Abstra
t

Computer te
hnologies allow the produ
tion, transfer and storage of huge

amounts of di�erent types of data. We need e�e
tive methods for pro
essing and

analyzing these data for extra
ting new information and new knowledge. It is

important not only to ensure the adequa
y of methods for pro
essing di�erent

types of data, but also the opportunity to analyze the a

ura
y of methods to

better understanding the internal stru
ture of the data.

Thus, the �rst task is to de
ompose the sour
e data (images) into 
hunks,

pro
ess ea
h 
hunk separately and then analyze the results. Let's introdu
e 
lass

l ⊂ L2(Rd), d ≥ 1 and appropriately 
hosen set of fun
tions (ϕi)i∈I ⊆ L2(Rd) ,

alled "analyzing fun
tions", that ea
h f ∈ l satis�es the equation:

f =
∑

i∈I
ci(f)ϕi.

A 
ountable set of 
oe�
ients ci(f), i ∈ I represents a signal de
omposition

based on analyzing fun
tions (ϕi)i∈I . On the other hand, this equation des
ribes
the pro
ess of restoring the sour
e signal using 
oe�
ients ci(f) .

A separate issue is the �nding fragments of images with anisotropi
 
har-

a
teristi
s or breaks (lines or 
urves, obje
t's edges), be
ause traditional image

pro
essing te
hniques are not sensitive to this kind of 
hara
teristi
s.

There are various image-pro
essing methods for �nding anisotropi
 obje
ts in

the image, su
h as dire
tional wavelets, 
omplex wavelets, 
ontourlets, 
urvelets,

et
. o�ered over the past 20 years. A new approa
h to the analysis of anisotropi



hara
teristi
s of images, 
alled shearlet transform, proposed in 2006. Unlike

wavelets or 
urvelets, shearlets built in the 
lass of a�ne systems and have the

ability to determine the dire
tion through additional shear parameter [1-7℄.

Shearlets have a number of properties, whi
h distinguish them from oth-

er image pro
essing methods: a �nite number of generating fun
tions; optimal

representation of anisotropi
 
hara
teristi
s of analyzed data; fast algorithmi


implementation; a uni�ed approa
h to pro
essing 
ontinuous and dis
rete data.

The main usages of the dis
rete shearlet transform (DST) are image de-

noising, edge dete
tion, morphologi
al analysis (splitting images to obje
ts of

di�erent types, su
h as points, lines and 
urves), and improving the quality of

images [1-10℄. Existing approa
hes to the analysis of the images allow extension
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into a spa
e of more than two dimensions (video) and appli
able to problems in

medi
ine and geomonitoring [14℄.

The goals of the work are 
omparison of DST algorithms and development

a DST-based 
omputer te
hnology for image pro
essing of 
atastrophi
 natu-

ral events. The main problems are image separation (morphologi
al analysis),

denoising and edge dete
tion.

I Computing te
hnology

Based on the theoreti
al and methodologi
al review, let us 
onsider a modi�-


ation of the method of geometri
al analysis of visual data, whi
h allows solving

a wide 
lass of problems in image pro
essing of 
omplex images of environmental

monitoring. We outline three types of problems: image separation (to points and


urves), edge dete
tion and data visualization using 4 distin
t DST algorithms

[8-13℄. Algorithms de�ned as follows: A � FFST (Fast Finite Transform Algo-

rithm) algorithm [12, 13℄; B � Shearlet Toolbox algorithm [1-8℄; C � ShearLab

algorithm [3-10℄; D � TGVSHCS algorithm [10, 11℄.

We propose the 
omputing te
hnology and 
omputing system for solving

spe
i�ed problems. In a preliminary phase, the original image is broken down

to the 
omputational 
hunks and 
omputing system planning the sequen
e of

pro
edures for the optimal solution of the problem. In a 
on�guration phase,


omputing system 
hooses 
on
rete algorithms depending on the problem and

the brightness and 
ontrast of images. In the next phase the system loading

and pro
essing images depending on the set of 
onditions. The �nal phase is an

analysis and 
ontrasting of the pro
essed images.

For 
omparison, 
omputations made on the images of di�erent sizes. The

quantitative indi
ator of the e�e
tiveness of algorithms is algorithm's mean work-

ing time. The results of 
omparison are the following: algorithm C is faster than

algorithm A on images of large sizes, while algorithm A has a slight advantage on

small images. Algorithm D is the slowest. Images larger than 512 on 512 pixels

analyzed by 
hunks.

Analyzed images belong to a number of related areas: wild�re propagation

snapshots, medi
al imaging, geoe
ology and geodynami
s. All images pro
essed

with various brightness and 
ontrast values. Gaussian noise used for solving de-

noising problem and for 
omparison of denoising algorithms [14℄.

II Solution of geomonitoring problems

Geometri
 separataion of visual data. In a

ordan
e with the study of DST

algorithms proposed to use algorithm C for solving the �rst task for geomet-

ri
 separation of visual data of geoenvironmental monitoring. Estimation of the

image separation improving is 5-12% 
ompared to 
urvelets.
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Edge dete
tion. The se
ond task is dete
tion of edges in the image. Study of

algorithm A shows that the edges of obje
ts 
an be obtained as the sum of the

shearlet transform 
oe�
ients at the last (maximum) s
ale. It's proposed to use

this approa
h for edge dete
tion:

fcont =

k1∑

k=0

m1∑

m=0

shψ(f(j
∗, k,m)),

where shψ is a mapping from L2(R2) to spa
e of shearlet transform 
oe�
ients,

j∗ � the last s
ale, k1 � number of dire
tions and m1 � number of translations.

Modi�ed FFST algorithm (algorithm A) tested on various types of geomon-

itoring images and 
ompared with 
lassi
al Sobel and Prewitt �lters. Modi�ed

algorithm is 
omparable in a

ura
y to the Sobel and Prewitt algorithms.

III Comparison of denoising algorithms

The 
omparative analysis of DST-based image denoising algorithms and algo-

rithms for �ltering (enhan
ing) visual data performed. Also we studied algorithm

A as method of extra
ting information about linear singularities of visual data

of e
ologi
al monitoring.

Resear
h of algorithms for solving image denoising problem performed for

algorithms B, C and D for images from various subje
t areas (wild�re propagation

snapshots, medi
al imaging, geoe
ology and geodynami
s). Algorithms tested for

images with various brightness and 
ontrast, with and without gaussian noise.

Algorithms B and C analyzed with PSNR metri
s and estimation of visual

quality per
eption for di�erent images. Estimation of visual quality per
eption

performed by three expert groups, �ve experts in ea
h group. Grading s
ale

has 10 grades. Algorithms B and C analyzed with PSNR metri
s in the image

denoising problem.

Con
lusion

The results of this study show that:

• Image separation problem 
an be solved using algorithm C (ShearLab). Es-

timation of the image separation improving is 5-12% 
ompared to 
urvelets;

• Edge dete
tion problem 
an be solved with modi�ed algorithm A (FFST).

Modi�ed algorithm is 
omparable in a

ura
y to the Sobel and Prewitt

algorithms;

• Image denoising problem 
an be solved using algorithms B, C, D. Algorithm

D is the slowest (
ompared to algorithms B and C). Algorithm B (Shearlet
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Toolbox) is more e�e
tive than algorithm C for all types of tested images

(with di�erent brightness and 
ontrast) by quantitative indi
ator (22-26%)

and by visual quality per
eption. But algorithm C is 1.7-2.6 times faster

than algorithm B depending on the image size. We re
ommend to use

algorithm B for solving image denoising problem.
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RESEARCH OF INITIAL BOUNDARY VALUE

PROBLEMS WITH MOVING BOUNDARIES

Stolyar A.M.

Southern Federal University, Rostov-on-Don, Russia

Studies of initial boundary value problems with moving and variable bound-

ary have been 
arried out in di�erent �elds. The 
orresponding models de-

s
ribe the phenomena of melting and solidi�
ation, os
illating and di�usion, et
.

A brief overview of those problems and methods of their solution is given in

monograph [1℄. Methods of asymptoti
 and numeri
al integration of hyperboli
,

paraboli
 and ellipti
al equations for Diri
hlet, Poisson and Roben problems are

developed in [1℄ as well. The mentioned methods are applied to the problems of

longitudinal and transverse os
illations of the rope of variable length [1, 2℄. In this

paper the methods of numeri
al and asymptoti
 integration are applied to the

problems whi
h des
ribe the os
illations of vis
o-elasti
 rope with a rigid body

(see Fig. 1). The modi�ed �nite-di�eren
e, Runge-Kutta and small parameter

methods are used here. The 
orresponding problem may be written as follows

ρF

(
∂2u

∂t2
− d2ξ

dt2

)
= EF

∂2u

∂x2
+ µEF

∂3u

∂x2∂t
− ρFg, (1)

m
d2ξ

dt2
= −EF ∂u

∂x

∣∣∣∣
x=0

+mg,

ξ(t) = ℓ(t) + u(ℓ(t), t), u(x, t)
∣∣
x=0

= 0, u(x, t)
∣∣
x=0

= 0,

u(x, t)
∣∣
t=0

= ϕ1(x),
∂u(x, t)

∂t

∣∣∣∣
t=0

= ϕ2(x),

ℓ(t)
∣∣
t=0

= ℓ0,
dℓ

dt

[
1 +

∂u(ℓ, t)

∂ℓ

]
= εψ(t).

Here u(x, t) is a rope se
tion x displa
ement at time moment t ; ρ , F , E
are the parameters of density, se
tional area and a Young's modulus for the rope

respe
tively; g is a

eleration of gravity; m is mass of a rigid body; ℓ(t) is a

length of rope at time moment t in the undeformed state; ξ(t) is an a
tual

distan
e between the run-o� point of a rope from the reel and a rigid body. We

assume that the rate of unwinding (or winding) of the rope is small relatively to

the speed of propagation of the wave in the rope (the a
tual speed of propagation

of the wave 
an be 4000�5000 m/s). Parameter ε is equal to this relation. The

given problem (1) may be redu
ed to the following one

∂2w

∂t2
+ F1(t)ε± + F2(t)ε

2
± = a2

(
1 + µ1

∂

∂t

)
∂2w

∂x2
, (2)
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∂2w

∂t2

∣∣∣∣
x=0

+F1(t)ε± + F2(t)ε
2
± = µ2

∂w

∂x

∣∣∣∣
x=0

,

w
∣∣
t=0

= Φ1(x),
∂w

∂t

∣∣∣∣
t=0

= Φ2(x), w
∣∣
x=ℓ(t)

= 0.

Here w(x, t) is a new unknown fun
tion F1 , F2 , Φ1 , Φ2 � are the known

fun
tions. Asymptoti
 solution of the problem (2) has been built as the series

w(x, t) =

∞∑

k=0

wk(x, t)ε
k
±.

The solution of the given problem on the 
hangeable domain [0, ℓ(t)] has
been redu
ed to the solution of initial boundary value problems on the 
onstant

domain [0, ℓ0] .
For the sake of numeri
al integration we need to use the moving grid in order

to apply the �nite-di�eren
e and Runge-Kutta methods (See Fig. 2). This grid

was �rstly proposed by Dr. I.M. Bermous in [3℄.

Figure 1. The model of a rope with rigid body

One may see the 
omparison of results of numeri
al and asymptoti
 integra-

tion on the Fig. 3 in the 
ase of elasti
 rope's winding. The given 
urves des
ribe

the deformation of the highest se
tion of the rope in dependen
e of time.

The problem of �nite-di�eren
e algorithm 
onvergen
e has been 
onsidered

in the paper in the 
ase of the 
onstant boundary.
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Figure 2. The moving grid of �nite-di�eren
e method

Figure 3. Comparison of numeri
al and asymptoti
 integration
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GPGPU TECHNOLOGIES FOR GENETIC

ALGORITHMS

Agibalov O.I.

Southern Federal University, Rostov-on-Don, Russia

Geneti
 algorithms today is the perspe
tive type of methods for mathemati
al

optimization. Based on the Darwin's theory of evolution, they perform operations

on dozens of so-
alled "
hromosomes", ea
h en
oding appropriate solution of the

problem as a set of "genes" � parameters of the purpose fun
tion [1℄. Convenient

geneti
 algorithm may operate hundreds and thousands of 
hromosomes, that

are indepenedent from ea
h other and thus may be 
omputed 
on
urently. The

most e�
ient way for a

elerating programs is using parallel te
hnologies, su
h

as GPGPU (General-Purpose graphi
s pro
essing units). It means that the hard-

ware whi
h traditionally were applied for rendering 
omputer graphi
s, today are

suitable for non-graphi
al 
omputations. Apparent advantage of GPUs is their

massive parallel ar
hite
ture. GPUs 
ontain up to several thousand 
ores that

work independently 
on
urently. This is why GPGPU is the perfe
t te
hnology

for 
omputing independent 
hromosomes [2℄.

The �rst model of parallel GA was proposed many years ago and was 
alled

"Island Model". All the 
hromosomes were splitted into several "islands" that

evolved and ex
hanged their best individuals with other islands. Another parallel

model of GA is suggested in this resear
h. Using GPGPU we are able to operate

ea
h 
hromosome in independent thread. But before doing this, we have de
ided

to redevelop our previous GA and make it faster. First af all we have 
hanged


oding system - de
imal values were used instead of binaries. In 
ouple with

other 
osmeti
 
hanges we have rea
hed eleven times speeding up even without

parallelization. Furthermore, alterings in 
oding system have allowed us to redu
e

the ammount of data transferred between CPU and GPU [3℄.

Working with GAs on GPGPU our goal was to study possibilities and re-

straints of new hardware. A

eleration of GPU-algorithm in 
omparrison with

CPU-algorithm is about 30 per
ents � 165 ms against 211.

Figure 1 shows us 
omparison of total performing time for CPU ang GPU

algorithms and the time of initialization. Thus we 
an see that GPU-environment

requires 96 ms of 165 to be initialized. For CPU-algorithm this time will only be

5 ms of 211. Considering that 96 ms we have dis
overed that 93 per
ent of them

is behind the initialization of GPU libraries. It means that we 
annot optimize

this time interval.

Using these and other results we may show when the use of GPU for a

el-

erating GA is reasonable.

Thus it is possible to say that for little sets of 
hromosomes the use of GPGPU

is une�
ient. But as the 
hromosome number in
reases as GPU be
omes more

and more preferable. Only the huge number of individuals allows GPU-algorithm

to over
ome initialization delay and and ahead fast, but serial CPU.
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Figure 1. Total performing time and initialization time for CPU and GPU algo-

rithms

Figure 2. The performan
e of GPU-algorithm and CPU-algorithm in solving the

test problem
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PROPAGATION OF LONG PULSE WAVES IN AORTA

Batish
hev V.A., Getman V.A., Safronenko O.I.

Southern Federal University, Rostov-on-Don, Russia

Long waves in a �uid whi
h �lls a 
ylindri
al tube with elasti
 border have

been studied by many authors sin
e the end of the nineteenth 
entury [1, 2℄. An

important 
ontribution to the study of the theoreti
al aspe
t was made by the

Russian physi
ist I.S. Gromeka [2℄. Literature review on this subje
t is provid-

ed in a well - known monograph by T. Pedley "Hydrodynami
s of large blood

vessels" (1983) [1℄. The 
al
ulated phase velo
ity of the waves in a liquid in an

elasti
 tube is well proved experimentally. Prof. Ustinov Yu.A. was the �rst to

investigate long heli
al waves in a blood vessel with the anisotropy of walls [3,

4℄. Great di�
ulties arise when 
al
ulating short spiral waves in elasti
 tubes [5℄.

When doing the asymptoti
 resear
h of these short waves, one needs to 
al
ulate

the os
illating boundary layers whi
h are formed on the vessels walls. Note that

the resear
hers named above did not use the method of a boundary layer. The

results of asymptoti
 and numeri
al 
al
ulations of long longitudinal and spiral

waves with the use of boundary layer are provided. Compared to the prominent

investigations, the experimental 
ase is 
onsidered when the pressure in an input


ross-se
tion of a vessel is given, taking into a

ount the time parameter in a

non-symmetri
al way.

Long longitudinal and spiral waves were 
al
ulated on the basis of the Navier-

Stokes's system and the dynami
 equations of a thin elasti
 isotropi
 membrane,

taking into 
onsideration in�nitesimality of a vis
osity 
oe�
ient. The aorta is

modelled as a 
ylinder that is limited by a thin membrane. Some small parameters

arise upon transition to dimensionless variables. The parameter 
onne
ted with

vis
osity is proportional to the thi
kness of the boundary layer arising by the

wall. The se
ond small parameter is inversely proportional to the phase speed

of the Mouensa-Kortevega wave. A well-known method to 
al
ulate long waves

with the use of a slow axial 
oordinate is applied. Asymptoti
 expansions are

presented in the form of a series based on the degrees of the se
ond-order small

parameter. In the main approa
h there is a linear problem whi
h serves the basis

to 
al
ulate the long waves propagating in the steady �ow. The velo
ity ve
tor of

this �ow has only one nonzero 
omponent (Poiseuille's parabola), dire
ted along

the 
ylinder axis. The solution of the problem 
onsists of the sum of fun
tions

of two types. The �rst type of the fun
tions in the main approa
h des
ribes an

ideal �ow. The se
ond type of the fun
tions des
ribes boundary layers on vessel

walls. Note that boundary layers in large blood vessels are observed by surgeons

when performing operations on heart and vessels.

It is shown that in a �ow 
ore (out of the boundary layer) longitudinal 
om-

ponent of velo
ity of long waves is 
onstant in its 
ross-se
tion. This phenomenon

is experimentally observed. In the 
ase of ideal �uid the phase velo
ity of waves is

determined. Two waves - the wave of pressure and the quasilongitudinal wave are

obtained. It is shown that only the pressure wave is of paramount signi�
an
e in
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the out of the boundary layer 
ase. The amplitudes of both waves, however, have

an identi
al order inside the boundary layer. Damping de
rement is obtained

while 
al
ulating the fun
tions of a boundary layer. To de�ne the amplitude of

long waves the pressure at the entran
e of a vessel taken as a time fun
tion is

determined. This fun
tion doesn't possess the property of symmetry on time.

Numeri
al 
al
ulations of a wave form and pressure depending on time, both in

a systole and axial 
oordinate, have been 
arried out.

It is shown that amplitude longitudinal velo
ity 
omponent at the beginning

of a systole grows in time, rea
hes a maximum, and further on, in the se
ond

half of a systole, de
reases to zero. At the end of a systole there is a inverse �ow

zone, this zone being lo
alized in a boundary layer. The speed of a 
ounter
urrent

tends to zero when it leaves the boundary layer, and approa
hes a vas
ular wall.
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NUMERICAL METHODS OF MULTI-CRITERIA
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FINANCIAL INSTRUMENTS
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The problem under 
onsideration: The goal is to sele
t the bank for deposit.

The problem has three 
riteria f1 , f2 andf3 . Where, f1 � 
riterion that deter-

mines the in
rease of equity 
apital of the bank for the year. The se
ond 
riterion

is f2 � 
riterion that determines interest rates on deposits. The last 
riterion is f3
� 
riterion determining the rating of the bank. There are three 
hoi
es: SberBank,

Center-Invest Bank, Stella Bank respe
tively x1 , x2 and x3.

f1 f2 f3

x

1
13,200 6,400 67 006,000

x

2
12,200 8,250 92 060,000

x

3
10,400 8,500 84 311,000

The method assumes the following steps:

1. the 
reation of a hierar
hi
al stru
ture of the original problem with multiple

levels;

2. setting priorities (
oe�
ients of the importan
e or the weight) 
riteria for

the 
hoi
e of the set goal;

3. evaluation (based on these estimates) values priority for the lower level


riteria regarding the purpose of the upper level;

4. evaluation of priorities of alternatives for ea
h of the lower level 
riteria

with the help of quantitative paired 
omparisons;

5. aggregation of all of the estimates obtained in the integral priorities �

evaluate alternatives regarding the purpose;

6. sele
ting the alternative having the highest priority, as the best, or the

ranking the alternatives by the preferen
e a

ording to the 
al
ulated pri-

orities;

7. analysis sustainability of the solution obtained.
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The method used to sele
t the �nan
ial instruments: to the determination of

the bank for the deposit, to the forming of a pa
kage of shares, to the buying a

pa
kage of bonds.

The �rst step is the 
onstru
tion of the hierar
hi
al stru
ture of the original

problem with a few levels. The using of the hierar
hi
al stru
ture is very pro-

du
tive be
ause it allows presenting the original problem with a large number

of 
riteria, whi
h as a single whole is too 
omplex to analyze, as a system of in-

ter
onne
ted signi�
antly simpler "subtasks" with a small number of 
riteria [3℄.

The most often used stru
ture has the next form: the upper level � the purpose,

the intermediate levels � the 
riteria, the lower level � the options [1℄.

The next step is to determine the weights for 
riteria and alternatives. The

matrix of pairwise 
omparisons is 
ompiled for to determine of the weights of


riteria and alternatives by using numeri
al methods. Two 
riteria or two alter-

natives are 
ompared and the degree of ex
ellen
e in the "power" (importan
e

or preferen
e) of one of the 
riteria or alternatives over the other is evaluat-

ed for ea
h paired 
omparison [4℄. The �lled matri
es are inversely symmetri
al

with positive elements. Various numeri
al 
omparison methods are used, and the

results obtained are analyzed.

The next step is the 
al
ulation of the ve
tor s of the lo
al priorities by

using method of prin
ipal 
hara
teristi
 ve
tor from equation As = λmax ∗ s ,
and ‖s‖ = 1, where λmax � greatest 
hara
teristi
 value [1℄. The values of the


hara
teristi
 ve
tor are evaluated by using numeri
al method. This method is

allows to determine the approximate assessments by using the geometri
 mean

of the matrix elements of the rows. Then, the values obtained are normalized for

the 
onvenien
e of further 
al
ulations. The eigenvalue λmax is 
al
ulated by the

same numeri
al method.

To �nd the approximate value λmax ne
essary:

1. Find the sum of ea
h of the 
olumns of the matrix of pairwise


omparisons

∑n
i=1 aij .

2. Multiply the values obtained

∑n
i=1 aij on the values of the normalized


hara
teristi
 ve
tor: the �rst sum is multiplied by the �rst value, the se
ond �

the se
ond, et
.

3. Sum the results obtained. The result of the 
al
ulation will be the approx-

imate maximum eigenvalue λmax of the matrix of pairwise 
omparisons.

An indi
ator of the 
onsisten
y of the estimates is a super-transitive ma-

trix of the pairwise 
omparisons A . An indi
ator of the 
onsisten
y of obtained

estimates is a highly-transitive of the matrix of the pairwise 
omparisons A .
Therefore, if the matrix of the pairwise 
omparisons is not super-transitive, then

is required to assess the degree of the 
onsisten
y of the matrix elements, or

the 
onsisten
y of the matrix A . The method for the evaluating the degree of


onsisten
y is given in [3℄ [5℄. If the 
onsisten
y is high, then you 
an pro
eed

to the 
al
ulation of the priorities. Otherwise, you must to 
orre
t the results of

pairwise 
omparisons.
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Integral priorities (regarding the purpose) v(x) of alternatives x are 
al
u-

lated by using an additive fun
tion of the value: v (x) =
∑m

i=1wi ∗ vi(x) , where
m � number of 
riteria, wi � priorities (weight) of these 
riteria, vi (x) � priori-
ties of the alternative to these 
riteria [2℄. The best alternative is the alternative

with the highest integral priority.

Che
ked the exe
ution of the axioms of regularizing by the addition and

removal of wittingly worst alternative. Is 
arried out numeri
ally experiments

and sensitivity analysis, with the help of minor 
hanges to the values of 
riteria

weights to tra
e the impa
t of these 
hanges on the result of regularizing. If the

ranking of the alternatives is saved, the results 
an be 
onsidered stable.

We apply the des
ribed method on the our task.

• the 
reation of a hierar
hi
al stru
ture of the original problem with multiple

levels;

• setting priorities (
oe�
ients of the importan
e or the weight) 
riteria for

the 
hoi
e of the set goal;

Bank f1 f2 f3

f 1
1,000 1,000 1,000 0,333

f 2
1,000 1,000 1,000 0,333

f 3
1,000 1,000 1,000 0,333

• evaluation of priorities of alternatives for ea
h of the lower level 
riteria

with the help of quantitative paired 
omparisons;

f1 x1 x2 x3

x1 1,000 4,000 9,000

x2 0,250 1,000 6,000

x3 0,111 0,167 1,000

f2 x1 x2 x3

x1 1,000 0,125 0,111

x2 8,000 1,000 0,500

x3 9,000 2,000 1,000

f3 x1 x2 x3

x1 1,000 0,11 0,143

x2 9,000 1,000 3,000

x3 7,000 0,333 1,000
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• aggregation of all of the estimates obtained in the integral priorities - eval-

uate alternatives regarding the purpose;

V f1 f2 f3

Criteria 0,333 0,333 0,333

x

1
0,540 0,143 0,143 0,275

x

2
0,297 0,429 0,429 0,385

x

3
0,163 0,429 0,429 0,340

• sele
ting the alternative having the highest priority, as the best, or the

ranking the alternatives by the preferen
e a

ording to the 
al
ulated pri-

orities;

1. x2 - Center-Invest Bank 0.385

2. x3 - Stella Bank 0.340

3. x1 - SberBank 0.275

• sustainability analysis of the solution obtained.

Adding knowingly worst alternative x4 :

f1 f2 f3
x4

10% 6% 60 000

T f1 f2 f3
Criteria 0,333 0,333 0,333

x

1
0,588 0,067 0,073 0,243

x

2
0,297 0,437 0,594 0,443

x

3
0,069 0,452 0,286 0,269

x

4
0,046 0,043 0,046 0,045

1. x2 - Center-Invest Bank 0.443

2. x3 - Stella Bank 0.269

3. x1 - SberBank 0.243

4. x4 0.045

Adding the worst alternative x4 on two 
riteria:

f1 f2 f3
x4

11% 6% 60 000

T f1 f2 f3

Criteria 0,333 0,333 0,333

x

1
0,634 0,067 0,073 0,258

x

2
0,241 0,437 0,594 0,424

x

3
0,048 0,452 0,286 0,262

x

4
0,077 0,043 0,046 0,056
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1. x2 - Center-Invest Bank 0.424

2. x3 - Stella Bank 0.262

3. x1 - SberBank 0.258

4. x4 0.056

Adding the worst alternative x4 on one 
riterion:

f1 f2 f3
x4

11% 7% 60 000

T f1 f2 f3

Criteria 0,333 0,333 0,333

x

1
0,634 0,041 0,073 0,25

x

2
0,241 0,349 0,594 0,395

x

3
0,048 0,528 0,286 0,287

x

4
0,077 0,082 0,046 0,068

1. x2 - Center-Invest Bank 0.395

2. x3 - Stella Bank 0.287

3. x1 - SberBank 0.25

4. x4 0.068

The numeri
al experiment shows the opportunity to use this method to sele
t

�nan
ial instruments. It satis�es the axiom of the 
hoi
e and streamlining of

the obje
ts under 
onsideration. The values of the 
riteria that 
hara
terize the

obje
ts sele
ted from the developed databases that are updated with the help of

Internet resour
es.
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OSCILLATORY CONVECTION IN A HORIZONTAL

LAYER OF A BINARY MIXTURE

Denisenko V.V., Morshneva I.V.

Southern Federal University, Rostov-on-Don, Russia

The present work investigates the onset of 
onve
tion in an in�nite horizontal

layer of a binary �uid mixture 
onsisting of two non-rea
ting 
omponents. We

suppose that the boundaries are rigid, isothermal and impermeable, with slip

allowed. A 
onstant temperature and 
on
entration distribution is spe
i�ed on

the boundaries. In the model under 
onsideration the e�e
ts of thermal di�usion

and di�usive heat 
ondu
tivity are negle
ted. Let in addition assume that the

layer, as a whole, undergoes no displa
ement in the horizontal plane. The 
on-

ve
tive �ow of the binary mixture is governed by the Navier-Stokes equations

under Oberbe
k-Boussinesq approximation ([1℄):

∂v

∂t
+ v · ∇v = −∇p+∆v + (G̃rT − G̃rsS)k,

∂T

∂t
+ v · ∇T = Pr−1∆T,

∂S

∂t
+ v · ∇S = Prd

−1∆S,

divv = 0.

(1)

The 
orresponding boundary 
onditions are:

∂v1
∂x3

∣∣∣∣x3=1
x3=0

=
∂v2
∂x3

∣∣∣∣x3=1
x3=0

= v3

∣∣∣x3=1
x3=0

= 0,

T
∣∣
x3=1

= τ1, T
∣∣
x3=0

= τ0,

S
∣∣
x3=1

= σ1, S
∣∣
x3=0

= σ0,

(2)

where v = v(x1, x2, x3, t) is the velo
ity �eld, T = T (x1, x2, x3, t) is the tem-
perature �eld, S = S(x1, x2, x3, t) is the 
on
entration �eld of the heavier 
om-
ponent of the mixture, p = p(x1, x2, x3, t) is the pressure �eld, k = (0, 0, −1)T
is the down-dire
ted verti
al ve
tor.

The problem (1) 
ontains four dimensionless parameters: Pr =
ν

χ
is the

Prandtl number, Prd =
ν

D
is the di�usion Prandtl number (the S
hmidt num-

ber), G̃r =
gβh4Q

κν2
is the Grashof number, G̃rs =

gβsh
3S̄

ν2
is the Grashof number

for mass transfer, where ν is the kinemati
 vis
osity 
oe�
ient, χ is the ther-

mal di�usivity, D is the mass di�usivity, g is a

eleration due to gravity, β is
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the thermal expansion 
oe�
ient, βs is the 
on
entration expansion 
oe�
ient,

κ is the thermal 
ondu
tivity 
oe�
ient, Q is the heat �ux, S̄ is the mean


on
entration of the heavier 
omponent of the mixture.

The problem (1) with boundary 
onditions (2) has the following stationary

solution 
orresponding to the state of rest, whi
h we would 
all in the following

the basi
 solution

v0 = 0,

T0(x3) = a1x3 + a0,

S0(x3) = b1x3 + b0,

p0(x3) =
1

2
(G̃ra1 − G̃rsb1)x

2
3 + (G̃ra0 − G̃rsb0)x3 + const,

(3)

where a1 = τ1 − τ0, a0 = τ0, b1 = σ1 − σ0, b0 = σ0.
This resear
h is devoted to the study of bran
hing and stability of time-

periodi
 �ow modes arising from os
illatory stability loss of the basi
 regime rel-

atively to spatial perturbations. These perturbations are assumed to be 2π/α1�

periodi
 in x1 and 2π/α2�periodi
 in x2 . We seek another solution of the prob-

lem (1) with boundary 
onditions (2) in the form

v̌ = v0 + v, Ť = T0 − a1T, Š = S0 − b1T, p̌ = p0 + p, (4)

Inserting (4) into (1)�(2), we obtain the following system for the perturbations

v, T, S, p :

∂v

∂t
+ v · ∇v = −∇p+∆v + (GrT −Grs S)k,

∂T

∂t
− v3 + v · ∇T = Pr−1∆T,

∂S

∂t
− v3 + v · ∇S = Prd

−1∆S,

divv = 0,

(5)

where Gr = −a1 G̃r, Grs = −b1 G̃rs, with 
orresponding boundary 
onditions

∂v1
∂x3

∣∣∣∣x3=1
x3=0

=
∂v2
∂x3

∣∣∣∣x3=1
x3=0

= v3

∣∣∣x3=1
x3=0

= T
∣∣∣x3=1
x3=0

= S
∣∣∣x3=1
x3=0

= 0. (6)

The parameter Gr 
an be written in the form Gr = Gr∗ + δ , where Gr∗
denotes the 
riti
al value of the Grashof number, when for Gr = Gr∗ the stability
spe
trum 
ontains a pair of purely imaginary eigenvalues ±iω0 (ω0 6= 0). Thus
the problem (5) with boundary 
onditions (6) may be rewritten in the following

equivalent form

d

dt
Mu+Au = δBu+K(u,u), (7)
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where

u = (v, T, S)T ∈ H, (8)

H is the 
losure of a set of smooth solenoidal ve
tors, vanishing at the layer

boundary, in the metri


(
u1 · u2

)
H
=

∫

Ω

u1 · u∗

2 dΩ, (9)

Ω =
{
(x1, x2, x3) ∈ R : 0 6 x1 6

2π

α1
, 0 6 x2 6

2π

α2
, 0 6 x3 6 1

}
, (10)

A , B , M � linear operators, K � bilinear operator.

The onset of auto-os
illations at transition of the Grashof number through

its 
riti
al value is investigated. The auto-os
illations is analyzed by the use of

the Liapunov-S
hmidt method suggested by V. I. Yudovi
h [2℄, [3℄.

Substituting τ = ωt in (5), where ω is unknown 
y
li
 frequen
y, we obtain

ω
d

dτ
Mu+ Au = δBu+K(u,u), (11)

We seek a solution of (11) in the form of series in powers of the parameter

ε = s
√
|Gr−Gr∗| , (s = signδ )

u = εu1 + ε2u2 + ε3u3 + . . . , ω = ω0 + εω1 + ε2ω2 + . . . (12)

Inserting these series into (11) and equating the 
oe�
ients of like powers of

ε in both parts of the equation, we arrive at the sequen
e of equations for the

unknown 2π�periodi
 fun
tions uk , and numbers ωk . Solving these equations

one after other, we will obtain

u1 = γ1(ϕe
iτ + ϕ∗e−iτ), ω1 = 0, (13)

where ϕ is the eigenfun
tion of the following problem

(A + iω0M)ϕ = 0; (14)

u2 = γ2(ϕe
iτ + ϕ∗e−iτ) + γ21(ψe

2iτ +ψ∗e−2iτ + θ), (15)

where ψ and θ are the solutions of the following problems

(A + 2iω0M)ψ = K(ϕ,ϕ), (16)

Aθ = K◦(ϕ,ϕ∗). (17)
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The 
ondition of solvability of the equation, whi
h 
an be found by equating

the 
oe�
ients of ε3 in both parts of the equation (11), yields γ21 and ω2

γ21 = sΓ1 = −s
Re(Bϕ ·Φ)

Re

((
K◦(ϕ, θ) + K◦(ϕ∗,ψ)

)
·Φ
) , (18)

ω2 =

s Im(Bϕ ·Φ) + γ21Im

((
K◦(ϕ, θ) + K◦(ϕ∗,ψ)

)
·Φ
)

Mϕ ·Φ , (19)

where K◦(u1,u2) = K(u1,u2) + K(u2,u1), and Φ is the eigenfun
tion of the


onjugate problem

(A∗ − iω0M)Φ = 0. (20)

The type of bifur
ation is depends on the sign of Γ1 : in the 
ase for Γ1 > 0
there is a super
riti
al bifur
ation, in the 
ase for Γ1 < 0 there is a sub
riti
al

bifur
ation. The results, obtained numeri
ally at di�eren values of parameters,

show that both types of bifur
ation are realized.

The 
ondition of solvability of the equation, whi
h 
an be found by equating

the 
oe�
ients of ε4 in both parts of the equation (11), yields γ2 = ω3 = 0 .
Hereby, �rst two terms of series (12) are found, and the solution 
an be

written in following form

u = γ1(ϕe
iτ + ϕ∗e−iτ)ε+ γ21(ψe

2iτ +ψ∗e−2iτ + θ)ε2 + O(ε3), (21)

ω = ω0 + ω2ε
2 +O(ε4), ε→ 0. (22)
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1. Introdu
tion. Mathemati
al modeling of error sour
es is one of the main

problems appearing when simulating digital 
ommuni
ation 
hannels. Channel

simulation provides a way to analyze error-
orre
ting 
apability of 
odes against

di�erent types of errors. The main aim of su
h an analysis is to sele
t the appro-

priate error-
orre
ting 
ode
 for parti
ular 
hannel. To 
arry out the simulation

experiments one needs to �nd an adequate representation of jamming environ-

ment in the 
hannel by means of mathemati
al error sour
e model, i.e. to solve

the inverse problem. The 
lass of hidden semi-Markov models (HSMMs) seems


onvenient for des
ribing error sour
es [1℄. These models are able to simulate

di�erent types of jamming environment and inverse problems 
an be solved for

them.

Let us 
onsider a nonbinary digital data transmission 
hannel C that is

supposed to be symmetri
, stationary and perfe
tly syn
hronized. Channel C 
an

stay in one of N physi
al states during some period of time and then 
hanges the

state. The probability distribution of possible durations is spe
i�ed a'priori for

ea
h state parti
ularly and is never 
hanged. Ea
h 
hannel state emits additive

error sequen
es a

ording to its own probability distribution.

In the paper we 
onsider a general hidden semi-Markov error sour
e model

for the 
hannel des
ribed above. For this model we provide a solution of 
lassi
al

evaluation problem in 
ase of error sequen
es long enough. The problem we refer

to as "evaluation problem" is to 
al
ulate the probability of the fa
t that the

observed error sequen
e is generated by the given general semi-Markov error

sour
e model. The suggested solution is based on forward algorithm proposed by

Yu [2℄.

2. General hidden semi-Markov model. A

ording to [2℄ general hidden

semi-Markov model (GHSMM) is the set

λ = {S,D, A,Π, V, B},

where S = {1, .., N} � the set of states; D = {1, .., D} � the set of possible

durations; A = {a(i,d)(i′,d′)}(i,d),(i′,d′)∈S×D � the transition matrix for generalized

states from S × D and a(i,d)(i′,d′) = 0 ; Π = {πi,d}(i,d)∈S×D � the set of initial

probabilities of generalized states; V = {v1, .., vM} � the output alphabet; B =
{bi,d(ô1, .., ôd)}(i,d)∈S×D,(ô1,..,ôd)∈V d

� the set of emission probabilities.
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Note that the model from [2℄ assumes zero self-transition probabilities

a(i,d)(i′,d′) = 0 . However, this requirement is not important for solving evalua-

tion problem. Thus, we 
onsider the extended model allowing self-transitions.

Moreover, we suppose that πi,d are marginal probabilities of transition matrix.

GSMM generalizes su
h well-known models as expli
it duration hidden

Markov model [1℄, variable duration hidden Markov model [3℄, segment hid-

den Markov models [4℄.

3. Evaluation problem. Let λ be a GSMM and O1:T be a sequen
e over

the alphabet V . In this se
tion we 
onsider evaluation problem for GSMM, i.e.

the problem to 
al
ulate the probability if the fa
t that O1:T is generated by λ .
In [2℄ Yu proposes the solution of this problem under the following assump-

tions:

1) the �rst observed state starts at t = 1 or before it,

2) the last observed state ends exa
tly at t = T .
Noti
e that 1) means that we observe only the part of symbols emitted by

the �rst state. In this 
ase Yu suggests repla
ing the probability bi,d(Ot−d+1:t)
(t− d+ 1 ≤ 1, t ≥ 1) by the marginal probability bi,d(O1:t) .

We denote by PY u[O1:T ] the probability of O1:T being generated by λ under

assumptions 1)-2).

However, for some appli
ations the evaluation problem should be 
onsidered

without any additional assumptions, i.e. the �rst state 
an start before or at

t = 1 and the last state 
an end at or after t = T . In this 
ase we obtain the

following solution of the evaluation problem.

Theorem. The probability that the observed sequen
e O1:T is generated by

general hidden semi-Markov model λ 
an be 
al
ulated as follows:

P [O1:T ] =
∑

(j,d)∈S×D

πj,d
d

d∑

d1=1

PY u[O1:T−d1]bj,d(OT−d1+1:T ),

where PY u[O1:T−d1] is 
al
ulated as in [2℄, p. 225.

Using this theorem the evaluation problems for hidden semi-Markov Ferguson

model and hidden semi-Markov QP-model 
an be solved [5℄, [6℄, [7℄. The obtained

theoreti
al results 
an be used to 
hoose the appropriate error sour
e model for

the given digital transmission 
hannel.

Bibliography

1. Rabiner L.R. A tutorial on Hidden Markov Models and sele
ted appli-


ations in spee
h re
ognition // Pro
eedings of the IEEE 77 (2). 1989.

P. 257 �286.

2. Yu Shun-Zheg. Hidden semi-Markov models // Arti�
ial Intelligen
e. 2010.

V. 174. n. 2. P. 215 -243.



158 "Numeri
al Algebra with Appli
ations"

3. Levinson S.E. Continuously variable duration hidden Markov models for

automati
 spee
h re
ognition // Computer Spee
h and Language. 1986. 1

(1). P. 29 �45.

4. Ostendorf M., Digalakis V.V., Kimball O.A. FromHMM's to segment mod-

els: A uni�ed view of sto
hasti
 modeling for spee
h re
ognition // IEEE

Transa
tions on Spee
h and Audio Pro
essing. 1996. 4 (5). P. 360 �378.

5. Deundyak V.M., Zhdanova M.A. Polynomial representation for hid-

den semi-Markov model of Ferguson's type // Vestnik Voronezhskogo

gosudarstvennogo universiteta, Ser.: Sistemnyj analiz i informa
ionnye

tehnologii. 2013. n. 2. P. 71 �78. (in Russian)

6. Deundyak V.M., Zhdanova M.A.On the solution of the evaluation problem

for Hidden Semi-Markov QP-models// Vestnik DGTU. 2014. V.14, n. 4. P.

22 �39. (in Russian)

7. Zhdanova M. A. Inverse problems of HSMM-based mathemati
al modeling

of jamming environment// Pro
eedings of the Modern methods, problems

and appli
ations of operator theory and harmoni
 analysis - V, 2015. P. 185



Kazakov E.A. COMPUTER MODEL OF PLANE WITH FORWARD-SWEPT. . . 159

COMPUTER MODEL OF PLANE WITH

FORWARD-SWEPT WING IN UNUSUAL

CONDITIONS

Kazakov E.A.

Fa
ulty of Physi
s, Southern Federal University, Rostov-on-Don,

Russia

The report presents some spe
i�
 ways of development of air
raft. At the

dawn of aviation all types of airplanes had simple linear form of wing. With

the development of the jet engine �ight speed in
reased signi�
antly and planes

be
ame like arrows. This 
onstru
tive s
heme was a
tual till birth the 5th gen-

eration jet �ghter (nowadays). But there is another 
on
ept of air
raft's design:

when wings situated ba
kwards. The absurd s
heme proved a very perspe
tive

one. Espe
ially in 
ombination with other nonstandard solution � "
anard" a


on�guration in whi
h a small horizontal surfa
e, also named the 
anard or fore-

plane, is positioned forward of the main wing in 
ontrast to the 
onventional

position at the tail (be
ause of this it is sometimes des
ribed as "tail-�rst").

Figure 1. The panel (A) shows a realisti
 model of Northrop Grumman X-29A

air
raft. The panel (B) shows the distribution of pressures in a plane perpendi
-

ular to the dire
tion of �ow. The panel (C) shows streamlines of velosity of the

�ow and demonstrates advantages of FSW �ow's slipping. The panel (D) shows

di�eren
es in pressure at subsoni
 and supersoni
 �ight and demonstrates the

Ma
h 
one

Swept wing has an impressive number of advantages and imposes higher

requirements for the development of the pro�le than the 
lassi
al design of wing.

Using present in the database NASA drawings I 
reate in ANSYS a full model of

the air
raft Grumman X-29A, whi
h is the �rst prototype with the swept wing,

o�
ially broke the sound barrier. Provided simulation of airplane moving through
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air�ow as a whole allowed me to estimate the dependen
e of �ight 
hara
teristi
s

on the 
on�guration elements, stability and 
onstru
tion balan
e.

Figure 2. Comparative analysis of the emerging for
es (lift and drag), depending

on the mode of �ight and involved airplane's parts

The report dis
usses the features of the wing swept behavior at extreme

temperatures, in a dust storm and the threat of dry i
e at subsoni
 and supersoni


�ight 
onditions.
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LONG-WAVE INSTABILITY NEAR SEMI-SELECTIVE

ION-EXCHANGE MEMBRANE

1

Khasmatulina N.Yu., Gan
henko G.S.

Kuban State University, Krasnodar, Russia

Introdu
tion

Rapid developments in mi
ro-, nano-, and bio-te
hnology originate a lot of

interesting and 
omli
ated problems of ele
trokineti
s. Numerous modern appli-


ations of ele
trokineti
s in
lude mi
ro-pumps, desalination devi
es, biologi
al


ells, ele
tro-polishing of mono- and poly-
rystalline aluminium, and the growth

of aluminium oxide layers for 
reating mi
ro- and nano-s
ale regular stru
tures

su
h as quantum dots and wires.

There is not only pra
ti
al interest in the problem, but also a fundamental

one. The study of the spa
e 
harge in an ele
tri
 double-ion layer in an ele
trolyte

solution between semi-sele
tive ion-ex
hange membranes under a potential drop

is a fundamental problem of modern physi
s, �rst addressed by Helmholtz. Hy-

drodynami
s was not involved in either of the underlimiting or limiting regimes,

and both regimes are fully des
ribed by one-dimensional solution.

It was �rst theoreti
ally predi
ted by Rubinstein and Zaltzman [1℄, [2℄ that the

transition from limiting to overlimiting 
urrents is 
onne
ted with a novel type

of ele
tro-hydrodynami
 instability, whi
h is known as ele
trokineti
 instability.

This instability triggers a hydrodynami
 �ow and, in turn, intensi�es the ion �ux

whi
h is responsible for the overlimiting 
urrents. The �rst dire
t experimental

proof of the ele
tro
onve
tive instability that arises with an in
reasing potential

drop between ion-sele
tive membranes was reported by Rubinstein et al. [3℄, who

managed to show the existen
e of small vorti
es near the membrane surfa
e. A

uni�ed theoreti
al des
ription of the linear ele
trokineti
 instability, valid for all

three regimes (underlimiting, limiting and overlimiting 
urrents), was presented

by Zaltzman and Rubinstein [4℄, based on asymptoti
 analysis of the problem The

DNS for two-dimensional (2D) Nernst�Plan
k�Poisson�Stokes (NPPS) equations

were 
onsidered in [5, 6℄ and others. A full s
ale dire
t numeri
al simulation

(DNS) for the three-dimensional (3D) formulation is presented in Demekhin et

al. [7℄.

In all the aforementioned theoreti
al and numeri
al analyses, thermal e�e
ts

are negle
ted. Although, Zabolotsky and Nikonenko [8℄ have found experimen-

tally that a typi
al temperature di�eren
e between the ele
trolyte inside the

membrane system and the environment 
an be up to several degrees. Su
h a

temperature di�eren
e 
an not only have an in�uen
e on the ele
trokineti
 in-

stability near a 
harge-sele
tive surfa
e, but 
an also be a driving for
e for a

1
Supported, in part, by the Russian Foundation for Basi
 Resear
h (Proje
t Nos. 12-08-00924-a, 13-08-

96536-r_yug_a, 14-08-31260 mol-a, and 14-08-00789-a



162 "Numeri
al Algebra with Appli
ations"

new kind of instability based on the spatial nonuniformity of the ele
tri
al 
on-

du
tivity. It 
an also be shown that Joule heating has a signi�
ant e�e
t on the

voltage�
urrent (VC) 
hara
teristi
. These phenomena are investigated in the

present paper.

Statement

A symmetri
, binary ele
trolyte with a di�usivity of 
ations and anions D̃ ,

dynami
 vis
osity µ̃ , and ele
tri
 permittivity ε̃ , and bounded by ideal, semis-

ele
tive ion-ex
hange membrane surfa
es at ỹ = 0 and ỹ = h̃ with a potential

di�eren
e ∆Ṽ between these surfa
es, is 
onsidered. The Joule heating gener-

ated by the passage of a 
urrent through the ele
trolyte is taken into a

ount.

Notations with tilde are used for the dimensional variables, as opposed to their

dimensionless 
ounterparts without a tilde. {x̃, ỹ} are the 
oordinates, where x̃
is dire
ted along the membrane surfa
e and ỹ is normal to it.

What di�ers the present mathemati
al model of the phenomena from the

mathemati
al model in [9℄ is adding the energy equation

∂T̃

∂t̃
+ ũ · ∇T̃ = ã∇2T̃ − Ĩ · ∇Φ̃

c̃pr̃0
(1)

and appearan
e of the additional term, 
orresponding to the buoyan
y for
e in

Boussinesq approximation, in the Sto
kes equation:

∇Π̃ = µ̃∇2ũ+ F̃∇Φ̃
(
c̃− − c̃+

)
+ g̃r̃0β̃(T̃ − T̃0)ey, (2)

∇ · ũ = 0,

where F̃ is Faraday's 
onstant, R̃ is the universal gas 
onstant, T̃0 is the tem-

perature of the environment, ε̃ is the ele
tri
 permittivity, g̃ is the a

eleration

due to gravity, r̃0 is the density, β̃ is the thermal expansion 
oe�
ient, c̃p is the
spe
i�
 heat 
apa
ity, and ã is the thermal di�usivity.

In the above equations, the two-dimensional 
ase is treated; ũ =
(
Ũ , Ṽ

)
is

the �uid velo
ity ve
tor; Π̃ is the pressure. the unit ve
tor ey is dire
ted along

the y -axis. The energy equation 
ontains the sour
e term asso
iated with the

Joule heating of the ele
trolyte. Ele
tri
 
urrent

Ĩ = −F̃
2D̃

R̃T̃
(c̃+ + c̃−)∇Φ̃− F̃ D̃∇(c̃+ − c̃−), (3)

is made up by two me
hanisms: ion transport and di�usion. Note, that relation

for the full ele
tri
 
urrent 
ontains also 
onve
tive term, but this term isn't

signi�
ant for analyze of Joule heatig' in�uen
e.



Khasmatulina N.Yu. . . . LONG-WAVE INSTABILITY. . . 163

The boundary 
onditions are the same as in [9℄, ex
epting the boundary


onditions for temperature

ỹ = 0 : −∂T̃
∂ỹ

+
α̃

λ̃T
(T̃ − T̃0) = 0, (4)

ỹ = h̃ :
∂T̃

∂ỹ
+

α̃

λ̃T
(T̃ − T̃0) = 0, (5)

where α is heat transfer 
oe�
ient, λ̃D =

√
ε̃ Φ̃0

F̃ c̃∞
is the Debye length.

In order to make the system dimensionless, let us use some 
hara
teristi


values, mentioned in [9℄, and the additional one T̃ch = Φ̃0D̃F̃ c̃∞λ̃T
ãc̃pr̃0 ˜alpha

(here c̃∞ �

typi
al ele
trolyte 
on
entration, Φ̃0 � 
hara
teristi
 thermal potential)

In dimensionless formulation the system of equations is as follows,

∂c±

∂t
+ u · ∇c± = ±∇ · (c±∇Φ) +∇2c±, (6)

ν2∇2Φ = −ρ, (7)

∇Π = ∇2u− κ

ν2
∇Φ · ρ+ Ra · T ey, ∇ · u = 0, (8)

Le

(
∂T

∂t
+ u · ∇T

)
= ∇2T − I · ∇Φ, (9)

here,

I = −K · ∇Φ−∇ρ+ u · ρ, K = c+ + c−, ρ = c+ − c−, (10)

with the boundary 
onditions,

y = 0 : c+ = p, −c−∂Φ
∂y

+
∂c−

∂y
= 0 Φ = 0, u = 0,

∂T

∂y
−BiT = 0;

(11)

y = 1 : c+ = p, −c−∂Φ
∂y

+
∂c−

∂y
= 0 Φ = ∆V, u = 0,

∂T

∂y
+BiT = 0,

(12)

where, T = (T̃ − T̃0)/T̃ch .
Using the standard stream fun
tion and making some 
onversions, one 
an

redu
e equations (8) to one biharmoni
 equation, whi
h is 
onvenient for numer-

i
al solving. Chara
teristi
 ele
tri
 
urrent in 
ase of 
ation-ex
ha
ge membrane

is determined only by 
ation's �ow: j = c+ ∂Phi
∂y + ∂c+

∂y Φ for y = 0 .
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From the analysis of the above mentioned dimensional values, it follows that

the dimensionless parameters vary within the range: ν = 10−6−10−2 , κ = 0.05−
0.5 , Ra = 10−6 − 100 . It is assumed that the other dimensionless parameters


an be �xed as p = 5 (see [2, 4, 5℄) and Le = 0.013 (for water). We assume

that Bi = 10−2 is taken. The problem has three parameters: ν , Ra , and κ .

This fa
t greatly 
ompli
ates the numeri
al investigation of the problem. The

�rst small parameter, the Debye number, makes the problem singular and forms

a thin EDL near the boundaries of the investigated domain, y = 0 and y = 1 .

I Numeri
al solution

The numeri
al 
al
ulations of the linear stability of the 1D quies
ent so-

lution with respe
t to sinusoidal perturbations with wave number k , f =
f0 + f̂ exp(λ t + i k x) for f = {c±, Φ, V, T} were perfomed. The Galerkin

pseudo-spe
tral τ -method with Chebyshev polynomials taken as the basi
 fun
-

tions [10℄ is employed to dis
retize the eigenvalue problem. The generalized

matrix eigenvalue problem is solved by the QR algorithm [10℄. The number of

Chebyshev fun
tions in the expansion is up to 512.

The two 
ompeting me
hanisms of instability are determined by the param-

eters κ and Ra . The relation between these parameters determines whi
h of

the instability me
hanisms will be de
isive for the destabilization of the system.

Fig. 1 presents the numeri
ally obtained marginal stability 
urves for di�erent

values of κ and Ra . For the 
ase without thermo-e�e
ts, Ra = 0 , the numeri
s
are 
ompared with the analyti
s of Zaltzman and Rubinstein [4℄: our numeri-


al approa
h is in good 
orresponden
e with the asymptoti
al results. The 
ase

Ra = 0 separates the destabilizing and stabilizing e�e
ts of the Joule heating.

For Ra < 0 , with de
reasing κ or in
reasing |Ra| , the heat e�e
ts prevail
over the ele
trokineti
 e�e
ts and a drasti
 
hange of instability modes o

urs: the


riti
al voltage ∆V∗ de
reases dramati
ally. Moreover, the short-wave instability


hanges to a long-wave instability. Universal 
hara
ter of the behavior of the

long-wave marginal stability 
urves near ∆V∗ 
an be seen from Figs. 1(a)�1(b).

For the 
ase without thermo-e�e
ts, Ra = 0 , the numeri
s are 
ompared with

k
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Figure 1. Marginal stability 
urves of the numeri
al solution, the wave number

k vs. the voltage ∆V for ν = 0.01 , (a) κ = 0.2 , Ra : 1: -50, 2: -10, 3: 0, 4: 10,
5: 50 and (b) Ra = −10 , κ : 1: 0.5, 2: 0.2, 3: 0.1, 4: 0.05.

the analyti
s of Zaltzman and Rubinstein [4℄: our numeri
al approa
h is in good
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orresponden
e with the asymptoti
al results. The 
ase Ra = 0 separates the

destabilizing and stabilizing e�e
ts of the Joule heating.

Con
lusion

A new long-wave kind of instability 
aused by Joule heating near 
harge se-

le
tive surfa
es and its in�uen
e on the ele
trokineti
 instability are investigated

numeri
ally. The physi
al me
hanism of the thermal instability is found to be

very di�erent from that of Rayleigh�B�enard 
onve
tion, and the instability is


aused by an indu
ed nonuniformity of the ele
tri
al 
ondu
tivity in the ele
-

trolyte. In addition, the previous dis
repan
ies between the experiments [3℄ and

the theory [6℄ have shown, in the present study, a trend of better agreement by

taking into a

ount the Joule heating for the appropriate Rayleigh numbers.
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The problem of propagation of waves in an in�nite transversely isotropi



ylinder with a 
ir
ular 
ross-se
tion is 
onsidered a ≤ r ≤ b . The problem

is solved in 
ylindri
al 
oordinates, the deformation is 
onsidered to be axially

symmetri
. It is also 
onsidered that the physi
al 
hara
teristi
s are arbitrary

positive fun
tion of the r 
oordinate. The following notation for the 
omponents

of the displa
ement ve
tor are introdu
ed by Ur(r, z, t) � radial and Uz(r, z, t)
axial. We assume that the 
omponents of the stress tensor and the strain tensor


omponents are related by Hooke's law for transversely isotropi
 inhomogeneous

body with radial inhomogeneity:

σr = C11
∂Ur
∂r

+ C12
∂Ur
r

+ C13
∂Uz
∂z

σθ = C12
∂Ur
∂r

+ C11
∂Ur
r

+ C13
∂Uz
∂z

σrz = C11

(
∂Ur
∂z

+
∂Uz
∂r

)

σz = C13

(
∂Ur
∂r

+
∂Ur
r

)
+ C33

∂Uz
∂z

where Cij � fun
tions of the radial 
oordinate.
The equations of motion in 
ylindri
al 
oordinates are

∂σr
∂r

+
σr − σφ

r
+
∂σrz
∂z

= ρ
∂2Ur
∂t2

∂σrz
∂r

+
1

r
σrz +

∂σz
∂z

= ρ
∂2Uz
∂t2

We assume that the 
ylindri
al surfa
es of the 
ylinder subje
ted to the nor-

mal load, respe
tively. The boundary 
onditions are

σrr |r=a= pei(kz−ωt), σrr |r=a= 0

A boundary value problem of wave propagation in inhomogeneous 
ylinder

formulated. The solution of the boundary value problem is formulated as a guided

waves along the 
ylinder axis.
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We have obtained �rst order 
anoni
al system of di�erential equations

dỸ

dr
= A(r, k, ω, Ỹ )

with the following boundary 
onditions

X(a) = p0, X(b) = 0, Z |r=a,b= 0.

the following notation options are: γ = kb � dimensionless wave number,

κ2 = ρω2b2/C0
44 � the dimensionless frequen
y, ε = r/b, ε ∈ [ε0, 1], ε0 = a/b .

We have formulated the following homogeneous boundary value problem for

the operator with two spe
tral parameters γ, κ

C11

C0
44

= g1,
C13

C0
44

= g2,
C12

C0
44

= g3,
C44

C0
44

= g4,
C33

C0
44

= g5

Y ′1 = −a1
Y1
ξ
− γa2Y2 + a3Y3

Y ′2 = γY1 + a4Y4

Y ′3 = (a6
1

ξ2
− κ2)Y1 + a7

γ

ξ
Y2 − a5

Y3
ξ
− γY4

Y ′4 = a7
γ

ξ
Y1 + (γ2a8 − κ2)Y2 + γa2Y3 −

Y4
ξ

(1)

where:

a1 =
g3(ξ)

g1(ξ)
, a2 =

g2(ξ)

g1(ξ)
, a3 =

1

g1(ξ)
, a4 =

1

g4(ξ)
, a5 =

g1(ξ)− g3(ξ)
g1(ξ)

,

a6 =
g21(ξ)− g23(ξ)

g1(ξ)
, a7 =

g2(ξ)(g1(ξ)− g3(ξ))
g1(ξ)

, a8 =
g5(ξ)g1(ξ)− g22(ξ)

g1(ξ)

So we have built a system of dimensionless di�erential equations with bound-

ary 
onditions. Only numeri
al investigation of the problem is possible. In some


ombinations between the parameters, whi
h forms the set of dispersion points,

the problem is insoluble. The problem of 
onstru
ting the set of dispersion points

is very important in general theory of waveguides, however, for arbitrary hetero-

geneity fun
tions requires the use of numeri
al methods. Solving boundary value

problem we have used the shooting method.

For ea
h value of κ and γ , set up in the 
y
le with some step, solves two

Cau
hy problems for the system (1) with the following boundary 
onditions

for the �rst one:

Y
(1)
1 (ξ0) = 1, Y

(1)
2 (ξ0) = 0, Y

(1)
3 (ξ0) = 0, Y

(1)
4 (ξ0) = 0 , solutions ve
tor

Y (1) = (Y
(1)
1 , Y

(1)
2 , Y

(1)
3 , Y

(1)
4 ).
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for the se
ond Cau
hy problem:

Y
(2)
1 (ξ0) = 1, Y

(2)
2 (ξ0) = 0, Y

(2)
3 (ξ0) = 0, Y

(2)
4 (ξ0) = 0 , solutions ve
tor

Y (2) = (Y
(2)
1 , Y

(2)
2 , Y

(2)
3 , Y

(2)
4 ).

linear 
ombination of these ve
tors

α1Y
(1) + α2Y

(2)

This 
ombination should meet the remaining boundary 
onditions Y3(1) =
Y4(1) = 0 . Obtained the linear system to determine the parameters α1, α2

α1Y
(1)
3 + α2Y

(2)
3 = 0

α1Y
(1)
4 + α2Y

(2)
4 = 0

To determine the set of dispersion points it is ne
essary to �nd the relation

between γ and κ , for whi
h system would have a nontrivial solution; then the

determinant of the system is zero.

Numeri
al experiments to determine the stru
ture of the dispersion sets for

various heterogeneity fun
tions displayed in the following �gures. Figure 1. iden-

tify the 
omponents of the dispersion sets for the non-monotoni
 heterogeneity

fun
tions f(ξ), g(ξ), in Figure 2 for a layered 
ylinder.

Figure 1. Non-monotoni
 heterogeneity

Figure 2. Layered 
ylinder
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ON THE OCCURRENCE OF SELF-OSCILLATIONS IN

A VERTICAL LAYER OF A BINARY MIXTURE

IN THE PRESENCE OF A THERMAL DIFFUSION

EFFECT

Petrova E.I., Morshneva I.V.

Southern Federal University, Rostov-on-Don, Russia

The problem of 
onve
tion in a binary mixture 
onsisting of two non-rea
ting


omponents is 
onsidered. The binary mixture is pla
ed between two verti
al in-

�nite isothermal plates. In the model under 
onsideration thermal di�usion e�e
t

is taken into a

ount, di�usive thermal 
ondu
tivity is negle
ted. The 
onve
-

tive �ow of the binary mixture is governed by the Navier-Stokes equations under

Oberbe
k-Boussinesq approximation ([1℄):

∂v

∂t
+Gr(v, ∇)v = −∇p+△v + (T + C)k,

∂T

∂t
+Grv∇T =

1

Pr
△T,

∂C

∂t
+Grv∇C =

1

Prd
(△C − ε△T ),

div v = 0.

(1)

The 
orresponding boundary 
onditions are:

y = ±1 : v = 0, T = ∓1, ∂C

∂y
= ε

∂T

∂y
, (2)

where v = (vx, vy, vz) is the �ow velo
ity, T is the temperature, C is the light


omponent 
on
entration, p is the pressure, k is the up-dire
ted verti
al ve
tor.

The problem (1), (2) 
ontains four dimensionless parameters: Gr =
gβ1θd

3

ν2

� the Grashof number; Pr =
ν

χ
� the Prandtl number; Prd =

ν

D
� the

di�usion Prandtl number (the S
hmidt number); ε = −αβ2
β1

� the thermodi�u-

sion 
oe�
ient; where ν is the kinemati
 vis
osity 
oe�
ient, χ is the thermal

di�usivity, D is the di�usivity, β1 is the 
oe�
ient of thermal expansion, β2 is

the density 
on
entration 
oe�
ient, α is the thermodi�usion parameter.

The motion equations (1), (2) have a steady-state (basi
) solution with a


ubi
 velo
ity pro�le, 
onstant pressure, linear distribution of temperature and


on
entration. Linear stability of the basi
 solution was studied by G. Gershuni,

E. Zhukhovitsky and L. Sorokin ([1℄). They found that both monotoni
 and

os
illatory stability loss of the basi
 regime are possible.
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This resear
h is devoted to the study of bran
hing and stability of time-

periodi
 �ow regimes arising from os
illatory stability loss of the basi
 regime

relatively plane perturbations 2π/β �periodi
 on a verti
al variable z , where
β is wave number. The perturbation equations are invariant under the group

O(2) (invariant under inversion and verti
al translation), and the Andronov-

Hopf bifur
ation theory in the systems with su
h symmetry is suitable. This

theory has been developed by V. Yudovi
h and I. Morshneva ([2℄, [3℄). In our

resear
h we employ the Lyapunov-S
hmidt method. We propose that solution is

time periodi
 with 2π/ω period, where ω is unknown 
y
li
 frequen
y. Thus the

solution is sought as follows:

v(τ) = (α0ϕ0 + α1ϕ1)e
iτ + (α∗0ϕ

∗
0 + α∗1ϕ

∗
1)e
−iτ + u(τ), (3)

where ϕ0 , ϕ1 is eigenve
tors of the linear problem, whi
h are 
onne
ted by

inversion symmetry and 
orrespond to the eigenvalue −iω0 ; α0 , α1 � 
omplex

amplitudes; τ = ωt , ω = ω0 + µ .
The bran
hing equations inherit the symmetry of the original problem and

are given as

g(α0, α1) ≡ α0(−iµ+ aδ + b|α0|2 + c|α1|2 + . . . ) = 0,

g(α1, α0) ≡ α1(−iµ+ aδ + b|α1|2 + c|α0|2 + . . . ) = 0.
(4)

The expressions for a, b, 
 
oe�
ients are provided in [2℄. These 
oe�
ients

represent fun
tionals, whi
h are expressed through eigenfun
tions of the linear

and 
onjugate stability problem, and through the solutions of inhomogeneous

boundary-value problems with right sides that empli
ity dependent on the same

eigenfun
tions.

Investigation of the system (4) has reveal ([2℄) that when the parameter Gr
pass through the 
riti
al value of the os
illatory stability loss Gr∗ three types of
self-os
illating modes are arising: the nonlinear mixture of 
ouple simple waves,

two traveling simple waves moving in the opposite dire
tion to ea
h other. The

type of bran
hing and stability of these regimes depends on the relations between

the 
oe�
ients a, b, 
 of the bran
hing equations.

The 
oe�
ients of the bran
hing equations were found numeri
ally for

the problem of binary mixture 
onve
tion in the verti
al layer in 
onsidera-

tion of thermal di�usion e�e
t. Computations for a wide range of parameters

Pr, Prd, ε, β showed that the following �ve bran
hing types of periodi
 modes

are realized:

I. the traveling waves are stable and bran
hed in super
riti
al region, the

nonlinear mixture of waves is unstable and bran
hed in super
riti
al region;

II. the traveling waves are unstable and bran
hed in super
riti
al region, the

nonlinear mixture of waves is stable and bran
hed in super
riti
al region;

III. the traveling waves are bran
hed in super
riti
al region, the nonlinear

mixture of waves is bran
hed in sub
riti
al region, all regimes are unstable;
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IV. the traveling waves are bran
hed in sub
riti
al region, the nonlinear mix-

ture of waves is bran
hed in super
riti
al region, all regimes are unstable;

V. all regimes are unstable and bran
hed in sub
riti
al region.

A variety of neutral stability 
urves of the os
illatory stability loss have been

plotted for di�erent values of Pr, Prd, ε . Ea
h of the �ve bran
hing types of

periodi
 modes is denoted in di�erent styles. For example, Fig. 1 represents the

neutral stability 
urves, 
orresponding to the os
illatory stability loss, for the

values of the Prandtl number Pr = 12, 14, 15.6 , the S
hmidt number Prd = 4
and the thermodi�usion 
oe�
ient ε = 1.214 in the parameter spa
e (β, ω, Gr) .
The nonlinear mixture of waves is stable at the 
y
li
 frequen
y below the average

value, and the traveling waves are stable at the 
y
li
 frequen
y near and above

the average value. On the remaining 
urve parts all the modes are unstable and

di�er only by the bran
hing type.

Figure 1. Bran
hing types of self-os
illating modes on the neutral stability 
urves for

Pr = 12, 14, 15.6 , Prd = 4 , ε = 1.214 .
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MATHEMATICAL MODELS AND METHODS TO

DESCRIBE SELF-ASSEMBLY OF SPHERICAL

CRYSTALS AND TO STUDY THEIR DEFECTS

1

Roshal D.S., Myasnikova A.E.

Fa
ulty of Physi
s, Southern Federal University, Rostov-on-Don,

Russia

Rapid development of experimental methods to obtain spheri
al 
rystals and

to study them 
auses high s
ientists' interest in theoreti
al modeling of 
olloidal


rystal self-assembly and defe
ts in them. It is known, that this material is among

the �rst that were obtained by means of self-assembly. The most interesting

material from the pra
ti
al point of view is 
olloidosome, whi
h is a system

of densely pa
ked parti
les at an interfa
e between two liquids. Hexagonal order

dominates on its surfa
e, but it also 
ontains few topologi
al defe
ts. A

ording to

Euler theorem a sum of defe
ts' topologi
al 
harges is 12. Usually triangulation

method (drawing lines 
onne
ting ea
h parti
le with its 
losest neighbors) is

useful to �nd defe
ts areas. In this 
ase parti
les related to hexagonal order have

zero topologi
al 
harge, parti
les with �ve neighbors have 
harge +1, parti
les

with seven ones have 
harge -1, et
. Re
ently, we proposed a method [4℄ of rapid

determination of the extended defe
ts' topologi
al 
harge using the 
ontours

surrounding them. In this 
ase the value of the topologi
al 
harge is 6 minus the

number of the 
ontour sides. So the pentagonal defe
t topologi
al 
harge is +1,

and an area of square order [1℄ has the 
harge +2. Similar topologi
al defe
ts

may be 
alled extended topologi
al defe
ts (ETDs) [2℄.

To explain the arrangement of parti
les on the 
olloidosome surfa
e it is

reasonable to use Lennard-Jones potential. To simulate the 
olloidosome self-

assembly it is enough to pla
e randomly the parti
les on the sphere surfa
e and

then to minimize the system energy by the gradient des
ent method.

As simulation shows [1℄ at the number of parti
les on the sphere surfa
e

slightly less than the maximum possible, the area with the square order may

be formed (Fig.1b), whi
h was experimentally observed (Fig.1a). The area of

square order 
an be understood as the result of intera
tion of two pentagonal

defe
ts, and its topologi
al 
harge (+2) is the sum of topologi
al 
harges of two

dis
linations (+1) [1℄. Pa
king density is mu
h lower in su
h areas, whi
h is

important for appli
ations.

To study the ETD properties and intera
tion between di�erent defe
ts we

suggest a new method of surrounding the ETD with a 
ontour. The most 
ommon

defe
ts in the spheri
al 
rystals are dislo
ations and dis
linations. However, in


olloidosomes and 
olloidal 
rystals with large maximum number of parti
les and

high-density pa
king they are 
ombined into ETD with the topologi
al 
harge

+1. The number of them on the sphere surfa
e is 12, and they are lo
ated near the

1
This work was supported by Russian Foundation for Basi
 Resear
h (Grant N13-02-12085 o�_m)
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Figure 1. Experimental (a) and simulated 
olloidosomes with the number of

parti
les (b): slightly less than maximum and (
): larger and maximum. Panels

(d, e) show two possible ways to de
ompose green extended topologi
al defe
t

(ETD) from (
) by the appli
ation of external for
es.

verti
es of i
osahedron (Fig. 1
). Let's surround su
h defe
t by s
alene pentagon.

It seems that the dislo
ations enter the longer sides of the pentagonal defe
t area,

but it is not so. As it is shown in [2℄, in
reasing the area o

upied by the ETD,

we 
an make the surrounding 
ontour equilateral. Thus, the order outside the

defe
t doesn't display existen
e of dislo
ations in any way.

Also, the intera
tion between the topologi
al defe
ts 
an be studied with

mathemati
al modeling methods. Over the last de
ade experimental methods

for studying 2D 
olloidal 
rystals were substantially advan
ed. Using new ex-

perimental methods like the opti
al tweezers te
hnique it is possible to move

individual 
olloidal parti
les or to shift 
oherently whole groups of su
h parti-


les. After these enfor
ed 
hanges 
olloidal stru
tures relax. This experimental

te
hnique 
an be modeled by a virtual opti
al tweezers method [2℄. It 
onsists in

that after the 
hange of parti
les 
oordinates on the sphere surfa
e the system

relaxation is modeled by applying a gradient des
ent method. Thus, we apply

the system energy minimization with the spe
i�
 initial 
onditions in the form

of modi�ed 
oordinates of parti
les.

Let us use this method to 
onsider the ETD in the 
enter of the �gure 1
. It

is highlighted in the green pentagon. Only after triangulation it looks like a s
ar

- a 
hain of 5- and 7-fold dis
linations. Panels (d, e) present two possible ways to

de
ompose this ETD by the appli
ation of external for
es (virtual opti
al tweez-

ers). In both enfor
ed rea
tions the elementary 5-fold dis
lination is deta
hed

and it 
arries out all the topologi
al 
harge of the ETD. The dis
lination region

is 
olored in red. Hexagons 
ontaining the dislo
ations are 
olored in blue. The

length of the Burgers ve
tor of the dislo
ation (d) is 2, while the length of the to-

tal Burgers ve
tor of two dislo
ations shown in panel (e) is 2sin(?/3). Considering

the rea
tions between ETDs and dislo
ations, we have found that the ETDs emit

and absorb the dislo
ations without preservation of their dislo
ational 
harge.

With the spe
i�
 
hoi
e of initial 
onditions it is possible not only to model
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the virtual opti
al tweezers, but also to �nd new solutions of Thomson problem.

Self-organization of repelling parti
les retained on a spheri
al surfa
e is under

dis
ussion for more than a 
entury and is 
alled Thomson problem after J.J.

Thomson suggested his model of atom 110 years ago. Thomson problem is in-


luded in various lists of the most important unsolved mathemati
al problems

of the 21st 
entury. Now we know that Thomson problem arises on di�erent

levels of the matter self-organization. Arrangements in multi-ele
tron bubbles in

super�uid helium almost perfe
tly 
orrespond to stru
tures formed by 
harged

parti
les in the frame of the problem. Also the pores in the pollen grains (the

Tammes problem) and the various two-dimensional 
olloidal 
rystals in
luding


olloidosomes [1, 2℄ are similar to Thomson problem solutions.

However, the 
lassi
al spheri
al Thomson stru
tures (TSs) 
orresponding to

the global energy minima are also very interesting. Sear
h of them is a 
hal-

lenging work sin
e the energies of stru
tures 
orresponding to global and lo
al

minima are very 
lose. Moreover, the di�eren
e between the equilibrium energies

is strongly redu
ed and number of equilibrium stru
tures grows exponentially

with the number N of parti
les in the stru
ture. Usually the lowest minima 
or-

responding to the TS stru
ture are sear
hed with numeri
al methods. The list

of spheri
al TSs with the lowest ever seen energy is 
onstantly updated [3℄ by

Bowi
k group of physi
ists.

Some of the TSs are similar to spheri
al viral 
apsids, whi
h were for the �rst

time des
ribed in terms of simple geometri
 model proposed by Caspar and Klug

(CK) half a 
entury ago. Unfortunately, viral 
apsids are not Thomson problem

solution, and besides, su
h symmetri
 arrangements of parti
les are possible only

at the parti
ular N values. However, it allows us to adapt and develop the initial

CK geometri
al model to sear
h for the lowest-energy TSs.

Figure 2. The method to obtain new Thomson stru
tures

In my work [4℄, a new method of obtaining trial stru
tures for further opti-
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mization is suggested. It is based on a deformation of regular or slightly distorted

i
osahedron smoothly 
overed with hexagonal latti
e. The parti
les are lo
ated

in the nodes of this latti
e. The trial stru
ture is obtained by proje
ting the

parti
les from the i
osahedron surfa
e onto the sphere.

In this work [4℄ the spheri
al stru
tures with the number of parti
les in the

interval of 600<N<1000 were analyzed. Thus 40 spheri
al 
rystals having energies

lower than the previously known stru
tures with the same number of parti
les N

were obtained. It is possible that the obtained stru
tures are Thomson problem

solutions. Our results may be interesting for physi
ists working on theoreti
al and

experimental problems of self-assembly in various types of spheri
al nano- and

mi
ro-stru
tures. For example, the stru
tures with the above 
onsidered simplest

distortions 
an be dis
overed in 
ourse of further experimental investigations of

misassembled viral 
apsids or fullerenes.

Thus, by means of developing new models and mathemati
al methods [1, 2,

4℄ we managed to explain the me
hanism of unusual defe
ts formation on the


olloidosome surfa
e and to study the intera
tion between various defe
ts. It

was proved that ETD 
an absorb or emit dislo
ations without preserving their

dislo
ation 
harge (the Burgers ve
tor). Moreover, using initial 
onditions with

slightly broken symmetry in the frames of the gradient des
ent method we �nd

40 new Thomson problem solutions.
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ONE APPROACH TO CALCULATING THE

MOVEMENT AND INTERACTION OF INDIVIDUAL

ICE FLOES1
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∗ Southern Federal University, Rostov-on-Don, Russia
∗∗ Institute of Arid Zones, Southern Scienti�c Center, Russian
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I Introduction

Ice cover is important component of the hydrological mode of the seas. Drift-
ing ice signi�cantly complicates shipping, coastal zone development, creates a
heavy load on the bridge supports. Simulation of ice �oes movement is an im-
portant area of research in development in areas of ice formation.

In di�erent models the ice is considered as the porous structure, in the case of
consideration of �oes as individual objects, they're described as a material point
[1, 5]. In this paper movement of �oe takes into account its con�guration, as well
as the e�ects of streams and wind loads.

II Statement of the Problem

As the object of study is considered the process of ice �oes movement with
arbitrary shape of the �oes in the pond �lled with homogeneous ideal incom-
pressible �uid. The border of the pond is vertical, and depth of water bigger
than ice �oes thickness.

The rectangular grid with information about �ow velocity is obtained.
The object in question is a resilient plate of arbitrary shape, in some approx-

imation are ice �oes. As initial conditions must be seted the density and shape
of the ice �oe. With these parameters square, mass and center of mass could be
calculated. The initial time it is assumed that the �oe is at rest, ut=0 = vt=0 = 0 .

Upon contact with the boundary of the reservoir, the movement of ice �oes
will be considered as an elastic collision with a solid surface.

III Movement modeling

The model of ice �oes moving is based on two-dimensional model of the drift
of the iceberg [6]. This model doesn't take into account the interaction with the
soil, wind waves and tilt of pond. The equation can be described by :

1Supported by The Ministry of Education and Science of Russia (grant 1420)
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M
du

dt
= FW

nx + FA
nx,M

dv

dt
= FW

ny + FA
ny (1)

where FW
nx , F

A
nx, F

W
ny , F

A
ny � proje
tion of radial for
e 
omponents on the axis

x and y .
By repla
ing the time derivatives of the �nite-di�eren
e analogues, we get:

∆u

∆t
=
FW
nx + FA

nx

M
,
∆v

∆t
=
FW
ny + FA

ny

M

where ∆t � time step, ∆u and ∆v � 
omponents of the velo
ity gradients in

time (∆u = ut+1 − ut,∆v = vt+1 − vt )
For the angular velo
ity we take tangential 
omponents of the for
es:

∆ω

∆t
=
FW
τ + FA

τ

I

where I � moment of inertia of the i
e �oe, FW
τ , FA

τ � the tangential 
omponents

of the for
es a
ting on an i
e �oe.

After determining the speed of a drifting i
e �oe, we �nd the 
oordinates of

its provisions (x, y) at the next time step:

xt+1 = xt + ut+1∆t, yt+1 = yt + vt+1∆t, ϕt+1 = ϕt + ωt+1∆t

At �rst we shall partition the entire area �oe with triangulation [4, 7℄ . We

assume that all of the mass of ea
h member is 
on
entrated in the 
enter of mass

of the element, and the speed of the entire area of the element is equal to the

velo
ity of its 
enter of mass. Thus the resultant for
e a
ting on an i
e �oe, is

the sum of the for
es a
ting on ea
h element of the partition:

Fres =

n∑

i=0

(
FW
i + FA

i

)

FW
i = cwρwSi

(
V W − V ice

i

)

FA
i = caρaSi

(
V A − V ice

i

)

where V W
� water �ow velo
ity, V A

� wind �ow velo
ity, V ice
i � rate of i �oes

element, ρw , ρa � the density of water, air, cw , cw � the fri
tion 
oe�
ient of

water, air, Si �Square of i �oes element in 
onta
t with the water.

The intera
tion between obje
ts is redu
ed to the problem of 
ollision dete
-

tion and its solving [2, 9℄. Stage 
ollision dete
tion is divided into two steps:

1. Determination of the 
andidates for the 
ollision. For ea
h i
e �oe deter-

mines the minimum radius of the 
ir
le 
entered at the 
enter of mass and



180 "Numeri
al Algebra with Appli
ations"

fully 
ontaining this i
e �oe. By 
omparing the distan
e between the 
en-

ters of mass of the two �oes and the amount re
eived by the radius of the


ir
les we make a 
on
lusion about the possibility of a 
ollision. If the dis-

tan
e is greater than the sum of the radiuses, that means that �oes don't


ollided, else a 
ouple of i
e �oes are 
andidates for 
ollision and go to step

2.

2. Sear
h for 
ommon points i
e �oes. In the simplest 
ase 
an be 
he
ked

that vertexs of the se
ond �oe are belong to the �rst i
e �oe.

If 
ouple of obje
ts has 
ommon points, than the value of the impulse should

be 
al
ulated. With this impulse obje
ts intera
t with ea
h other.

r
BPB

A

P r
AP

n

Figure 1. The moment of two i
e �oes 
ollision.

j =
− (1 + ε) vAB1 · n

n · n
(

1
MA + 1

MB

)
+

(rAP
⊥
·n)

2

IA +
(rBP

⊥
·n)

2

IB

where j � impulse, ε � 
oe�
ient of elasti
ity, vAB1 � the di�eren
e between the

velo
ities of the bodies before 
ollision, n � the normal ve
tor of the point of 
ol-

lision, MA,MB
� mass of 
olliding obje
ts, IA, IB � the moment of momentum

of the 
olliding obje
ts.

IV Results

This model allows the 
al
ulation of:

1. Values of for
es a
ting on an arbitrary area �oes.

2. Values of the resultant for
e.

3. Collision for
es.

4. Values of linear and angular speed and a

eleration.
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As the pond to test model was 
hosen square shaped pond, �lled with a

uniform ideal in
ompressible �uid with a steady �ow. Presented in the form of a

grid of the velo
ity �eld, with known values at the nodes of the grid.

There was a numeri
al simulation of the intera
tion of di�erent type obje
ts

� two i
e �oes with a predetermined density in the range from 0.85 to 0.94 g /


m 2 and stati
 body.

Figure 2. The results of 
al
ulations movement of i
e �oes

Fig. 1 shows the path of the i
e �oes, 
al
ulated using this model.
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THE SPECIAL BROADCAST SECURITY SCHEME

BASED ON RM-CODES AND THE PROTECTION

FROM SOME LINEAR ALGEBRAIC ATTACKS

Yevpak S.A.

Southern Federal University, Rostov-on-Don, Russia

The spe
ial broad
ast se
urity s
heme whi
h is based on Reed-Muller 
odes

is 
onsidered in [1℄. The s
heme allows distributors to prote
t digital produ
ts

from unauthorized a

ess. Ea
h user gets from the distributor the id sequen
e

and the keys whi
h give a

ess to dupli
ated data.

However, there are possibilities to get a

ess to the data with help spe
ial

linear algebrai
 atta
k [1, 2℄. For this, legal users of the s
heme unite in groups

or 
oalitions and modify own key data for getting new pirate keys whi
h give

a

ess to dupli
ated data. The 
oalition size is not more than c users for the


on
rete s
heme. Besides, if the possible size of 
oalition members is more than

c then there are another atta
ks [3℄.

In this paper, it is introdu
ed the parameters of Reed-Muller 
odes, whi
h

help to prote
t the distributor data.

Let Fq[X1, X2, . . . , Xm] be the ring of polynomials in m variables with 
oe�-


ients in the �nite �eld Fq with q elements. Let P1, P2, . . . , Pn be an enumeration
of the points of Fmq , where n=q

m
. The q -ary Reed-Muller 
ode RMq(r,m) of

order r in m variables is de�ned as

RM q(r,m) = {(f (P1) , f (P2) , . . . , f(Pn))|deg(f) ≤ r}.
Suppose c is the maximum size of 
oalition, N is the number of all users in the

s
heme. Then,

r,m(∈ N) : |RMq(r,m)| = N

and

q ≥ rc2 + 1.

Bibliography

1. Yevpak S.A., Mkrti
han V.V. The Reed-Muller 
odes appli
ation in the

spe
ial broad
ast se
urity s
hemes // Trudi nau
hnoi shkoli I.B. Simo-

nenko - Rostov-on-Don: Sfedu, 2010. P. 93-99. (in Russian)

2. Yevpak S.A., Mkrti
han V.V. About the link between the bounds of ap-

plying of the spe
ial information prote
tion s
heme based on the q -ary
Reed-Muller 
odes // Izvestiya Sfedu. Engineering s
ien
es. - 2013. - N 12.

- P. 194-200. (in Russian)

3. Yevpak S.A., Mkrti
han V.V. Appli
ability 
onditions for q -ary Reed-

Muller 
odes in traitor tra
ing // Vladikavkaz mathemati
al journal. V.16

(2), 2014. - P. 27-34. (in Russian)



184 "Numeri
al Algebra with Appli
ations"

MATHEMATICAL MODELING OF LASER PULSE

INTERACTION WITH PLASMA

1
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ow, Russia

Re
ent years are marked with great progress of laser physi
s. Laser pulse

power is 
onstantly in
reasing and rea
hed values of 1022W/cm2
. This fa
t has

led to a
tive theoreti
al and experimental resear
hes of ion a

eleration, and is

expe
ted to use the high power lasers.

Plasma 
an be 
onsidered 
old and 
ollisional for the examined laser pulse.

Me
hanisms of ion a

eleration in the intera
tion of ultrashort and superstrong

laser pulses with 
ollisional plasma based on the generation of large-s
ale 
ol-

le
tive ele
tri
 �elds due to 
hanges in the ele
tron density under the a
tion of

ele
tromagneti
 radiation.

A detailed resear
h of this problem requires a full-s
ale 
omputer simulations

based on the use of the so-
alled method of parti
les-in-
ell or PIC � method.

This work is devoted to the des
ription of 
omputational experiment built

on a multipro
essor platform. The experiment was 
ondu
ted in the framework

of 2D3V, when the desired ion distribution fun
tion depends on two spatial

values and three 
omponents of the pulse. Plasma is examined in the Vlasov

approximation, that is a medium 
onsisting of ele
trons and ions in whi
h there

is a self-
onsistent �eld. Therefor it is represented with the �nite number of

ele
trons and ions (up to 107 ) disposed at dis
rete points of spa
e. Parti
les

move under the in�uen
e of external and self-
onsistent �elds. The intera
tion

of parti
les is divided into two stages: the 
al
ulation of �elds, generated with

parti
les, and determination of the motion of parti
les under the in�uen
e of

for
es, applied to them. Fields are 
al
ulated from Maxwell's equations, in whi
h

the 
urrents and 
harges are sear
hed out with the positions and velo
ities of all

parti
les. Motion of the parti
les is determined by the numeri
al solution of the

Newton-Lorentz equation with su�
ient a

ura
y.

Computing 
y
le 
onsists of alternate solutions to these two tasks. The vari-

able and spatial grid are put in, it satisfyies the ne
essary requirements of a

u-

ra
y and stability.Parti
les are noted with index i , for example vi and xi . Field
values are 
omputed only at the nodes of the spatial grid, marked with index j ,
for example Ej . Cy
le of the program work is showed on the pi
ture.1.

The work presents a method for 
al
ulating a large number of system param-

eters based on multi-platfoma, namely parallelization is based on the "parameter

sear
h". This parallelization gives a great time advantage, in the 
onstru
tion of

a 
omputational experiment.

1
Finan
e supported by RFFI grant 14-01-00337



Zaytseva A.. . . LASER PULSE INTERACTIONS. . . 185

Figure 1. PIC Methods
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SOME STEADY-STATE NUMERICAL SOLUTIONS OF

EULER EQUATION

1

Zhdanov I.A.

∗
, Govorukhin V.N.

∗
∗
Southern Federal University, Rostov-on-Don, Russia

Consider a two-dimensional steady-state Euler's equation in terms of vorti
ity

and stream-fun
tion, des
ribing �ow of in
ompressible invis
id �uid whi
h was

des
ribed in [1℄ : {
∂ω
∂x

∂ψ
∂y
− ∂ω

∂y
∂ψ
∂x

= 0

∆ψ = −ω (1)

With boundary 
onditions: ψ|x=0 = g1(y) ; ψ|x=a = g2(y) ; ψ|y=0 = const ;
ψ|y=b = const ; ω|x=0 = f1(y) ; ω|x=a = f2(y) ; ω|y=0 = const ; ω|y=b = const ;
where ψ = ψ(x, y) � stream fun
tion, ω = ω(x, y) � vorti
ity fun
tion.

Using �nite-di�eren
e method we got system of non-linear algebrai
 equa-

tions:

{
(ωi+1,j − ωi−1,j)(ψi,j+1 − ψi,j−1)− (ψi+1,j − ψi−1,j)(ωi,j+1 − ωi,j−1) = 0

−ωi,j = ψi+1,j−ψi,j+ψi−1,j

h2x
+

ψi,j+1−ψi,j+ψi,j−1

h2y

(2)

where i = 2..Nx − 1 ; j = 2..Ny − 1 ; hx =
a

Nx−1 ; hy =
b

Ny−1
Unfortunately it is pra
ti
ally impossible to obtain analyti
al solution for

su
h systems. However numeri
al methods provide a

eptable results. The best

of them were obtained using Newton's method. The key problem here is how to


hoose the 
orre
t initial data.

ψ

x

y

0 0.5 1
0

0.2

0.4

0.6

0.8

1
ω

x
0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 1 2
0

2

4

6
F=ψ(ω)

ψ

ω

Figure 1. K1 = 4.5 ; K2 = 0 ; Regime with linear fun
tional dependen
y that is

identi
al to analyti
al solution from arti
le [2℄

We suggest the following algorithm:

1
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• To �nd solution for the smallest possible number of 
ells (6 by 6) using

near-zero values as an initial data for Newton's method

• To "stret
h" result using interpolation methods to in
rease number of 
ells

and use the result of interpolation as an initial data for Newton's method.

• If boundary 
onditions are 
lose to some boundary 
onditions for whi
h

solution has already been obtained, this solution is used as initial data for

Newton's method.

The reliability of results was 
ontrolled by the veri�
ation of famous analyt-

i
al fa
ts and relations. Parti
ularly, the fa
t that there should be a fun
tional

dependen
y ψ = F (ω) for the solution of (1).Besides, the algorithm was test-

ed for 
ases where analyti
al solution is known [2℄ The des
ribed algorithm was

su

essfully applied for analyzing problem (1).

We 
onsider a square domain 1×1 with boundary 
onditions:f1(y) = f2(y) =
K1y + K2 sin(

πy
b
) ; g1(y) = g2(y) = y , where K1 and K2 � some numeri
al

parameters.
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Figure 2. K1 = 4.5 ; K2 = 1 ; In
reasing K2 makes fun
tional dependen
y

non-linear but monotoni
 fun
tion

The main goal of the numeri
al experiments was to �nd a steady-state �ows

with di�erent fun
tional dependen
y ω = F (ψ) . The linear dependen
y (K2 =
0) was des
ribed in [2℄.

The results are presented graphi
ally. The left pi
ture illustrates stream-lines

of �uid parti
les, the 
entral pi
ture illustrates isolines of vorti
ity �eld and the

right graphi
s shows the dependen
y ψ(ω) . Here, we used a solution with linear

dependen
y ω = Kψ to perform reliability tests.
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Figure 3. K1 = 4.5 ; K2 = 3 ; Further in
reasing K2 makes fun
tional depen-

den
y to be
ome non-monotoni
 fun
tion
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Figure 4. K1 = 4.5 ; K2 = 0 ; The solution with the same parameters as on

Figure 1. This pi
ture illustrates that there 
an be di�erent solutions with the

same border 
onditions.
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